
Surprises of quantization in de Sitter space

ETA, U.Moschella, K.Pavlenko and F.Popov

Cargese, May 2017



Setup

Based on arXiv:1701.07226

We consider:

S =

∫︁
dDx

√︀
|g |

[︂
1

2
g𝛼𝛽 𝜕𝛼𝜑𝜕𝛽𝜑 +

1

2
m2 𝜑2 +

𝜆

4
𝜑4

]︂
,

where [sign(g) = (−,+,+,+)].

The background is the expanding Poincar�e patch (EPP)
ds2 = 1

𝜂2

[︀
−d𝜂2 + dx⃗2

]︀
, where 𝜂 = e−t . Half of global dS

space.

We set the radius of the dS spacetime to one. Our goal is to
check whether the assumption of negligible backreaction is
self-consistent or not for various sorts of initial conditions.
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Setup

Mode functions in the EPP are factorized as

𝜙p (𝜂, x⃗) = 𝜂(D−1)/2 h𝜈(p𝜂) e−i p⃗ x⃗ ,

where h𝜈(p𝜂) is a solution of the Bessel equation of order

𝜈 =

√︁(︀
D−1

2

)︀2 −m2.

The �eld is expanded as:

𝜑(𝜂, x⃗) =

∫︁
d (D−1)p⃗

[︁
ap⃗ 𝜙p (𝜂, x⃗) + a+p⃗ 𝜙*

p (𝜂, x⃗)
]︁
.

ap⃗ and a+p⃗ obey proper commutation relations.
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Setup

Any Bessel function of the order 𝜈 behaves as follows:

h𝜈(p𝜂) =

{︃
B+

e i p𝜂√
p𝜂 + B−

e−i p𝜂
√
p𝜂 , p𝜂 ≫ 𝜈

A+ (p𝜂)𝜈 + A− (p𝜂)−𝜈 , p𝜂 ≪ 𝜈.

Here B± and A± are normalization complex constants.

We consider complementary series, m < (D − 1)/2. Hence,

𝜈 =

√︁(︀
D−1

2

)︀2 −m2 is real.

E.g. the Bunch�Davies (BD) modes are as follows:

h𝜈(p𝜂) ∝ H
(1)
𝜈 (p𝜂) � Hankel function.
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Tree–level propagators

In non�stationary situations any �eld is characterized by three
propagators.

Two of them are retarded and advanced propagators:

D
R
A
0

(p |𝜂1, 𝜂2) = ±𝜃 (∓∆𝜂12) 2 (𝜂1 𝜂2)
D−1
2 Im

[︁
h𝜈(p𝜂1) h*𝜈(p𝜂2)

]︁
.

They do not depend on the state, at least at tree�level.

Another propagator is the Keldysh one:

DK
0 (p|𝜂1, 𝜂2) = (𝜂1 𝜂2)

D−1
2

[︂(︂
1

2
+
⟨
a+p⃗ ap⃗

⟩
Ψ

)︂
h𝜈(p𝜂1) h*𝜈(p𝜂2)+

+
⟨
ap⃗ a−p⃗

⟩
Ψ
h𝜈(p𝜂1) h𝜈(p𝜂2) + h.c.

]︂
.

If the initial state |Ψ⟩ respects the spatial translational
invariance. It does depend on the state Ψ.
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Secular growth in one–loop corrections

The two�loop IR correction to the Keldysh propagator coming
from the sunset diagram is as follows:

DK
0+2 (p|𝜂1, 𝜂2) ≈

A2
− 𝜂D−1

(p 𝜂)2𝜈

[︁
1 + A𝜆2 log

(︁p𝜂
𝜈

)︁]︁
, 𝜂 =

√
𝜂1𝜂2.

This is the leading contribution in the IR limit p𝜂 → 0 and
𝜂1
𝜂2

= const.

When 𝜆2 log(p𝜂) ∼ 1 we have a breakdown of the
perturbation theory and of the semi�classical approximation.
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Secular growth in one–loop corrections

For the initial state
⟨
a+p⃗ ap⃗

⟩
g

=
⟨
ap⃗ a−p⃗

⟩
g

= 0, we have that

A ≈ 8A−A+

3(2𝜋)2(D−1)

{︁ ∞∫︁
1

dv v−D G (v)

(︂
− 1

2𝜈
v2𝜈 +

1

v2𝜈

)︂
−

−
1∫︁

0

dv v−D G (v)

(︂
1

2𝜈
v−2𝜈 + v2𝜈

)︂}︁
,

where

G (v) =

∫︁ ∫︁
dD−1q1
(2𝜋)D−1

dD−1q2
(2𝜋)D−1

×

h𝜈(q1v
2)h*𝜈(q1)h𝜈(q2v

2)h*𝜈(q2)h(|q⃗1 + q⃗2| v2)h*𝜈(|q⃗1 + q⃗2|).
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On the physical origin of the secular growth

In the Gaussian approximation �
⟨
a+p⃗ ap⃗

⟩
Ψ

= const, and⟨
ap⃗ a−p⃗

⟩
Ψ

= const. All time dependence is gone into the

modes � h𝜈(p𝜂).

All the quasi�classical results are obtained with the use of the
tree�level propagator:

DK
0 (𝜂1, 𝜂2|p) = (𝜂1 𝜂2)

D−1
2 Re [h𝜈(p𝜂1) h*𝜈(p𝜂2)]

E.g. Bunch�Davies's ⟨T𝜇𝜈⟩0 in de Sitter space.

However, in non�stationary situation
⟨
a+p⃗ ap⃗

⟩
and

⟨
ap⃗ a−p⃗

⟩
start to depend on time. That may strongly modify
quasi�classical �ux.

Note that that
⟨
a+p⃗ ap⃗

⟩
and

⟨
ap⃗ a−p⃗

⟩
are attributed to the

comoving volume.
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Side remarks about contracting patch and global dS

Contracting Poincar�e patch is just time�reversal of the
expanding one.

For the case of ideal spatial homogeneity, we obtain that

∆2D
K ∝ 𝜆2 log

(︂
𝜈

p𝜂0

)︂
, as p𝜂 → ∞.

Here 𝜂0 = et0 is the time after which interactions are
adiabatically turned on. Breaking of the dS isometry.

In this case � IR divergence and, hence, adiabatic catastrophe
for any initial state.

In global de Sitter there is also adiabatic catastrophe for any
initial state.
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Resummation (general discussion)

To resum the leading corrections from all loops one has to

Check that there are no leading corrections to the retarded
and advanced propagators and that the leading secular growth
is present only in the Keldysh propagator.

Check that there are no leading corrections to the vertexes.
This is not true for low enough mass.

Put in the system of the Dyson�Schwinger equations retarded
and advanced propagators (and vertexes, if possible) to their
tree�level values. Then this system reduces to the single
equation for the Keldysh propagator. What remains to be
checked: what type of diagrams contribute leading corrections.
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Resummation (dS invariant case)

If one takes exactly BD state at exactly past in�nity of the
expanding Poincar�e patch, then one can show that dS isometry
is respected at every loop order, if m > 0. (Polyakov, Higuchi,
Marolf, Morrison and Tanaka)

Moreover, one can show that in this case leading contributions
come from the summation of the bubble diagrams. If one puts
the above one loop logarithmic correction to the Keldysh
propagator into the internal legs of the bubble diagram, the
correction is suppressed as 𝜆4 log(p𝜂). The situation is very
similar to the standard UV renormalization: if one puts loop
corrected expressions again inside the loops they lead to
subleading corrections, while the leading corrections come
from the multiplication of the bubbles.
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Resummation (dS invariant case)

That is the reason why in the Dyson�Schwinger equation one
can put the exact Keldysh propagator only into one of the
external legs. As a result in this case the Dyson�Schwinger
equation reduces to a system of linear integro�di�erential
equations.

The result of the resummation for the complementary series at
the leading order reduces to a mass renormalization

At the leading order this result agrees with the
Starobinsky�Yokoyama approach. (Serreau et al.)
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Resummation (subtle issues)

For the complementary series, m < (D − 1)/2, there is a

subtle issue because for very low masses, m <
√
3

4
(D − 1),

there there are secularly growing contributions to the vertexes.

The last type of secular growth appears due to the presence of
bound states or higher power correlations.

If we would like to perturb the initial BD state by a
non�symmetric perturbations, we cannot just put initial⟨
a+p⃗ ap⃗

⟩
at the past in�nity of the EPP. One has to cut the

EPP at the physical momentum (p𝜂)0 ∼ |𝜈|.
In the latter case internal legs in the loops also provide leading
contributions. Bubbles are not enough. One should put the
exact Keldysh propagator also into the loops in the
Dyson�Schwinger equation. As the result, one obtains a
non�linear integro�di�erential equation.
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Resummation (non–invariant perturbations)

Ansatz for the exact Keldysh propagator

DK (p |𝜂1, 𝜂2) = A2

−
𝜂D−1

(p𝜂)2𝜈
N(p𝜂), 𝜂 =

√
𝜂1 𝜂2.

The summing equation for 𝜆𝜑4:

N(p𝜂) − N (𝜈) ≈ −
p𝜂∫︁
𝜈

du

u
[N(u) + N (𝜈)] ×

×

⎡⎣Γ1

⎛⎝ 𝜈∫︁
p𝜂

dl lD−2−2𝜈 N(l)

⎞⎠2

− Γ2

⎤⎦ , Γ1, Γ2 > 0.

N(𝜈) is the initial value of N(p𝜂).
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Resummation (non–invariant perturbations)

Stable solution (agrees with the dS invariant situation):

N(p𝜂) ≈ A · (p𝜂)𝛼, 𝛼 ≈ −Γ1 A
2

[︃
𝜈(D−1−2 𝜈+𝛼)

D − 1− 2 𝜈 + 𝛼

]︃2
+ Γ2.

where A is a constant of integration and 𝛼 < 0 and
D − 1− 2𝜈 + 𝛼 > 0.

Explosive solution:

N(p𝜂) ≈ B

(p𝜂 − p𝜂*)
3
2

, 1 ≈ 2 Γ1 B
2 (p𝜂*)D−1−2𝜈 .

where B is a constant of integration.
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Conclusions

For the explosive solutions the Keldysh propagator blows up at a
�nite proper time. Then, also the expectation value of the
stress�energy tensor blows up (which would appear at the RHS of
the Einstein equations due to the quantum �uctuations). That
means that the backreaction is not negligible. One possibility is
that that the cosmological constant is secularly screened because
the expectation value of the stress�energy tensor under discussion
does not respect the dS isometry. This is a subject of a separate
study. Here we do not consider the backreaction issue.
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