Gauge-invariant observables in perturbative quantum gravity

Markus B. Fröb

Department of Mathematics, University of York, YO10 5DD, Heslington, York, UK

1st May 2017

Perturbative Quantum Gravity (1/2)

- Study General Relativity as effective field theory and expand action perturbatively in fluctuations around a given background, non-renormalisable but valid at scales below the Planck scale
- Infinitesimal coordinate transformation $x^{\mu} \rightarrow \tilde{x}^{\mu} = x^{\mu} + \xi^{\mu}$ $(\delta x^{\mu} = \xi^{\mu})$ gives gauge transformation $\delta A = \mathcal{L}_{\xi} A$
- If A⁽⁰⁾ = 0, then at linear order δA⁽¹⁾ = L_ξA⁽⁰⁾ = 0, but at higher orders gauge-dependent since A⁽¹⁾ ≠ 0 in general
- In flat space, S-Matrix is gauge-invariant but not local ⇒ reconstruct local observables by inverse scattering method
- One-loop quantum corrections to Newtonian potential: $V(r) = -\frac{Gm}{r} \left[1 + \left(\frac{41}{10\pi} + \frac{[1 + \frac{5}{4}(1 - 6\xi)^2]N_0 + 6N_{1/2} + 12N_1}{45\pi} \right) \frac{\ell_{\text{Pl}}^2}{r^2} \right]$
- G: Newton's constant, $\ell_{PI} = \sqrt{\hbar G/c^3}$: Planck length, N_s : number of particles of spin s, ξ : non-minimal scalar coupling

Perturbative Quantum Gravity (2/2)

- Matter corrections can also be obtained from effective action for gravitons with (spinning) point particle source, integrating out matter loops, also for curved background
- Conformal fields in de Sitter:

$$\begin{split} \Phi_{\mathsf{A}} &= \frac{Gm}{\hat{r}} \bigg[1 + \frac{128\pi b}{3} \frac{\ell_{\mathsf{Pl}}^2}{\hat{r}^2} + 32\pi \ell_{\mathsf{Pl}}^2 H^2 \left(\beta - 4b - 3b' + 2b\ln\left(\bar{\mu}\hat{r}\right)\right) \bigg] \\ \Phi_{\mathsf{H}} &= \frac{Gm}{\hat{r}} \bigg[1 + \frac{64\pi b}{3} \frac{\ell_{\mathsf{Pl}}^2}{\hat{r}^2} + 32\pi \ell_{\mathsf{Pl}}^2 H^2 \left(\beta - 2b - 3b' + 2b\ln\left(\bar{\mu}\hat{r}\right)\right) \bigg] \\ \mathbf{V} &= -2G \frac{\mathbf{S} \times \hat{\mathbf{r}}}{\hat{r}^3} \bigg[1 + 96\pi b \frac{\ell_{\mathsf{Pl}}^2}{\hat{r}^2} + 32\pi \ell_{\mathsf{Pl}}^2 H^2 \left(\beta - 5b - b' + 2b\ln\left(\bar{\mu}\hat{r}\right)\right) \bigg] \end{split}$$

- b, b': central charges of CFT (trace anomaly), r̂ = ar: physical distance on equal-time hypersurface, β: Coefficient of R², μ̄: renormalisation scale
- But: graviton loop corrections are gauge dependent

Relational observables (1/3)

- Let there be given 4 fields X⁽ⁱ⁾[g, φ,...] depending on field content, transforming under diffeo's as scalars: δX⁽ⁱ⁾ = ξ^μ∂_μX⁽ⁱ⁾, and their background value X⁽ⁱ⁾₀
- Expand X⁽ⁱ⁾ = X₀⁽ⁱ⁾ + X₁⁽ⁱ⁾ + ... in perturbation theory and invert to obtain X₀⁽ⁱ⁾[X] ⇒ transforms inversely to a scalar
- Invariant observable A(χ) is given by evaluating a field A at the position X₀⁽ⁱ⁾, holding X⁽ⁱ⁾ fixed
- ⇒ Relational observables: the $X^{(i)}$ are configuration-dependent coordinates, $\mathcal{A}(\chi)$ is the value of A provided that $\chi^i = X^{(i)}$, and by evaluating at $X_0^{(i)}$ we interpret \mathcal{A} as field on background
- Cosmology: only one scalar field (inflaton ϕ), but we need 4

Relational observables (2/3)

- At lowest order, we have $\delta x^{\mu} = \xi^{\mu} = \xi^{\alpha} \partial_{\alpha} x^{\mu}$, which thus transforms as a scalar \Rightarrow generalise to higher orders
- Since coordinates are harmonic △xⁱ = 0, define X⁽ⁱ⁾(x) as harmonic coordinates for the perturbed Laplacian △ on constant-inflaton-hypersurfaces
- Since Laplacian is scalar operator, X⁽ⁱ⁾(x) will transform as scalars to all orders (computable to arbitrary order in perturbation theory)
- To linear order, we have decomposition of metric perturbation h_{μν} = h^{inv}_{μν} + L_Zη_{μν} (where h^{inv}_{μν} contains Bardeen variables, and gauge-invariant vector and tensor) and calculate X⁽ⁱ⁾(x) = xⁱ + (1/2 Δⁱ/Δ Q + Zⁱ) with Mukhanov-Sasaki variable Q
 Invert to obtain xⁱ = X⁽ⁱ⁾ - (1/2 Δⁱ/Δ Q(X) + Zⁱ(X)) + ...

Relational observables (3/3)

- Invariant observable is $H_{\mu\nu}(X) = a^{-2} \frac{\partial x^{\alpha}}{\partial X^{\mu}} \frac{\partial x^{\beta}}{\partial X^{\nu}} \tilde{g}_{\alpha\beta}(x(X)) \eta_{\mu\nu}$, holding X (and inflaton $\tilde{\phi}$) fixed
- At linear order (with $\Sigma = \frac{1}{3} \delta^{ij} h_{ij}^{inv}$):

$$H_{00} = h_{00}^{\text{inv}} - \frac{H'}{H^2 a} (Q + \Sigma) + \frac{(Q + \Sigma)'}{H a}$$
$$H_{0k} = h_{0k}^{\text{inv}} + \frac{1}{2Ha} \partial_k (Q + \Sigma) - \frac{1}{2} \frac{\partial_k}{\triangle} Q'$$
$$H_{kl} = h_{kl}^{\text{inv}} - \delta_{kl} (Q + \Sigma) - \frac{\partial_k \partial_l}{\triangle} Q$$

• Usual invariant perturbation is recovered by choosing different time coordinate $t = \tilde{\phi} - 3/(4 |\tilde{\nabla}\tilde{\phi}|\tilde{K})\tilde{\Delta}^{-1}\tilde{R}^{(3)}$, with \tilde{K} extrinsic curvature of constant- $\tilde{\phi}$ -hypersurfaces, $\tilde{R}^{(3)}$ induced Ricci scalar

Renormalised correlation functions and running of couplings

- Analogue in flat space: perturbed harmonic coordinates $\tilde{\Box}X^{\mu} = 0$
- Invariant scalar field $\Phi = \phi X_1^{\alpha} \partial_{\alpha} \phi + \dots$ with $X_1^{\alpha}(x) = \int G(x, y) [\partial_{\mu} h^{\mu \alpha} - \frac{1}{2} \partial^{\alpha} h](y) d^4 y$ and a Green's function *G* fulfilling $\partial^2 G(x, y) = \delta^4(x - y)$
- 1-loop graviton corrections to invariant massless two-point function $\tilde{\mathcal{G}}_0(p) = -1/p^2 + \ell_{\text{Pl}}^2 \delta_{Z_1}^{\text{fin}}(\mu) \ell_{\text{Pl}}^2/(8\pi)^2(3-10\xi) \ln(p^2/\mu^2)$ with $\delta_{Z_1}^{\text{fin}}$: finite part of higher-derivative counterterm, μ : renormalisation scale, ξ : non-minimal scalar coupling
- Explicitly independent of gauge fixing parameters for graviton iff Green's function G is massless Feynman propagator
- Graviton corrections to $\lambda \phi^4$ coupling: $\beta = -\frac{\lambda \ell_{\text{Pl}}^2}{(4\pi)^2} m^2 \left[4(2 - 21\xi + 21\xi^2) + 9\alpha(5 + 2\xi) \right]$, where $\alpha = 0$ is standard Feynman gauge and $\alpha = 1$ is from invariant four-point function \Rightarrow asymptotic freedom for all ξ iff $\alpha = 1$

Open Problems

- Recover graviton corrections to Newtonian potential via effective action of gauge-invariant metric perturbation
- Calculate graviton corrections to Newtonian potential in de Sitter/inflation (possibly secular effects ~ ln^k a!)
- Calculate backreaction from quantum effects in inflation; disentangle gauge effects from real physics (end inflation by secular effects?)
- Prove renormalisability to all orders
- Classify ambiguities (choice of time coordinate, ...)

Gauge-invariant observables in perturbative quantum gravity

└─Markus B. Fröb, 1st May 2017, "Hot topics in Modern Cosmology" Spontaneous Workshop XI in Cargèse

Thank you for your attention

Questions?

Based on 1605.02573 (Brunetti et al.), 1601.03561 & 1701.06576 (Fröb/Verdaguer), and 1705.????

Funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 702750 "QLO-QG".