Bubble Observers in Bubbland

Local Observables in a Landscape of Infrared Gauge Modes

Federico Urban

Université Libre de Bruxelles

May 12th, 2014

Bubble Zero

i Inflation, AKA Bubbland
ii Vectors \& Anisotropies
iii IR Fluctuations \& Bias
iv Background Precession
v Results

M Thursrud, D Mota, F Urban, arXiv:1311.3302
M Thursrud, F Urban, D Mota, arXiv:1312.7491

Bubble One

Bubble Two

All Bubbles are equal, but some Bubbles are more equal than others

Bubble Two

All Bubbles are equal, but some Bubbles are more equal than others

Bubble Two

All Bubbles are equal, but some Bubbles are more equal than others

- \mathcal{N} - that is, e-folds - measure duration
- Total size of Bubbland is $e^{3 \mathcal{N}_{\text {Tot }}}$

Bubble Two

All Bubbles are equal, but some Bubbles are more equal than others

- \mathcal{N} - that is, e-folds - measure duration
- Total size of Bubbland is $e^{3 \mathcal{N}_{\text {тот }}}$
- Our observable Bubble instead covers $e^{3 N_{0}}$

Bubble Two

All Bubbles are equal, but some Bubbles are more equal than others

- \mathcal{N} - that is, e-folds - measure duration
- Total size of Bubbland is $e^{3 \mathcal{N}_{\text {tot }}}$
- Our observable Bubble instead covers $e^{3 N_{0}}$
- Ergo, there are $e^{3\left(\mathcal{N}_{\text {Tot }}-\mathcal{N}_{0}\right)}$ Bubbles

Bubble Two

All Bubbles are equal, but some Bubbles are more equal than others

- \mathcal{N} - that is, e-folds - measure duration
- Total size of Bubbland is $e^{3 \mathcal{N}_{\text {tot }}}$
- Our observable Bubble instead covers $e^{3 N_{0}}$
- Ergo, there are $e^{3\left(\mathcal{N}_{\text {Tot }}-\mathcal{N}_{0}\right)}$ Bubbles
- Now: quantum fluctuations are a statistical object...

Bubble Three

Bubble Three

- Superhorizon waves may bias our Hubble Bobble

Bubble Three

- Superhorizon waves may bias our Hubble Bobble
- Q: Is this bias observable?

Bubble Three

- Superhorizon waves may bias our Hubble Bobble
- Q A Is this bias observable? A: Perhaps...

Vectors

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}

Vectors

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L}=f^{2}(\varphi) F_{\mu \nu} F^{\mu \nu}$
- No Ghosts
- No Gauge Breaking

Vectors

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L}=f^{2}(\varphi) F_{\mu \nu} F^{\mu \nu}$
- No Ghosts
- No Gauge Breaking
- This possesses an attractor solution: $f \sim a^{-2}$

Vectors

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L}=f^{2}(\varphi) F_{\mu \nu} F^{\mu \nu}$
- No Ghosts
- No Gauge Breaking
- This possesses an attractor solution: $f \sim a^{-2}$
- Look at superhorizon vector perturbations:
- The electric field $\mathcal{E} \sim \partial \mathcal{A} \sim$ const
- The vector survives inflationary pull
- The vector classicalises

Vectors

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L}=f^{2}(\varphi) F_{\mu \nu} F^{\mu \nu}$
- No Ghosts
- No Gauge Breaking
- This possesses an attractor solution: $f \sim a^{-2}$
- Look at superhorizon vector perturbations:
- The electric field $\mathcal{E} \sim \partial \mathcal{A} \sim$ const
- The vector survives inflationary pull
- The vector classicalises

$$
\Longrightarrow \quad \overrightarrow{\mathcal{E}}_{\mathbb{R}}(\eta)=\int_{\text {damono of ine }}^{\mathcal{H}} d^{3} k e^{-i \vec{k} \vec{x}} \delta \overrightarrow{\mathcal{E}}(\vec{k})
$$

Infrared Statistics - Single Vector

- We are limited UV observers, so we do not directly probe $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}$
- This becomes a statistical object which inherits Gaussianity

$$
\left\langle\overrightarrow{\mathcal{E}}_{\mathbb{R}} \cdot \overrightarrow{\mathcal{E}}_{\mathrm{R}}\right\rangle \simeq \mathcal{H}^{4} \mathcal{N}
$$

Infrared Statistics - Single Vector

- We are limited UV observers, so we do not directly probe $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}$
- This becomes a statistical object which inherits Gaussianity

$$
\left\langle\overrightarrow{\mathcal{E}}_{\mathrm{IR}} \cdot \overrightarrow{\mathcal{E}}_{\mathrm{IR}}\right\rangle \simeq \mathcal{H}^{4} \mathcal{N}
$$

$$
\mathcal{P}_{\zeta}(\vec{k})=\mathcal{P}_{\zeta}^{0}(k)\left[1+g(k) \cos ^{2} \vartheta\right]
$$

Infrared Statistics - Single Vector

- We are limited UV observers, so we do not directly probe $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}$
- This becomes a statistical object which inherits Gaussianity

$$
\left\langle\overrightarrow{\mathcal{E}}_{\mathrm{IR}} \cdot \overrightarrow{\mathcal{E}}_{\mathrm{IR}}\right\rangle \simeq \mathcal{H}^{4} \mathcal{N}
$$

Spectrum

$$
\mathcal{P}_{\zeta}(\vec{k})=\mathcal{P}_{\zeta}^{0}(k)\left[1+g(k) \cos ^{2} \vartheta\right]
$$

One parameter: Amplitude $g(k) \sim-\left|\mathcal{E}_{\mathrm{IR}}\left(\eta_{0}\right)\right|^{2} \mathcal{N}_{k}^{2}$

Probability Distributions

Precession

$$
\text { Tweedledum }\left(k_{1}\right) \text { and Tweedledee }\left(k_{2}\right)
$$

Precession

Tweedledum (k_{1}) and Tweedledee (k_{2})

- Tweedledum leaves the horizon at $\eta_{1}=-1 / k_{1}$ It sees $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{1}\right)$ made of all $k<k_{1}$

Precession

Tweedledum (k_{1}) and Tweedledee (k_{2})

- Tweedledum leaves the horizon at $\eta_{1}=-1 / k_{1}$ It sees $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{1}\right)$ made of all $k<k_{1}$
- As Tweedledee approaches \mathcal{H} more modes add up to $\overrightarrow{\mathcal{E}_{\mathrm{IR}}}$

Precession

Tweedledum (k_{1}) and Tweedledee (k_{2})

- Tweedledum leaves the horizon at $\eta_{1}=-1 / k_{1}$ It sees $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{1}\right)$ made of all $k<k_{1}$
- As Tweedledee approaches \mathcal{H} more modes add up to $\overrightarrow{\mathcal{E}_{\mathrm{IR}}}$
- Tweedledee leaves the horizon at $\eta_{2}=-1 / k_{2}$ It sees $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{2}\right) \neq \overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{1}\right)$ made of all $k<k_{2}$

Precession

Tweedledum (k_{1}) and Tweedledee (k_{2})

- Tweedledum leaves the horizon at $\eta_{1}=-1 / k_{1}$ It sees $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{1}\right)$ made of all $k<k_{1}$
- As Tweedledee approaches \mathcal{H} more modes add up to $\overrightarrow{\mathcal{E}_{\mathrm{IR}}}$
- Tweedledee leaves the horizon at $\eta_{2}=-1 / k_{2}$ It sees $\overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{2}\right) \neq \overrightarrow{\mathcal{E}}_{\mathrm{IR}}\left(\eta_{1}\right)$ made of all $k<k_{2}$
$\Rightarrow \quad \overrightarrow{\mathcal{E}}_{\mathrm{IR}}$ will be pointing in a different direction

Random Walk

The background vector makes a random walk in direction space

Random Walk

The background vector makes a random walk in direction space

The effect is highly suppressed due to the multitude of Bubbles

Random Walk

The background vector makes a random walk in direction space

The effect is highly suppressed due to the multitude of Bubbles
Seven e-folds make a hundred thousand millions Bubbles

Random Walk

The background vector makes a random walk in direction space

The effect is highly suppressed due to the multitude of Bubbles
Seven e-folds make a hundred thousand millions Bubbles So, a three hundred thousandth statistical suppression

Random Walk

The background vector makes a random walk in direction space

The effect is highly suppressed due to the multitude of Bubbles
Seven e-folds make a hundred thousand millions Bubbles
So, a three hundred thousandth statistical suppression
Poor little thing...

Infrared Statistics - Multiple Vector

Multiple vector case - identical coupling: $\mathcal{L}=\sum_{a} f^{2}(\varphi) F_{\mu \nu}^{a} F_{a}^{\mu \nu}$

Infrared Statistics - Multiple Vector

Multiple vector case - identical coupling: $\mathcal{L}=\sum_{a} f^{2}(\varphi) F_{\mu \nu}^{a} F_{a}^{\mu \nu}$

Infrared Statistics - Multiple Vector

Multiple vector case - identical coupling: $\mathcal{L}=\sum_{a} f^{2}(\varphi) F_{\mu \nu}^{a} F_{a}^{\mu \nu}$

Spectrum

$$
\mathcal{P}_{\zeta}(\vec{k})=\mathcal{P}_{\zeta}^{0}(k)\left[1+g(k)\left(\mathcal{A}_{\hat{k}} \cos \chi+\mathcal{B}_{\hat{k}} \sin \chi\right)\right]
$$

$$
\mathcal{A}_{\hat{k}} \sim 3 \cos ^{2} \vartheta-1, \quad \mathcal{B}_{\hat{k}} \sim \sin 2 \vartheta \cos \varphi
$$

Two parameters: Amplitude $g(k)$, Shape χ

Probability Distributions I

Probability Distributions II

How Likely Are We?

Summary

- Inflation generates Bubbland
- Bubbland is comprised of a multitude of Bubbles
- As observers, we have access to only one Bubble
- Our link with "The Theory" is statistical - observations are biassed
- Vectors generate anisotropies
- Spectator gauge fields can develop into a classical vector background
- Curvature perturbations are quadrupole-modulated: $\mathcal{P}_{\zeta}^{0}(k)\left[1+g(k) \cos ^{2} \vartheta\right]$
- (Non-)Observations of $g(k)$ put statistical constraints on \mathcal{N}
- The precession effect
- The background vector is not a constant, but precesses with time
- In the multi-vector case this produces two important features:
a. The quadrupole amplitude $g(k)$ can be positive
b. We need one further shape parameter χ to describe the correction:

$$
\mathcal{P}_{\zeta}^{0}(k)\left[1+g(k)\left(\mathcal{A}_{\hat{k}} \cos \chi+\mathcal{B}_{\hat{k}} \sin \chi\right)\right]
$$

\Rightarrow All in all, living in the Bubble can be quite deceiving \leftarrow bottom line

