# Holographic inflation and conservation of $\zeta$ 

Yuko Urakawa (Nagoya U.) with J. Garriga (U. of Barcelona)
1.U. and F.G. arXiv:1303.5997, FCAP 1307, 033 arXiv:I403.5497, accepted in YHEP in progress

WMAP, PLANCK, BICEP2, ...


Yes, we "detected" inflation.

- Alternative way to describe inflationary universe

Can we describe inflation holographically?


- Cosmological perturbation
- Quantum field theory

$$
P(k) \propto \frac{1}{\varepsilon}\left(\frac{H}{M_{\mathrm{pl}}}\right)^{2} \frac{1}{k^{3}}
$$

1. dS/CFT
2. Inflation/QFT
3. Boundary QFT
4. $\zeta$ correlators from boundary

# AdS/CFT correspondence 

Maldacena (97)
$\mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ super Yang-Mills theory in 4 D
Duality $\downarrow \quad\left(N \gg 1, N g_{s} \gg 1\right)$
Classical type IIB SUGRA on $\operatorname{AdS}_{5 \times} \mathrm{S}^{5}$ in 10D

- $\mathrm{SO}(2,4) \times \mathrm{SO}(6)$ symmetry
- Correlation functions in CFT from gravity

Gubser, Klebanov, Polyakov (98), Witten (98)

$$
Z_{\mathrm{bulk}}\left[\left.\Phi(z, \mathbf{x})\right|_{z=0}\right]=\left\langle e^{-\int d^{4} \mathbf{x} \Phi(\mathbf{x}) O(\mathbf{x})}\right\rangle_{\mathrm{CFT}} \equiv Z_{\mathrm{CFT}}
$$



- Holographic principle 't Hooft (92), susskind (95) Holographic principle suggests that a gravity theory should be related to a non-gravitational theory in one fewer dimension.
d-dim gauge theory $\longleftrightarrow$ (d+1)-dim gravity theory
+ RG flow
- Non-trivial duality Maldacena (97)

Boundary CFT
'tHooft coupling $\lambda$
$\lambda=\left(\mathrm{r}_{0} / \mathrm{s}_{\mathrm{s}}\right)^{4}$
Strong coupling $\quad \lambda \gg 1, \mathrm{r}_{0} \gg \mathrm{l}_{\mathrm{s}}$
Weak coupling $\quad \lambda \ll 1, \mathrm{r}_{0} \ll \mathrm{l}_{\mathrm{s}}$

## Bulk gravity

Curvature scale $\mathrm{r}_{0}$
Weak coupling
Strong coupling

## AdS/CFT as HJJ formalism

d-dim gauge theory $\longleftarrow$ (d +1 )-dim gravity theory + RG flow

Recall Hamiltonian-Jacobi formalism.... using equation of motion for $(\mathrm{d}+1)$-dim theory

$$
\left.\delta S \sim \mathcal{L} d z\right|_{z=z_{2}} ^{z=z_{1}}
$$



$$
\mathrm{Z}=\mathrm{Z}_{1}
$$

holographic plane $\rightarrow$ CFT
$\mathrm{Z}=\mathrm{Z} 2$
trivial B.C.

Anti de Sitter (AdS)
Vacuum with $\Lambda<0$
in $\mathrm{R}^{2,3}(-,-,+,+,+) \quad \mathrm{SO}(2,3)$
$-X_{0}{ }^{2}-X_{I}{ }^{2}+\sum_{a=2,3,4} X_{a}{ }^{2}=-A^{2}$
$d s^{2}=l_{\mathrm{AdS}}^{2}\left(\frac{-d t^{2}+d x^{2}+d y^{2}+d z^{2}}{z^{2}}\right)$
de Sitter (dS)
Vacuum with $\Lambda>0$
in $\mathrm{R}^{1,4}(-,+,+,++) \quad \mathrm{SO}(1,4)$

$$
-X_{0}{ }^{2}+X_{I}^{2}+{ }_{a=2,3,4} X_{a}^{2}=A^{2}
$$

$$
d s^{2}=l_{\mathrm{dS}}^{2}\left(\frac{-d \eta^{2}+d x^{2}+d y^{2}+d w^{2}}{\eta^{2}}\right)
$$

Boundary
z:const, $\mathrm{R}^{3}$

$\eta$ :const, $\mathrm{R}^{3}$

Strominger(01), Witten(01)

- CFT lives on the spacelike boundary at the future infinity of dS .

- Wave function for bulk gravity Probability distribution
- Time evolution in bulk can be described by RG flow of the boundary CFT.

Renormalization scale $\mu \propto$ Scale factor $a$ Garrigasvilenkin $(08,09)$, Bzowski, McFadden ÉSkenderis (12)

1. dS/CFT
2. Inflation/QFT
3. Boundary QFT
4. $\zeta$ correlators from boundary

## Breaking symmetry

## de Sitter space

4D hyperboloid:
$d s_{4}^{2}=\left\{\eta_{\mu \nu} X^{\mu} X^{\nu}=H^{-2}\right\}$
in 5 D flat spacetime $\mathrm{R}^{1,4}$

Cosmological const. $\Lambda$

+ inflaton $\phi$
Breaking dS sym.
inflation

CFT on $\mathrm{R}^{3}$

- Poincare T.
- Dilatation
- Special C.T.

CFT
$+\phi O$ (ex)mass
Breaking conf. sym.

Deformed CFT

4D bulk
Inflation
$=\mathrm{dS}+$ modulation

Given that....

- GR, V $(\phi)$
- GR, V $(\phi), \mathrm{P}\left(\mathrm{X}=(\partial \phi)^{2}\right)$
- $f(R), \mathrm{V}(\phi)$
and so on
$\longrightarrow \phi(t),<\zeta \zeta \ldots . . \zeta>, \ldots .$.

4D bulk
Inflation
$=\mathrm{dS}+$ modulation

3D boundary
QFT
$\mathrm{CFT}+1$ deformation

$$
\begin{gathered}
\Psi_{\text {bulk }}[\phi]=Z_{\mathrm{QFT}}[g] \\
Z_{\mathrm{QFT}}=\int D \chi \exp [-S_{\mathrm{CFT}}-\underbrace{}_{\text {deformation }} \frac{g \mathcal{O}(\chi]}{}
\end{gathered}
$$

Necessary building blocks $\left\{\begin{array}{l}-\phi \& g \text { relation? } \\ -t \& \mu \text { relation? }\end{array}\right.$

From cosmological perturbation
Single clock $\quad \partial_{t} \zeta=O\left((\mathrm{k} / \mathrm{aH})^{2}\right)$
wands et al.(00), Weinberg (03), Lyth et al(04), Langloisgvernizzí(05),...

- Energy conservation $\nabla^{\mu} T^{0}{ }_{\mu}=0$
- Holds at full non-linear order
(ex) Single inflaton in Einstein gravity

$$
\zeta^{\prime \prime}+2 \frac{z^{\prime}}{z} \zeta^{\prime}-\partial^{2} \zeta=0
$$

4D bulk
Inflation
$=\mathrm{dS}+$ modulation

3D boundary QFT
$\mathrm{CFT}+1$ deformation

Conservation of $P_{\zeta}$

$$
\Psi_{\text {bulk }}[\phi]=\mathrm{Z}_{\mathrm{QFT}}[g]
$$

$$
Z_{\mathrm{QFT}}=\int D \chi \exp \left[-S_{\mathrm{CFT}}-\int g \mathcal{O}[\chi]\right]
$$

$\left\{\begin{array}{l}-\phi \& g \text { relation? } \\ -t \& \mu \text { relation? }\end{array}\right.$

$$
\begin{aligned}
& g(\mu, \mathbf{x})=\kappa \phi(t(\mu), \mathbf{x}) \\
& a(t) \propto \mu^{p} p: \text { const J.G.EY.u.(14) }
\end{aligned}
$$

N.B. Subtle issue occurs for bi-spectrum in higher order of SR

1. dS/CFT
2. Inflation/QFT
3. Boundary QFT
4. $\zeta$ correlators from boundary
$\mu_{p}$ :Physical scale
$\mu$ :Cutoff scale
given that $\mu_{\rho} \ll \mu$

(ex) interaction $S=\prod_{i=1,2,3,4} \sum_{p_{i}<\mu} \phi\left(p_{i}\right)$

Physical quantity $F_{\text {phys }}\left(\mu_{p} ; g(\mu), \mu\right)=F_{\text {phys }}\left(\mu_{p} ; g\left(\mu^{\prime}\right), \mu^{\prime}\right)$ $g$ : Physical constant
$\longrightarrow$ Rrenormalization group (RG) flow

Conformal perturbation theory ( $\sim$ Slow-roll expansion)

$$
S_{\mathrm{QFT}}=S_{\mathrm{CFT}}+\delta S \quad \delta S=\int \mathrm{d}^{3} x g \mathcal{O}[\chi] \quad(0 \leqq g \ll 1)
$$

$O$ : Boundary operator consists of $\chi$
$g$ : Dimensionless coupling
$\mu$ : Renormalization scale

- Correlators for CFT

$$
\begin{aligned}
& \langle O(\boldsymbol{x}) O(\boldsymbol{y})\rangle_{\mathrm{CFT}}=\frac{c}{|\boldsymbol{x}-\boldsymbol{y}|^{2 \Delta}} \\
& \langle O(\boldsymbol{x}) O(\boldsymbol{y}) O(\boldsymbol{z})\rangle_{\mathrm{CFT}}=\frac{C}{|\boldsymbol{x}-\boldsymbol{y}|^{\Delta}|\boldsymbol{y}-\boldsymbol{z}|^{\Delta}|\boldsymbol{z}-\boldsymbol{x}|^{\Delta}}
\end{aligned}
$$

$\beta$ function $\beta(\mu) \equiv \frac{\mathrm{d} g(\mu)}{\mathrm{d} \ln \mu}$

$$
\beta(\mu)=\lambda g(\mu)+\frac{\tilde{C}}{2} g^{2}(\mu)+\mathcal{O}\left(g^{3}\right)
$$

Klebanov et al. (11)

$$
\begin{aligned}
& \tilde{C} \sim \frac{C}{c} \\
& \lambda=\Delta-3
\end{aligned}
$$

Classical scaling
Quantum corrections

- Fixed point (FP) $\beta=0$

For $\tilde{C} / \lambda<0$
Two FPs $\quad g=0, \quad-2 \lambda / \tilde{C}$
For $\tilde{C} / \lambda \geqq 0$
One FP $g=0$,

# MMMMMMMMMHMMHMMMMM Solving RG flow 

$$
\begin{array}{lr}
\beta(\mu)=\lambda g(\mu)+\frac{\tilde{C}}{2} g^{2}(\mu)+\mathcal{O}\left(g^{3}\right) & \text { for } \quad \tilde{C} / \lambda<0 \\
g(\mu)=\frac{2}{1+\left(\frac{\mu}{p}\right)^{\lambda}}\left(\frac{\mu}{p}\right)^{\lambda} g(p) & g(p) \equiv-\frac{\lambda}{\tilde{C}}
\end{array}
$$



## KG equation

$$
\begin{gathered}
\ddot{\phi}+3 H \dot{\phi}+\frac{\partial V(\phi)}{\partial \phi}=0 \\
\downarrow \\
\frac{d \phi}{d \ln a}=-\frac{2}{\kappa^{2}} \frac{1}{W(\phi)} \frac{\partial W(\phi)}{\partial \phi}
\end{gathered}
$$

$$
V(\phi)=\frac{8}{\kappa^{2}}\left[\frac{3}{2} W^{2}(\phi)-\frac{1}{\kappa^{2}}\left(\frac{\partial W(\phi)}{\partial \phi}\right)^{2}\right]
$$

$$
V(\phi) \uparrow
$$

Expanding by correlators for CFT with cutoff

$$
\begin{aligned}
& \left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle_{\mu} \\
& =\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right) e^{-\int \mathrm{d}^{3} x g \mathcal{O}}\right\rangle_{\mu, \mathrm{CFT}} \\
& \quad \begin{array}{c}
\text { Bzowskí et al. (12) } \\
\text { integrating out } k>\mu \text {, changing } \mu \text {, using OPE } \\
Z^{-n / 2}(\mu)\left\langle\mathcal{O}\left(\boldsymbol{x}_{1}\right) \cdots \mathcal{O}\left(\boldsymbol{x}_{n}\right)\right\rangle_{\mu}=Z^{-n / 2}\left(\mu_{0}\right)\left\langle\mathcal{O}\left(\boldsymbol{x}_{1}\right) \cdots \mathcal{O}\left(\boldsymbol{x}_{n}\right)\right\rangle_{\mu_{0}} \\
k<\mu
\end{array} \quad k<\mu_{0}
\end{aligned}
$$

Wave fn. renormalization

$$
\sqrt{Z(\mu)}=\mu^{-\lambda}\left[1+\left(\frac{\mu}{p}\right)^{\lambda}\right]^{2}=4 p^{-\lambda} \frac{\beta(p)}{\beta(\mu)} \quad \text { J.G.EY.u.(14) }
$$

1. dS/CFT
2. Inflation/QFT
3. Boundary QFT
4. $\zeta$ correlators from boundary

From boundary QFT to bulk gravity $\delta g(x)$

$$
\begin{gathered}
\Psi_{\mathrm{qdS}}[\delta g]=\mathrm{Z}_{\mathrm{QFT}}[\delta g]=e^{-\mathrm{WQFT}[\delta g]} \quad P[\delta g]=\left|\Psi_{\mathrm{qdS}}[\delta g]\right|^{2} \\
\left\langle\delta g\left(x_{1}\right) \cdots \delta g\left(x_{n}\right)\right\rangle=\int D \delta g P[\delta g] \delta g\left(x_{1}\right) \cdots \delta g\left(x_{n}\right)
\end{gathered}
$$

* Distribution function $\quad P[\delta g]=e^{-\delta W T \delta g]}$

$$
\begin{gathered}
\delta W[\delta g]=\sum_{n=1}^{\infty} \int \mathrm{d}^{d} \mathbf{x}_{1} \cdots \int \mathrm{~d}^{d} \mathbf{x}_{n} W^{(n)}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right) \delta g\left(\mathbf{x}_{1}\right) \cdots \delta g\left(\mathbf{x}_{n}\right) \\
W^{(n)}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right) \equiv 2 \operatorname{Re}\left[\left.\frac{\delta^{n} W_{\mathrm{WFT}[\delta g]}\left[g\left(\mathbf{x}_{1}\right) \cdots \delta g\left(\mathbf{x}_{n}\right)\right.}{}\right|_{\delta g=0}\right]
\end{gathered}
$$

* 2 point function

$$
\left\langle\delta g\left(x_{1}\right) \delta g\left(x_{2}\right)\right\rangle=W^{(2)-1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

* 3 point function

$$
\begin{aligned}
& \left\langle\delta g\left(x_{1}\right) \delta g\left(x_{2}\right) \delta g\left(x_{3}\right)\right\rangle \\
& =-\int \prod_{i=1}^{3} \mathrm{~d}^{3} \boldsymbol{y}_{i} W^{(2)-1}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right) W^{(3)}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}\right)
\end{aligned}
$$


J.G.EY.U.(13)
in cosmology
$\left\langle\zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \cdots \zeta\left(x_{n}\right)\right\rangle$

in boundary QFT

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle
$$




- $x_{n}$
flat space $R=0$
at large scales $\quad \zeta=-\frac{H}{\dot{\phi}} \delta \phi+\frac{\varepsilon_{2}}{4}\left(\frac{H}{\dot{\phi}}\right)^{2} \delta \phi^{2}+\cdots$

$$
\begin{aligned}
\varepsilon_{1} & \equiv \frac{1}{2} \frac{\dot{\phi}^{2}}{H^{2}} \\
\varepsilon_{2} & \equiv \frac{\mathrm{~d} \ln \varepsilon_{2}}{\mathrm{~d} \ln a}
\end{aligned}
$$

Vertex function

$$
\begin{array}{r}
W^{(n)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n}\right) \equiv 2 \operatorname{Re}\left[\left.\frac{\delta^{n} W_{\mathrm{QFT}}[\zeta]}{\delta \zeta\left(\boldsymbol{x}_{1}\right) \cdots \delta \zeta\left(\boldsymbol{x}_{n}\right)}\right|_{\zeta=0}\right]
\end{array} \stackrel{\left.\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{m}\right)\right\rangle_{\mu}}{\stackrel{\delta}{\delta \zeta}=\frac{\delta \phi}{\delta \zeta} \frac{\delta}{\delta \phi} \sim \frac{\delta \phi}{\delta \zeta} \mathcal{O}}
$$

$P(k)=-\frac{3}{8 \pi} \frac{1}{c \beta^{2}(p)} \frac{1}{k^{3}}\left(\frac{k}{p}\right)^{-2 \lambda}\left[1+\left(\frac{k}{f p}\right)^{\lambda}\right]^{4}$
of Agrees with the result of Bzowski + (12) in $\mu \rightarrow \infty$
Remarks
1.Amplitude

$$
\begin{array}{rlr}
\beta & =\frac{d g}{d \ln \mu} \sim \frac{d\left(\phi / M_{p l}\right)}{d \ln a}=\sqrt{2 \varepsilon} \\
c & \simeq\left(M_{\mathrm{pl}} / H_{\mathrm{dS}}\right)^{2} \quad \text { strominger (01) }
\end{array} \quad \longrightarrow \quad \frac{1}{c \beta^{2}} \sim \frac{1}{\varepsilon}\left(\frac{H}{M_{p l}}\right)^{2}
$$

2. Spectral index

For $k \gg f p \quad n_{s}-1=2|\lambda|$
For $k \ll f p \quad n_{s}-1=-2|\lambda|$
Blue-tilted
Red-tilted


Conservation of bi-spectrum J.G.EY.U.(14)

$$
\beta(\mu)=\beta_{0}\left(\frac{\mu}{\mu_{0}}\right)^{\lambda} \quad \lambda=-\frac{s_{2}}{\mathcal{C}}
$$

- Restricted RG, at most 1 FP
- RG w/2 FPs, Break of conservation away from FPs
- Restricted bulk evolution $\quad \varepsilon_{1} \propto \beta^{2} \propto a^{-2 s_{2}}$

$$
P_{\zeta}(k)=-\frac{6}{\pi^{2}} \frac{1}{\mathcal{C}^{2} \beta_{0}^{2} c_{0}} \frac{1}{k^{3+2 \lambda}} \quad n_{s}-1=-2 \lambda
$$

$S_{\mathrm{dCFT}}=S_{\mathrm{CFT}}+\delta S$

$$
\delta S=\sum_{a=1}^{N} \int d \Omega g_{a} \mathcal{O}_{a}
$$

$\mu$ : Renormalization scale
$O_{a}$ : Boundary operator consists of $\chi$
$g_{a}$ : Dimensionless coupling

Gauge condition $\quad \delta g_{1}(\mu, x)=0$

$$
\begin{aligned}
& g^{(n p)_{1}}(\mu, x)=g_{1}(\mu) \\
& g^{(n p)_{a}}(\mu, x)=g_{a}(\mu)+s_{a}(\mu, x) \quad(\mathrm{a}=2, \ldots, \mathrm{~N})
\end{aligned}
$$

Holographic description of inflation scenario

- We computed the primordial spectrum holographically, and the result can apply to strong/weak gravity regimes (large N , arbitrary 'tHooft coupling).
- The conservation of $\zeta$ power spectrum determines $t \& \mu$ relation as $a(t) \propto \mu^{p}$.
- Holographic inflation (w/2 FPs) predicts broken power low spectrum.

