"Binary black holes detected by LIGO: astrophysical and cosmological implications" Postnov K.A.

Sternberg Astronomical Institute, Moscow State University

11th Spontaneous Workshop Hot Topics in Cosmology

Blinnikov, Dolgov, PK 1409.5736, Blinnikov, Dolgov, Porayko, PK 1611.00541, Dolgov, PK 1702.07621

2015 – start of GW astronomy

Abbott+ 2016, LIGO/VIRGO Collab.

Properties of BH systems measured from GW observations

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{M^{1/5}}$$

$$a_{1,2} = \frac{c}{Gm_{1,2}^2} |S_{1,2}|$$

$$\chi_{1,2} = \frac{c}{Gm_{1,2}^2} S_{1,2} \cdot \hat{L}$$

$$\chi_{
m eff} = rac{m_1\chi_1 + m_2\chi_2}{M}$$

aLIGO O1 run results

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio $ ho$	23.7	13.0	9.7
False alarm rate FAR/yr^{-1}	$< 6.0 imes 10^{-7}$	$< 6.0 imes 10^{-7}$	0.37
Primary mass m_1/M_{\odot}	36.2	14.2	23
Secondary mass m_2/M_{\odot}	29.1	7.5	13
Effective inspiral spin χ_{eff}	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0^{+0.3}_{-0.2}$
Final mass M_{f}/M_{\odot}	62.3	20.8	35
Final spin <i>a</i> f	0.68	0.74	0.66
Lum. distance <i>D_L/Mpc</i>	420	440	1000
Sky localization $\delta S/deg^2$	230	850	1600

 In LIGO O2 run, 6 new events have been found from on-line analysis (as of April 23, 2017)

 Can these BH-BH systems be drawn from one distribution or originate from different progenitors?

Astrophysics

Stellar evolution channels:

- From massive binary systems (Tutukov, Yungleson 73, Lipunov, PK, Prokhorov 87, 97...Fryer+ 02, Kinugawa+ 14,16, Belczynski+16, Eldridge&Stanway 16...)
- Dynamical formation in dense globular clusters (Sigurdsson, Hernquist 1993...Rodriguez+16)
- Primordial BH binaries (Nakamura+97, Ioka+, Sasaki+16, Eroshenko 16, Blinnikov+ 16)

BH formation parameters - initial mass (>20 M_{\odot}) Collapsing mass fraction $k_{BH} = M_{BH}/M_*$ Possible BH kick velocity

$$\frac{w_{BH}}{w_{NS}} = \frac{M_* - M_{BH}}{M_* - M_{OV}} = \frac{1 - k_{BH}}{1 - M_{OV}/M_*}$$

Lipunov PK Prokhorov 1987 MNRAS)

Fig. 4. The distributions of the total mass and the "chirp nass" for merging binary black holes for $M_* = 35M_{\odot}$ and $k_{\rm bh} = 0.3$ and for a Lyne-Lorimer velocity distribution with $v_0 = 400$ km s⁻¹.

Lipunov, PK. Prokhorov, 1997 Ast. Lett, MNRAS, New Astronomy

Major uncertainties

- BH formation parameters
 - mass-loss of progenitors (small at low metallicity)
 - Mass of the BH formed (tuned to produce required BH mass), additional kick...

• Binary evolution parameters

Non-conservative stages (common envelop treatment...)

Common envelope

 Compare binding energy of stellar envelope and orbital energy:

Webbink (1984), de Kool (1990) $\frac{GM_{don}M_{env}}{\lambda R} = \alpha_{ce} \left[\frac{GM_{core}M_2}{2a_f} - \frac{GM_{don}M_2}{2a_i}\right]$ $\frac{a_f}{a_i} = \frac{M_{core}M_2}{M_{don}} [M_2 + 2M_{env}/(\alpha_{ce}\lambda R)]^{-1} \propto \alpha_{ce}\lambda$

 Hydro calculations give controversial results (Ohlman+16)

Metallicity effects

No strong mass loss when low metal abundance → higher BH mass

THE ASTROPHYSICAL JOURNAL LETTERS, 818:L22 (15pp), 2016 February 20

ABBOTT ET AL.

Figure 1. Left: dependence of maximum BH mass on metallicity Z, with $Z_{\odot} = 0.02$ for the old (strong) and new (weak) massive-star winds (Figure 3 from Belczynski et al. 2010a). Right: compact-remnant mass as a function of zero-age main-sequence (ZAMS; i.e., initial) progenitor mass for a set of different (absolute) metallicity values (Figure 6 from Spera et al. 2015). The masses for GW150914 are indicated by the horizontal bands.

Standard binary scenario for GW150914

 <0.1 solar metallicity

- 40-100 M_{\odot}
- No SN explosion
- Common envelope
- Original spin directions

Belzcynski+ 2016

Problems in binary formation scenario

- BH components should have substantial rotation before merging, which is not observed in GW150914 (see also Kushnir+16)
- PopIII low-metallicity stars may be subdominant channel of GW150914 formation (Hatrtwig+16, Dvorkin+ 16)

Can CE be avoided?

 Yes, at the expense of fast rotation leading to quasi-homogeneous evolution (Marchant+16, Mandel & deMink 16)

New scenarios (fast rotation and chemically homogeneous evolution to avoid uncertain common envelope stage

arXiv:1601.03718

But rapid rotation of BH remnant cannot be avoided

 Or substantial kick velocity during BH formation should be assumed to have small BH spin projections onto orbital angular momentum

BHs in GW150914 had (almost) zero spins prior to merging

Spins

Credit: S.Babak, for LIGO collab.

Evolution of stars with solar abundance cannot produce massive BH

PK, Kuranov 1702.08056

Evolution of stars with zero metal abundance (primordial, PopIII stars) can produce massive BH

• Under assumptions that

- (i) All mass of the pre-collapse star goes into BH
- (ii) Common envelope stage is very effective
- (iii) Core-envelope rotation coupling is very strong

Weak core-envelope coupling

Moderate core-envelope coupling

Strong core-envelope coupling

Viable alternatives/complementary channels

- Dynamical formation in globular clusters
- Primordial binary black holes

Schwarzschild (almost) BH can be formed \rightarrow no problem with angular momentum excess

Dynamical BBH formation in globular clusters

- Globular clusters formed @ z=3.5
- M_{gc} =3-5 x 10⁵ M_{\odot}
- Low-metallicity 0.01-0.05 of Z_{solar},
- Dynamical interactions lead to BBH formation and ejection from the cluster

Rodriguez+ 16

Rodriguez+ 16

Primordial BHs

- Can form in the early Universe (Carr, Hawking 74) and significantly contribute to DM
- Can be seeds for early galaxy formation
- Can form merging binary BHs (Nakamura+ 97)
- GW150914 can be a PBH (Bird+ 16, Blinnikov, Dolgov, PK, Porayko 16...)

Can a universal PBH mass distribution be responsible?

Particular model: primordial BH in the modified supersymmetric baryogenesis scenario (Affleck-Dine mechanism)

 Dolgov + (1993, 2009): inflation field coupled with renormalizable scalar baryon field

$$U(\chi, \Phi) = U_{\Phi}(\Phi) + U_{\chi}(\chi) + \lambda_1 (\Phi - \Phi_1)^2 |\chi|^2,$$

• High-B bubbles with almost modelindependent mass distribution

$$\frac{dn}{dM} = C \exp\left[-\gamma \ln^2(M/M_{\rm max})\right]$$

 Small-scale B – number fluctuations originally are isocurvature perturbations, but after QCD phase transition @ 100-200 MeV are transformed into large density perturbations at astrophysically large but cosmologically small scales (Dolgov, Silk, PRD47 (1993) 4244)

 High-B bubbles could form primordial BHs, compact stellar-mass objects or dense primordial gas clouds. Primordial BHs can be seeds for early galaxy formation (Dolgov+ Nucl.Phys. B807 (2009) 229, Dolgov, Blinnikov PRD89 (2014) 021301)

Estimate of mass distribution

 $\varrho_c = 1.4 \times 10^{11} M_\odot \mathrm{Mpc}^{-3}$

$$\varrho_m = 4 \times 10^{10} M_{\odot} \mathrm{Mpc}^{-3}$$

 $\frac{dn}{dM} = \mu^2 \exp\left[-\gamma \ln^2(M/M_{max})\right]$

$$\mu = \mu_{43} \times 10^{-43} / \text{ Mpc}$$

(in units c=h=1)

- A. Fraction of DM in MACHOs is 0.1 for mass range 0.1-1 Msun
- B. Primordial BH make up to all cosmological DM
- C. Density of primordial BH with M> 10⁴ = density of observed large galaxies

Total energy density in the mass range
$$M_1$$
, M_2 :

$$\varrho(M_1, M_2) = \mu^2 \int_{M_1}^{M_2} dMM \exp\left[-\gamma \ln^2\left(\frac{M}{M_{max}}\right)\right]$$

$$= 1.75 \cdot 10^9 \mu_{43}^2 M_{\odot} / \text{Mpc}^3 \int_{x_1}^{x_2} dxx e^{-\gamma \ln^2(x/y)}$$
(A) holds independently of μ_{43} if $y \approx \gamma + 0.1\gamma^2 - 0.2\gamma^3$
MACHO fraction $r = \varrho(0.1, 1)/\varrho(0.01, 10^7)$
(B) $\Omega_{\text{pbh}} = \Omega_{\text{dm}}$ holds if $\mu_{43}^2 = 6$
(A)+(B) \rightarrow (C) can be satisfied

Space density of massive PBH with M> $10^4 M_{\odot}$ Total PBH mass is normalized to $1/6 \Omega_m$

Blinnikov, Dolgov, PK, Porayko 2016 JCAP 11 036

Merging rate of binary BH $(1/\text{Gpc}^3/\text{yr})$ per logarithmic mass interval over the universe age. The observed LIGO event rate is shown by the purple rectangle.

GW150914
10-100 M_☉

Blinnikov, Dolgov, PK, Porayko 2016 JCAP 11 036

Testable predictions

- Specific PBH mass spectrum peaked at a few 10 M_{\odot} . Massive PBH (>10⁴ M_{\odot}) as seeds of inverted galaxy formation (Dolgov, Silk 94, Dolgov+ 08, Bosch+ 12, etc.)
- Low spins (as in GW150914)
- Specific demographics: association with low-mass galactic halos where the binary PBH formation is dynamically favored (Bird+16)
- No (bright) electromagnetic, neutrino etc counterparts...
- Can be tested in the nearest LIGO observations!

Intermediate mass BHs

Stellar-mass BHs	Intermediate-mass BHs	Supermassive BHs
3-100M _☉	$100-10^4 M_{\odot}$	10^4 - $10^9 M_{\odot}$
Core collapses	First supermassive stars, dynamical formation in GC	Growth (accretion, mergings) in galaxy centers
X-ray binaries	GC cores, ULX	Galaxy cores, AGNs

Modern SMBH growth simulations:

- M_{BH} ~10⁴-10⁵ M_{\odot} seeds rapidly grow due to gas accretion and galaxy mergings by z~5
- In DM halos <10¹² M_{\odot} no significant seed BH growth is observed. In more massive halos BH mass increases rapidly to form self-regulating M_{BH} - M_{DM} halo relation
- Shape of SMBH mass function does not change after z~5
- → primordial BH mass function shape is unimportant for M>10⁴ -10⁵M_☉

GC formation

- Globular clusters (GC) are oldest baryonic structures. Have no massive DM halos.
- In standard cosmogony are formed at z~12-5 from baryons filling DM minihalos, M_b~M_h
- Baryonic structures have initial mass about Jeans mass $M = M = 10^4 M (1+z)^{3/2}$

$$M_b \sim M_{vir} \sim M_J \approx 10^4 M_{\odot} \left(\frac{1+z}{10}\right)^{3/2}$$

- At z>20 structures with M<10⁴ M $_{\odot}\,$ never collapse since $T_{vir} < T_{CMB}$

If all PBH > 10⁴ M_☉ formed SMBH → n_{IMBH}
 (z=0)~10²-10³ Mpc⁻³ → n_{IMBH} (z=10))~10⁵-10⁶
 Mpc⁻³, comparable to expected DM halo number density with ~10⁴ M_☉ in Press-Shechter formalism

 primordial AD IMBHs with mass of a few thousand solar masses can be important additions to the standard paradigm of the early structure formation in the hierarchical cosmogony

Dolgov, PK 2017 JCAP 04 036

Conclusions

- First LIGO events confirm existence of binary BH
- Masses and merging rate can be explained by the standard astrophysical binary massive star evolution, but low (or zero) BH spins of GW150914 require special explanation.
- Dynamical formation in dense globular clusters is not excluded
- Primordial BH mass spectrum in modified Affleck-Dine scenario can explain both observed properties of GW150914, can provide significant fraction of DM, can explain present-day SMBH number density and be seeds of early globular cluster formation
- Increasing statistics of binary BH mergings can be used to test (constrain) PBH hypothesis

Bright future for GW astronomy!

