Introduction	Horndeski theories	Cosmological self-tuning	Spherical body	Conclusions
000	00	000	0000	0

Self-tuning of the cosmological constant in generalized Galileon/Horndeski theories

Gilles Esposito-Farèse

 $\mathcal{GR} \in \mathbb{CO}$, Institut d'Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris

[E. Babichev & GEF, Phys. Rev. D 95 (2017) 024020]

SW11, Cargèse May 4th, 2017

Self-tuning of ∧ in generalized Horndeski theories • Cargèse, May 4th, 2017

Introduction ●○○	Horndeski theories	Cosmological self-tuning	Spherical body 0000	Conclusions O
XX 71 . ·	16 0			

What is self-tuning?

Much too large vacuum energy density $\rho_{\rm vac} \equiv M_{\rm Pl}^2 \Lambda$

$$S = \frac{M_{\rm Pl}^2}{2} \int \sqrt{-g} R d^4 x - \int \sqrt{-g} M_{\rm Pl}^2 \wedge d^4 x + S_{\rm matter}$$

•
$$|\rho_{\text{naive}}| \sim M_{\text{Pl}}^4 \sim 10^{122} M_{\text{Pl}}^2 \Lambda_{\text{obs}} = 10^{122} \rho_{\text{obs}}$$

• $|\rho_{\text{dimensional regularization}}| \sim 10^8 \,\text{GeV}^4 \sim 10^{55} \,\rho_{\text{obs}} \quad \begin{pmatrix} \text{depends on} \\ \text{renorm. scale} \end{pmatrix}$

•
$$|
ho_{\rm EW \ phase \ transition}|$$
 ~ $10^8 \ {\rm GeV}^4 \sim 10^{55} \
ho_{\rm obs}$

•
$$|
ho_{
m QCD \ phase \ transition}|$$
 $\sim 10^{-2} \, {
m GeV}^4 \sim 10^{45} \,
ho_{
m obs}$

Introduction ●○○	Horndeski theories	Cosmological self-tuning	Spherical body 0000	Conclusions O
XX 71	16			

what is self-tuning?

Much too large vacuum energy density $\rho_{\rm vac} \equiv M_{\rm Pl}^2 \Lambda$

$$S = \frac{M_{\rm Pl}^2}{2} \int \sqrt{-g} R d^4 x - \int \sqrt{-g} M_{\rm Pl}^2 \wedge d^4 x + S_{\rm matter}$$

- $|\rho_{\text{naive}}| \sim M_{\text{Pl}}^4 \sim 10^{122} M_{\text{Pl}}^2 \Lambda_{\text{obs}} = 10^{122} \rho_{\text{obs}}$
- $|\rho \text{ dimensional regularization}| \sim 10^8 \text{ GeV}^4 \sim 10^{55} \rho_{\text{obs}} \left(\begin{array}{c} \text{depends on} \\ \text{renorm, scale} \end{array} \right)$
- $\sim 10^8 \,{\rm GeV}^4 \sim 10^{55} \,\rho_{\rm obs}$ • $\rho_{\rm EW}$ phase transition
- $|\rho_{\rm QCD \ phase \ transition}| \sim 10^{-2} \, {\rm GeV}^4 \sim 10^{45} \, \rho_{\rm obs}$

"Fab Four" (\in Horndeski theories, + beyond)

Large Λ_{bare} but \exists cosmological solution where $T_{\mu\nu}(\varphi)$ exactly compensates $M_{\rm Pl}^2 \Lambda_{\rm bare} g_{\mu\nu} \Rightarrow \Lambda_{\rm effective} = 0$ strictly

[Charmousis, Copeland, Padilla, Saffin 2012]

Introduction ○●○	Horndeski theories	Cosmological self-tuning 000	Spherical body	Conclusions O
What is s	elf-tuning?			

Self-tuning

Large Λ_{bare} but $T_{\mu\nu}(\varphi)$ almost compensating $M_{\text{Pl}}^2 \Lambda_{\text{bare}} g_{\mu\nu}$ so that $\Lambda_{\text{effective}} = \text{observed value}$

> [Appleby, De Felice, Linder 2012; Linder 2013; Martín-Moruno, Nunes, Lobo 2015; Starobinsky, Sushkov, Volkov 2016]

But backreaction of φ on $g_{\mu\nu}$ is generically huge

Can one pass solar-system tests?

Babichev, GEF 2013; Babichev, Charmousis 2014; Cisterna, Delsate, Rinaldi 2015; Appleby 2015]

Introduction ○●○	Horndeski theories	Cosmological self-tuning 000	Spherical body	Conclusions O
What is s	elf-tuning?			

Self-tuning

Large Λ_{bare} but $T_{\mu\nu}(\varphi)$ almost compensating $M_{\text{Pl}}^2 \Lambda_{\text{bare}} g_{\mu\nu}$ so that $\Lambda_{\text{effective}} = \text{observed value}$

> [Appleby, De Felice, Linder 2012; Linder 2013; Martín-Moruno, Nunes, Lobo 2015; Starobinsky, Sushkov, Volkov 2016]

But backreaction of φ on $g_{\mu\nu}$ is generically huge

Can one pass solar-system tests?

[Babichev, GEF 2013; Babichev, Charmousis 2014; Cisterna, Delsate, Rinaldi 2015; Appleby 2015]

Introduction ○○●	Horndeski theories 00	Cosmological self-tuning	Spherical body	Conclusions O
Plan of th	is talk			

- Self-tuning in all shift-symmetric beyond Horndeski theories? (No analysis of the full cosmological history, nor study of the stability)
- Spherical body embedded in such a Universe: solar-system tests?
- Is the large cosmological constant problem solved?

Answer: Each step will reduce the space of allowed models

Introduction Horndeski theories Cosmological self-tuning Spherical body Conclusions Generalized Horndeski theories Notation: $\varphi_{\mu} \equiv \partial_{\mu}\varphi, \qquad \varphi_{\mu\nu} \equiv \nabla_{\mu}\nabla_{\nu}\varphi$ Generalized Galileons (in 4 dimensions) $L_{(2,0)} \equiv -\frac{1}{2!} \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha}_{\ \nu\rho\sigma} \varphi_{\mu} \varphi_{\alpha}$ $= \varphi_{\mu}^2,$ $L_{(3,0)} \equiv -\frac{1}{2!} \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta}{}_{\rho\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta},$ $L_{(4,0)} \equiv - \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma},$ $L_{(5,0)} \equiv - \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} \varphi_{\sigma\delta},$
$$\begin{split} L_{(4,1)} &\equiv - \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \qquad R_{\nu\rho\beta\gamma} = -4 \, G^{\mu\nu} \varphi_{\mu} \varphi_{\nu}, \\ L_{(5,1)} &\equiv - \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \ R_{\rho\sigma\gamma\delta}. \end{split}$$

Introduction Horndeski theories Cosmological self-tuning Spherical body Conclusions 0

Generalized Horndeski theories

Multiply these Lagrangians by arbitrary functions of $X \equiv -\frac{\varphi_{\mu}^2}{M^2}$ (dimensionless)

Shift-symmetric beyond Horndeski theories

$$S = \frac{M_{\rm Pl}^2}{2} \int \sqrt{-g} \left(R - 2\Lambda_{\rm bare} \right) d^4 x + S_{\rm matter} [{\rm matter}, g_{\mu\nu}] + \int \sqrt{-g} \left\{ M^2 f_2(X) L_{(2,0)} + f_3(X) L_{(3,0)} + \frac{1}{M^2} f_4(X) L_{(4,0)} + \frac{1}{M^4} f_5(X) L_{(5,0)} + s_4(X) L_{(4,1)} + \frac{1}{M^2} s_5(X) L_{(5,1)} \right\} d^4 x$$

Equivalent to other notations used in the literature, e.g.

$$\frac{1}{M^2} f_4(X) L_{(4,0)} + s_4(X) L_{(4,1)} = G_4(\varphi_\lambda^2) R - 2G_4'(\varphi_\lambda^2) \left[(\Box \varphi)^2 - \varphi_{\mu\nu} \varphi^{\mu\nu} \right] \\ + F_4(\varphi_\lambda^2) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} + \text{tot. div.}$$

Self-tuning of ∧ in generalized Horndeski theories

Cargèse, May 4th, 2017

Introduction	Horndeski theories	Cosmological self-tuning ●○○	Spherical body	Conclusions O
Fields eq	uations			

Two useful simplifications:

• Shift-symmetry \Rightarrow scalar field equation reads $\nabla_{\mu}J^{\mu} = 0$, with scalar current $J^{\mu} \equiv \frac{-1}{\sqrt{-g}} \frac{\delta S}{\delta(\partial_{\mu}\varphi)}$

• Diffeomorphism invariance ⇒ Einstein's equations greatly simplified by combining them with the scalar current as

$$G^{\mu\nu} + \Lambda_{\text{bare}} g^{\mu\nu} - \frac{T^{\mu\nu}}{M_{\text{Pl}}^2} + \frac{J^{\mu}\varphi^{\nu}}{M_{\text{Pl}}^2}$$

No longer any $f'_{2,3,4,5}(X)$ in them

Introduction	Horndeski theories	Cosmological self-tuning ○●○	Spherical body	Conclusions O
Cosmolo	gical equation	S		
Backgr	ound field equation	ns in FLRW geometry	/	
	$-Xf_2 + 6($	$\left(\frac{H}{M}\right)^2 \left[X^2 f_4 + 2X s_4\right]$		
	$-12\left(\frac{H}{M}\right)$	${}^{3}\left[X^{5/2}f_{5}+2X^{3/2}s_{5}\right]$	$= \frac{M_{\rm Pl}^2}{M^4} \left(\Lambda_{\rm bare} - \right.$	$- 3H^2$),

$$\begin{bmatrix} Xf_2 \end{bmatrix}' - 3\frac{H}{M} \begin{bmatrix} X^{3/2}f_3 \end{bmatrix}' + 6\left(\frac{H}{M}\right)^2 \begin{bmatrix} X^2f_4 + 2Xs_4 \end{bmatrix}' \\ -6\left(\frac{H}{M}\right)^3 \begin{bmatrix} X^{5/2}f_5 + 2X^{3/2}s_5 \end{bmatrix}' = 0.$$

For a given theory ⇒ predict H and X ≡ φ²/M²
For a wanted Λ_{effective} = 3H²_{observed} ⇒ "predict" M and X ≠ 0

Introduction	Horndeski theories	Cosmological self-tuning ○●○	Spherical body	Conclusions O
Cosmolo	gical equation	S		
Backg	round field equation	ns in FLRW geometry		
	$-Xf_{2}+6($	$\left(\frac{H}{M}\right)^2 \left[X^2 f_4 + 2X s_4\right]$		
	$-12\left(\frac{H}{M}\right)$	${}^{3}\left[X^{5/2}f_{5}+2X^{3/2}s_{5}\right]$	$= \frac{M_{\rm Pl}^2}{M^4} \left(\Lambda_{\rm bare} - \right.$	$- 3H^2$),

$$\begin{bmatrix} Xf_2 \end{bmatrix}' - 3\frac{H}{M} \begin{bmatrix} X^{3/2}f_3 \end{bmatrix}' + 6\left(\frac{H}{M}\right)^2 \begin{bmatrix} X^2f_4 + 2Xs_4 \end{bmatrix}' \\ -6\left(\frac{H}{M}\right)^3 \begin{bmatrix} X^{5/2}f_5 + 2X^{3/2}s_5 \end{bmatrix}' = 0.$$

- For a given theory \Rightarrow predict *H* and $X \equiv \dot{\varphi}^2/M^2$
- For a wanted $\Lambda_{\text{effective}} = 3H_{\text{observed}}^2 \Rightarrow$ "predict" *M* and $X \neq 0$

Introduction	Horndeski theories	Cosmological self-tuning	Spherical body	Conclusions
000	00	000	0000	0

Cosmological self-tuning

Result: Aside from singular limiting cases (that we all studied), it is always possible to obtain $\Lambda_{\text{effective}} = 3H_{\text{observed}}^2$ with an appropriate value of the mass scale *M*.

But

- At least two of the Lagrangians $L_{(n,p)}$ must be present.
- *M* cannot be of the same order of magnitude as the bare vacuum energy scale $(M_{Pl}^2 \Lambda_{bare})^{1/4}$. All other values (either larger or smaller) are possible, depending on the functions $f_{2,3,4,5}(X)$ and $s_{4,5}(X)$.

Example (in the Horndeski subclass)

 $f_2 = -X^{-5/4}$, $f_4 = 6 X^{-5/2}$, $s_4 = -X^{-3/2}$, with $\Lambda_{\text{bare}} \sim M_{\text{Pl}}^2$ would need $M = (32 M_{\text{Pl}}^2 \Lambda_{\text{bare}} H^2)^{1/6} \sim 100 \text{ MeV}$

This corresponds to $G_2(\varphi_\lambda^2) = M^{9/2}(-\varphi_\lambda^2)^{-1/4}$, and $G_4(\varphi_\lambda^2) = 2M^3(-\varphi_\lambda^2)^{-1/2}$

Introduction	Horndeski theories	Cosmological self-tuning	Spherical body	Conclusions
000	00	000	0000	0

Cosmological self-tuning

Result: Aside from singular limiting cases (that we all studied), it is always possible to obtain $\Lambda_{\text{effective}} = 3H_{\text{observed}}^2$ with an appropriate value of the mass scale M.

But

- At least two of the Lagrangians $L_{(n,p)}$ must be present.
- *M* cannot be of the same order of magnitude as the bare vacuum energy scale $(M_{Pl}^2 \Lambda_{bare})^{1/4}$. All other values (either larger or smaller) are possible, depending on the functions $f_{2,3,4,5}(X)$ and $s_{4,5}(X)$.

Example (in the Horndeski subclass)

$$f_2 = -X^{-5/4}, \quad f_4 = 6 X^{-5/2}, \quad s_4 = -X^{-3/2}, \text{ with } \Lambda_{\text{bare}} \sim M_{\text{Pl}}^2$$

would need $M = (32 M_{\text{Pl}}^2 \Lambda_{\text{bare}} H^2)^{1/6} \sim 100 \text{ MeV}$
This corresponds to $G_2(\varphi_{\lambda}^2) = M^{9/2}(-\varphi_{\lambda}^2)^{-1/4}, \text{ and } G_4(\varphi_{\lambda}^2) = 2M^3(-\varphi_{\lambda}^2)^{-1/2}$

Introduction	Horndeski theories	Cosmological self-tuning	Spherical body	Conclusions
000	00	000	●000	0

- Write field equations for static and spherically symmetric body.
- Simplifying hypothesis: Assume $\varphi = \dot{\varphi}_c t + \psi(r)$, with $\dot{\varphi}_c = \text{const.}$

Can the solution be close enough to Schwarzschild, in spite of large $T_{\mu\nu}(\varphi)$?

 When different Lagrangians L_(n,p) dominate cosmology and the local behavior of φ, then possible to have

 $T_{\mu\nu}(\varphi) \approx M_{\rm Pl}^2 \left(\Lambda_{\rm bare} - \Lambda_{\rm effective} \right) g_{\mu\nu},$

but this requires well-chosen functions $f_n(X)$ and $s_n(X)$.

 When the same Lagrangian L_(n,p) contributes significantly both for cosmology and the local φ, then generically impossible to get a Newtonian potential ∝ 1/r.

But particular cases can work, e.g. when $L_{(5,0)}$ and $L_{(5,1)}$ dominate locally, then the condition

$$X(2f_5 + Xf_5') + 2(s_5 + Xs_5') = 0$$

suffices for the local backreaction of φ to be negligible.

Introduction	Horndeski theories	Cosmological self-tuning	Spherical body ●000	Conclusions ○

- Write field equations for static and spherically symmetric body.
- Simplifying hypothesis: Assume $\varphi = \dot{\varphi}_c t + \psi(r)$, with $\dot{\varphi}_c = \text{const.}$

Can the solution be close enough to Schwarzschild, in spite of large $T_{\mu\nu}(\varphi)$?

 When different Lagrangians L_(n,p) dominate cosmology and the local behavior of φ, then possible to have

 $T_{\mu\nu}(\varphi) \approx M_{\rm Pl}^2 \left(\Lambda_{\rm bare} - \Lambda_{\rm effective} \right) g_{\mu\nu},$

but this requires well-chosen functions $f_n(X)$ and $s_n(X)$.

 When the same Lagrangian L_(n,p) contributes significantly both for cosmology and the local φ, then generically impossible to get a Newtonian potential ∝ 1/r.

But particular cases can work, e.g. when $L_{(5,0)}$ and $L_{(5,1)}$ dominate locally, then the condition

$$X(2f_5 + Xf_5') + 2(s_5 + Xs_5') = 0$$

suffices for the local backreaction of φ to be negligible.

Introduction	Horndeski theories	Cosmological self-tuning 000	Spherical body ●○○○	Conclusions O

- Write field equations for static and spherically symmetric body.
- Simplifying hypothesis: Assume $\varphi = \dot{\varphi}_c t + \psi(r)$, with $\dot{\varphi}_c = \text{const.}$

Can the solution be close enough to Schwarzschild, in spite of large $T_{\mu\nu}(\varphi)$?

 When different Lagrangians L_(n,p) dominate cosmology and the local behavior of φ, then possible to have

 $T_{\mu\nu}(\varphi) \approx M_{\rm Pl}^2 \left(\Lambda_{\rm bare} - \Lambda_{\rm effective} \right) g_{\mu\nu},$

but this requires well-chosen functions $f_n(X)$ and $s_n(X)$.

When the same Lagrangian L_(n,p) contributes significantly both for cosmology and the local φ, then generically impossible to get a Newtonian potential ∝ 1/r.

But particular cases can work, e.g. when $L_{(5,0)}$ and $L_{(5,1)}$ dominate locally, then the condition

$$X(2f_5 + Xf_5') + 2(s_5 + Xs_5') = 0$$

suffices for the local backreaction of φ to be negligible.

Introduction	Horndeski theories	Cosmological self-tuning	Spherical body	Conclusions
			•••••	0

- Write field equations for static and spherically symmetric body.
- Simplifying hypothesis: Assume $\varphi = \dot{\varphi}_c t + \psi(r)$, with $\dot{\varphi}_c = \text{const.}$

Can the solution be close enough to Schwarzschild, in spite of large $T_{\mu\nu}(\varphi)$?

 When different Lagrangians L_(n,p) dominate cosmology and the local behavior of φ, then possible to have

 $T_{\mu\nu}(\varphi) \approx M_{\rm Pl}^2 \left(\Lambda_{\rm bare} - \Lambda_{\rm effective} \right) g_{\mu\nu},$

but this requires well-chosen functions $f_n(X)$ and $s_n(X)$.

When the same Lagrangian L_(n,p) contributes significantly both for cosmology and the local φ, then generically impossible to get a Newtonian potential ∝ 1/r.

But particular cases can work, e.g. when $L_{(5,0)}$ and $L_{(5,1)}$ dominate locally, then the condition

$$X(2f_5 + Xf_5') + 2(s_5 + Xs_5') = 0$$

suffices for the local backreaction of φ to be negligible.

IntroductionHorndeski theoriesCosmological self-tuningSpherical bodyConclusions00000000000

Exact Schwarzschild–de Sitter solution

Extra assumption: $X \equiv -\frac{\varphi_{\mu}^2}{M^2} = \text{const.}$ everywhere

Necessary and sufficient conditions for exact Schwarzschild-de Sitter

$$-Xf_{2} + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right] = \frac{M_{\text{Pl}}^{2}}{M^{4}} \left(\Lambda_{\text{bare}} - 3H^{2}\right),$$

$$[Xf_{2}]' + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right]' = 0,$$

$$Xf_{5} + 2s_{5} = 0 \text{ and } \left[Xf_{5} + 2s_{5}\right]' = 0,$$

$$\left[X^{3/2}f_{3}\right]' = 0.$$

Effective cosmological constant

$$\Lambda_{\text{effective}} = \frac{\Lambda_{\text{bare}} + \frac{M^4}{M_{\text{Pl}}^2} X f_2}{1 + 2\left(\frac{M}{M_{\text{Pl}}}\right)^2 \left(X^2 f_4 + 2X s_4\right)}$$

Self-tuning of ∧ in generalized Horndeski theories • Cargèse, May 4th, 2017

IntroductionHorndeski theoriesCosmological self-tuningSpherical bodyConclusions00000000000

Exact Schwarzschild–de Sitter solution

Extra assumption: $X \equiv -\frac{\varphi_{\mu}^2}{M^2} = \text{const.}$ everywhere

Necessary and sufficient conditions for exact Schwarzschild-de Sitter

$$-Xf_{2} + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right] = \frac{M_{\text{Pl}}^{2}}{M^{4}} \left(\Lambda_{\text{bare}} - 3H^{2}\right),$$

$$\left[Xf_{2}\right]' + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right]' = 0,$$

$$Xf_{5} + 2s_{5} = 0 \text{ and } \left[Xf_{5} + 2s_{5}\right]' = 0,$$

$$\left[X^{3/2}f_{3}\right]' = 0.$$

 \Rightarrow Effective cosmological constant

$$\Lambda_{\text{effective}} = \frac{\Lambda_{\text{bare}} + \frac{M^4}{M_{\text{Pl}}^2} X f_2}{1 + 2\left(\frac{M}{M_{\text{Pl}}}\right)^2 \left(X^2 f_4 + 2X s_4\right)}$$

Self-tuning of ∧ in generalized Horndeski theories • Cargèse, May 4th, 2017

Introduction
OOHorndeski theories
OOCosmological self-tuning
OOOSpherical body
OOOConclusions
OExact Schwarzschild–de Sitter solution (continued)

These solutions also describe regular hairy black holes

$$\varphi = \dot{\varphi}_c t + \psi(r)$$
 with $\dot{\varphi}_c = \text{const.},$

$$\psi'(r) = -\dot{\varphi}_c \frac{\sqrt{r_s/r + (Hr)^2}}{1 - r_s/r - (Hr)^2},$$

$$X \equiv -\varphi_{\mu}^2/M^2 = \dot{\varphi}_c^2/M^2 = \text{const.},$$

scalar current $J^{\mu} = 0$,

$$T_{\mu\nu}(\varphi) = M_{\rm Pl}^2 \left(\Lambda_{\rm bare} - \Lambda_{\rm effective} \right) g_{\mu\nu},$$

$$\Box \varphi = -3H\dot{\varphi}_c - (3\dot{\varphi}_c r_s^2)/(8H^3r^6) + \mathcal{O}\left(r_s^3\right).$$

Self-tuning of ∧ in generalized Horndeski theories • Cargèse, May 4th, 2017

IntroductionHorndeski theoriesCosmological self-tuningSpherical bodyConclusions0000000000000000

Renormalization of Newton's constant

$$G_{\text{effective}} = \frac{G_{\text{bare}}}{1 + 4\left(\frac{M}{M_{\text{Pl}}}\right)^2 X^{1/2} \left[X^{5/2} f_4 + 2X^{3/2} s_4\right]'} \Rightarrow \left(M_{\text{Pl}}^{\text{bare}}\right)^2 \Lambda_{\text{bare}} \sim \left(M_{\text{Pl}}^{\text{eff}}\right)^2 \Lambda_{\text{eff}}!$$

The huge vacuum energy density problem is not solved!

Necessary and sufficient conditions for exact Schwarzschild–de Sitter

$$-Xf_{2} + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right] = \frac{M_{\text{Pl}}^{2}}{M^{4}} \left(\Lambda_{\text{bare}} - 3H^{2}\right),$$
$$[Xf_{2}]' + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right]' = 0,$$

$$Xf_5 + 2s_5 = 0$$
 and $[Xf_5 + 2s_5]' = 0,$
 $[X^{3/2}f_3]' = 0.$

IntroductionHorndeski theoriesCosmological self-tuningSpherical bodyConclusions○○○○○○○○○○●○

Renormalization of Newton's constant

$$G_{\text{effective}} = \frac{G_{\text{bare}}}{1 + 4\left(\frac{M}{M_{\text{Pl}}}\right)^2 X^{1/2} \left[X^{5/2} f_4 + 2X^{3/2} s_4\right]'} \Rightarrow \left(M_{\text{Pl}}^{\text{bare}}\right)^2 \Lambda_{\text{bare}} \sim \left(M_{\text{Pl}}^{\text{eff}}\right)^2 \Lambda_{\text{eff}}!$$

The huge vacuum energy density problem is not solved!

Necessary and sufficient conditions for exact Schwarzschild-de Sitter

$$-Xf_{2} + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right] = \frac{M_{\text{Pl}}^{2}}{M^{4}} \left(\Lambda_{\text{bare}} - 3H^{2}\right),$$
$$[Xf_{2}]' + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right]' = 0,$$

$$Xf_5 + 2s_5 = 0$$
 and $[Xf_5 + 2s_5]' = 0,$
 $[X^{3/2}f_3]' = 0.$

 Introduction
 Horndeski theories
 Cosmological self-tuning
 Spherical body
 Conclusions

 ○○○
 ○○
 ○○○
 ○○●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○</

Renormalization of Newton's constant

$$G_{\text{effective}} = \frac{G_{\text{bare}}}{1 + 4\left(\frac{M}{M_{\text{Pl}}}\right)^2 X^{1/2} \left[X^{5/2} f_4 + 2X^{3/2} s_4\right]'} \Rightarrow \left(M_{\text{Pl}}^{\text{bare}}\right)^2 \Lambda_{\text{bare}} \sim \left(M_{\text{Pl}}^{\text{eff}}\right)^2 \Lambda_{\text{eff}}!$$

The huge vacuum energy density problem is not solved!

Exact Schwarzschild-de Sitter without any renormalization of G

$$-Xf_{2} + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right] = \frac{M_{\text{Pl}}^{2}}{M^{4}} \left(\Lambda_{\text{bare}} - 3H^{2}\right),$$

$$\left[Xf_{2}\right]' + 6\left(\frac{H}{M}\right)^{2} \left[X^{2}f_{4} + 2Xs_{4}\right]' = 0,$$
Extra condition $\rightarrow \left[X^{5/2}f_{4} + 2X^{3/2}s_{4}\right]' = 0,$

$$Xf_{5} + 2s_{5} = 0 \quad \text{and} \quad \left[Xf_{5} + 2s_{5}\right]' = 0,$$

$$\left[X^{3/2}f_{3}\right]' = 0.$$

Introduction	Horndeski theories	Cosmological self-tuning	Spherical body	Conclusions •
Conclusio	ns			

- Cosmological self-tuning ($\Lambda_{\text{effective}} \ll \Lambda_{\text{bare}}$) always possible if \exists at least two Lagrangians $L_{(n,p)}$, and scale $M \approx (M_{\text{Pl}}^2 \Lambda_{\text{bare}})^{1/4}$.
- Exact Schwarzschild–de Sitter solution possible if 5 conditions are imposed on the functions $f_n(X)$ and $s_n(X)$.

 $f_2(X), f_4(X)$ and $s_4(X)$ *define* the solution ($\Lambda_{\text{effective}}$ and X), while $f_3(X), f_5(X)$ and $s_5(X)$ are *passive* for the background.

• On can get $(M_{\rm Pl}^{\rm eff})^2 \Lambda_{\rm eff} \ll (M_{\rm Pl}^{\rm bare})^2 \Lambda_{\rm bare}$ if a 6th condition is imposed on $f_4(X)$ and $s_4(X)$.

But there still exists an infinity of allowed models!

• Still to be studied: stability, more realistic cosmology, other post-Newtonian tests of gravity (strong equivalence principle, preferred-frame effects, ...).