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CMB: A brief introduction
• Discovered in1965 by 

Penzias and Wilson 

• Temperature 
anisotropies measured 
by COBE in 1992 

• Improved 
measurements by 
WMAP and Planck

2009                                                                                       Planck



The polarisation signal

• By rotating the local coordinate system, Q is 
rotated into U and vice-versa.

-

Q

Q → -Q, U → -U 
under 90 degree 
rotation

-

U

Q →  U, U → -Q 
under 45 degree 
rotation

Q U

P±2 (
!n) =Q(!n)± iU(!n)

The linearly polarised CMB is completely 
described by a spin 2 and spin -2 field



E/B decomposition
• The description North-

south and East-West 
(more formally, the stokes 
parameters) depends on 
the arbitrary choices of 
coordinates 

• We then describe the 
polarisation by its 
orientation relative to itself: 
E-mode and B-mode B

E

B

E

Cold Spot        Hot Spot



Spherical harmonics 
expansion

P± (
!n) = a±2,lm

lm
∑ ±2Ylm (

!n)

Elm ≡ − 1
2
a2,lm + a−2,lm⎡⎣ ⎤⎦ Blm ≡ − 1

2i
a2,lm − a−2,lm⎡⎣ ⎤⎦

Our target



But, what can generate B-
mode?

CMB lensing

Smoothing methods comparison for CMB E- and B-mode separation 11

Fig. 5 The pure B-mode field constructed by SZ method and cos-, sin- and Gaussian-smoothing

window function, from top to bottom, respectively, where δc = 1◦ and β = 10−4. The panels on

the right side have the scaling magnified in order to show the residual leakage.

window functions in Fig.7 is almost the same as Fig.4, which means the smoothed window function with

smaller multipole values in harmonic space will bring smaller numerical error in E- and B-mode separation.

We obtain the results: If δc is small, i.e. the less information loss, sin- and cos-smoothingmethods are better

than Gaussian-smoothingmethod. On the other side, if we need the cleaner map, where δc should be larger

(such as δc = 1◦ or 1.5◦), Gaussian-smoothing method is better. These can be understood by the follow-

ing way: Comparing with the sin- or cos-smoothing functions, the Gaussian-smoothing function is much

more steeper. So when δc is smaller, the Gaussian function becomes close to the top-hat function, which

will follow the larger numerical error. However, when δc is larger (i.e. δc > 1◦), all these three smooth-
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Motivations
• In the linear theory, the CMB fluctuation satisfy the Gaussian 

distribution 

• For nearly Gaussian random fields (CMB T-map and E-map), the 
power spectrum can completely describe the statical properties of 
the field 

• The CMB B-mode polarisation field is a non-gaussian random field 
due to the CMB lensing effect 

• Santos et al., 2016, JCAP, 07, 029  [arXiv:1510.07779] 

• To extract all the information from a non-Gaussian field we need 
extra statical tools besides the power spectrum, as for example, the 
Minkowski functionals



• Using mainly the Minkowski functionals we aim to 
look for imprints of different contributions to the B-
mode map 

• Today, I will present the results for the E-to-B 
leakage when considering a partial sky analysis  

• We include the effect of primordial gravitational 
waves (GW) and extra sky cuts



The Minkowski functionals
• The morphological properties of the excursion sets can 

be quantified in terms of the MF 

• There are 3 MF for the two dimensional CMB excursion 
sets.

v0 (ν ) =
da
4πQν

∫ v1(ν ) =
dl
16π∂Qν

∫
The total fractional area of the 

map above a certain 
threshold

The boundary length of the 
excursion set per unit area 



v2 (ν ) =
kdl
8π 2∂Qν

∫
The Euler Characteristic per 

unit area (the difference 
between the numbers of hot 

spots and cold spots)

χ 2 = va
ideal − va

real⎡⎣ ⎤⎦
aa '
∑ Caa '

−1 va '
ideal − va '

real⎡⎣ ⎤⎦

Quantifying the result:

Caa ' ≡
1
499

va
k ,real − va

real( ) va 'k ,real − va 'real( )⎡⎣ ⎤⎦
k=1

500

∑

where



A partial sky survey

• In the ideal case (full sky map), we directly derive E 
and B from Q and U 

• However, even for satellite surveys we will not get a 
full-sky map. Why? 

• We must mask out the unavoidable Galactic 
foreground!



E/B decomposition in partial 
sky

3

E(n̂) = �1

2

[

¯g¯gP
+

(n̂) + ggP�(n̂)], (6)

B(n̂) = � 1

2i
[

¯g¯gP
+

(n̂)� ggP�(n̂)], (7)

where g(¯g) corresponds to the spin-raising (lowering) operator.

gf ⌘ � sin

s ✓

✓

@

@✓
+

i

sin ✓

@

@�

◆

(f sin

�s ✓), (8)

¯gf ⌘ � sin

�s ✓

✓

@

@✓
� i

sin ✓

@

@�

◆

(f sin

s ✓). (9)

An arbitrary function is represented by f with spin s. The new fields presented in Eqs 6 and 7 can be expanded in spherical
harmonics, such that

E(n̂) ⌘
X

`,m

E
`m

Y
`m

(n̂), B(n̂) ⌘
X

`,m

B
`m

Y
`m

(n̂), (10)

where the pseudo multipoles are

E
`m

=

Z

E(n̂)Y ⇤
`m

(n̂)dn̂, B
`m

=

Z

B(n̂)Y ⇤
`m

(n̂)dn̂, (11)

These pseudo multipoles are related to the regular multipoles E
`m

and B
`m

by

E
`m

= N
`,2

E
`m

, B
`m

= N
`,2

B
`m

, (12)

where we have N
`,s

=

p

(`+ s)!/(`� s)!.
The pseudo power spectra are then obtained as

CEE
`

⌘ 1

2`+ 1

X

m

hE
`m

E⇤
`m

i, (13)

CBB
`

⌘ 1

2`+ 1

X

m

hB
`m

B⇤
`m

i. (14)

With this alternative method to get the B-mode polarization, now we can deal with the case of partial sky experiments. With
the help of the mask function W , the pseudo multipoles become [40]

˜E
`m

=

Z

dn̂W (n̂)E(n̂)Y ⇤
`m

(n̂), (15)

˜B
`m

=

Z

dn̂W (n̂)B(n̂)Y ⇤
`m

(n̂). (16)

By comparing three different methods developed to extract the E and B signals from Q and U , [41] concluded that the Smith
and Zaldarriaga method (SZ, hereafter) [29] is the most efficient since it significantly reduces the E-to-B leakage, and at the
same time ensures the smallest error bars. Following this result we will use the SZ method throughout this paper, which start by
the definition of pure pseudo multipoles

Bpure
lm

⌘ � 1

2i

Z

dn̂
n

P
+

(n̂)
⇥

¯g¯g (W (n̂)Y
lm

(n̂))
⇤⇤ � P�(n̂) [gg (W (n̂)Y

lm

(n̂))]
⇤
o

, (17)

It can be proved that Eq. 17 is equivalent to the Eq. 16, but the pure pseudo multipoles can avoid large numerical error with
respect to pseudo multipoles.
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B(n̂) = � 1

2i
[

¯g¯gP
+

(n̂)� ggP�(n̂)], (7)

where g(¯g) corresponds to the spin-raising (lowering) operator.

gf ⌘ � sin

s ✓

✓

@

@✓
+

i

sin ✓

@

@�

◆

(f sin

�s ✓), (8)

¯gf ⌘ � sin

�s ✓

✓

@

@✓
� i

sin ✓

@

@�

◆

(f sin

s ✓). (9)

An arbitrary function is represented by f with spin s. The new fields presented in Eqs 6 and 7 can be expanded in spherical
harmonics, such that

E(n̂) ⌘
X

`,m

E
`m

Y
`m

(n̂), B(n̂) ⌘
X

`,m

B
`m

Y
`m

(n̂), (10)

where the pseudo multipoles are

E
`m

=

Z

E(n̂)Y ⇤
`m

(n̂)dn̂, B
`m

=

Z

B(n̂)Y ⇤
`m

(n̂)dn̂, (11)

These pseudo multipoles are related to the regular multipoles E
`m

and B
`m

by

E
`m

= N
`,2

E
`m

, B
`m

= N
`,2

B
`m

, (12)

where we have N
`,s

=

p

(`+ s)!/(`� s)!.
The pseudo power spectra are then obtained as

CEE
`

⌘ 1

2`+ 1

X

m

hE
`m

E⇤
`m

i, (13)

CBB
`

⌘ 1

2`+ 1

X

m

hB
`m

B⇤
`m

i. (14)

With this alternative method to get the B-mode polarization, now we can deal with the case of partial sky experiments. With
the help of the mask function W , the pseudo multipoles become [40]

˜E
`m

=

Z

dn̂W (n̂)E(n̂)Y ⇤
`m

(n̂), (15)

˜B
`m

=

Z

dn̂W (n̂)B(n̂)Y ⇤
`m

(n̂). (16)

By comparing three different methods developed to extract the E and B signals from Q and U , [41] concluded that the Smith
and Zaldarriaga method (SZ, hereafter) [29] is the most efficient since it significantly reduces the E-to-B leakage, and at the
same time ensures the smallest error bars. Following this result we will use the SZ method throughout this paper, which start by
the definition of pure pseudo multipoles

Bpure
lm

⌘ � 1

2i

Z

dn̂
n

P
+

(n̂)
⇥

¯g¯g (W (n̂)Y
lm

(n̂))
⇤⇤ � P�(n̂) [gg (W (n̂)Y

lm

(n̂))]
⇤
o

, (17)

It can be proved that Eq. 17 is equivalent to the Eq. 16, but the pure pseudo multipoles can avoid large numerical error with
respect to pseudo multipoles.
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Fig. 3 A smoothed window function using Gauss-smoothing method with parameters δc = 1◦

and β = 10−4.

where the expression of Bpure
lm is shown in Eq.(22). The Bpure(n̂) is related to B(n̂) in Eq.(9) by

Bpure(n̂) = B(n̂)W (n̂). (33)

The Fig.5 is a visualization of Bpure(n̂). Since we assume CBB
l = 0, all the non-zero value pixels in Fig.5

are attributed to the numerical error.

Interesting enough, the third panel in Fig.5 shows that the numerical errors mostly concentrate on two

bands, due to the program design of HEALPix package. The HEALPix package divides the sky into three

parts, and resembles them after operation, so there will be some residue on the joint. Besides, due to this

kind of residue locates in two narrow bands, we can mask them out to remove most of the contamination

with little information lost. In Fig.6, We mask out two bands centered at 48◦ and 132◦ and the width of each

band is 6◦, then the map looks much cleaner. How to quantify this further reduction on the numerical errors

in the constructed pure B-mode map is another important topic in this area, we leave it as a new work.

In order to quantify the numerical errors of pure B-mode map in harmonic space, we define the pseudo

power spectrum as:

Dpure
l =

1

2l+ 1

∑

m

Bpure
lm Bpure∗

lm . (34)

Wi =
1
2
+ 1

2
erf δ i −

δc
2

2σ
⎛
⎝⎜

⎞
⎠⎟

    δ i < δ c
Wi = 1   δ i > δ c



E/B decomposition 
numerical method

• SZ approach [Smith, (2006); Smith and Zaldarriaga (2007)]: the most 
efficient method for estimating the CMB B-mode 
power spectrum in partial sky [Fertè et al. (2013)]  

• Step 1: To compute the spin-0, spin-1 and spin-2 
rendition  of the window function

W0 =W W1 = ∂W W2 = ∂∂W



∂W = − ∂W
∂θ

− i
sinθ

∂W
∂φ

∂∂W = −cotθ ∂W
∂θ

+ ∂2W
∂θ 2 − 1

sin2θ
∂2W
∂φ 2

− 2icotθ
sinθ

∂W
∂φ

+ 2i
sinθ

∂2W
∂θ ∂φ

• Step 2: Construct 3 apodized maps

P±2 =W0P±2 P±1 =W∓1P±2 P±0 =W∓2P±2

• Step 3: Generating the new Blm and finally the B-map

!Blm = B0,lm + 2Nl ,1B1,lm + Nl ,2B2,lm( )



Simulations
• We used CAMB to generate the lensed CMB power 

spectra 

• Planck best fit parameters for the LCDM model 

• These power spectra are the input of lenspix to 
produce Q and U maps 

• 500 simulations with nside=1024 (i.e. 1.25829e
+07 pixels)
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power

Q-map
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power
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Fig. 3 A smoothed window function using Gauss-smoothing method with parameters δc = 1◦

and β = 10−4.

where the expression of Bpure
lm is shown in Eq.(22). The Bpure(n̂) is related to B(n̂) in Eq.(9) by

Bpure(n̂) = B(n̂)W (n̂). (33)

The Fig.5 is a visualization of Bpure(n̂). Since we assume CBB
l = 0, all the non-zero value pixels in Fig.5

are attributed to the numerical error.

Interesting enough, the third panel in Fig.5 shows that the numerical errors mostly concentrate on two

bands, due to the program design of HEALPix package. The HEALPix package divides the sky into three

parts, and resembles them after operation, so there will be some residue on the joint. Besides, due to this

kind of residue locates in two narrow bands, we can mask them out to remove most of the contamination

with little information lost. In Fig.6, We mask out two bands centered at 48◦ and 132◦ and the width of each

band is 6◦, then the map looks much cleaner. How to quantify this further reduction on the numerical errors

in the constructed pure B-mode map is another important topic in this area, we leave it as a new work.

In order to quantify the numerical errors of pure B-mode map in harmonic space, we define the pseudo

power spectrum as:

Dpure
l =

1

2l+ 1

∑

m

Bpure
lm Bpure∗

lm . (34)
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power
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Figure 13. Full-sky Q (left) and U (right) CMB maps obtained by CCA for the noiseless case.

Here Hs is a noiseless dataset, obtained exactly as described
in § 4 but without adding noise. By combining the noise-
less dataset with the same reconstruction matrix estimated

in the noisy case, we obtain a set of reconstructed compo-
nents having the same component separation errors as be-
fore, but without noise. This allows us to test the quality of
component separation error estimates. The results, shown
in Fig. 12, are very encouraging. Even if component separa-
tion errors are in general highly subdominant, the marginal
distribution error estimation method is able to correctly es-
timate them at low and intermediate Galactic latitudes (at
high Galactic latitudes the component separation errors are
overestimated but are anyway irrelevant compared to errors
due to noise). On the other hand the spatial redundancy er-
ror estimation method is occasionally underestimating the
true errors at low latitude. In Fig. 13 we show, as an exam-
ple, the CMB Q and U reconstructed maps in the noiseless
case. A visual inspection does not reveal the presence of
residual Galactic contamination except for a tiny strip on
the Galactic plane.

8 CMB POWER SPECTRUM ESTIMATION

To assess the quality of the Stokes Q and U CMB maps
obtained with the CCA component separation we compare
their estimated angular power spectra (APS) to the input
model used to generate the simulation. In doing so we prop-
agate to the power spectra the component separation errors
described above. We employ the ROMAster code, a pseudo-
Cℓ estimator based on MASTER approach (Hivon et al.
2002) and extended to cross-power spectra (Polenta et al.
2005) and polarization (see e.g. Kogut et al. 2003, for a
similar formalism). It is well known that the pseudo Cℓ
approach to the CMB power spectrum estimation is sub-
optimal for the lowest multipoles where other techniques are
more appropriate (see, e.g., Gruppuso et al. 2009). However,
a pseudo-Cℓ estimator is enough for our purpose of assessing
the quality of the reconstructed CMB polarization maps in
the presence of noise and component separation errors.

We exclude from the analysis the regions that are most
contaminated by residual foreground contributions as esti-
mated in the previous section. For this purpose we build a
mask based on our reconstruction errors, flagging all pixels
where the sum of the variance errors on the CMB Q and

U maps is greater than the mean value of the same quan-
tity across the whole map. The resulting mask is shown in
Fig. 14 and excludes less than 10% of the sky.

Having only one final map per astrophysical compo-
nent, we do not rely here on a cross spectrum analysis but
on an auto-spectrum approach. This is rather general, and
achieves a lower final noise variance than the cross spectrum
approach (see, e.g., Polenta et al. 2005). The drawback is
that we need to model and subtract a noise bias in the data.
To this extent, we computed the noise bias on the CMB EE
power spectrum by means of 1000 simulated noise maps. To
obtain each of them, we simulated one noise map for each
channel included in the reconstruction of the CMB (70, 100,
143 and 217 GHz), equalized the resolution of all channels to
14′, and combined them with the reconstruction matrix W
as described in the previous section. ROMAster uses these
Monte Carlo data to subtract the noise bias, as well as to
estimate errors on the APS due to noise by computing the
empirical variance of the realization.

To compute the error bars due to residual foreground
contamination, we produced a further set of 100 CMB maps
by perturbing the input spectral index maps as described
in the previous section. For each of them we repeated the
computation of the power spectrum and corrected for the
noise bias, relying for the latter purpose on a smaller (∼ 10)
set of noise-only maps. The noise bias has been estimated
each time with the reconstruction matrix used to obtain
the corresponding CMB map. Even if quite computation-
ally demanding, this procedure is needed because we are in
the noise-dominated regime, and a small error in the noise
bias can substantially affect the estimation of the polarized
power spectrum. Once we got our 100 unbiased CMB power
spectra, we finally computed the errors due to component
separation as the standard deviation of the sample for each
considered multipole bin.

In Fig. 15 we show the noise and the component sep-
aration error bars compared to the EE power spectrum of
the fiducial model. As we can see, the noise contribution is
dominating even on the smallest multipoles over the com-
ponent separation error, which is at most a small correction
to the error budget. In Fig. 16 we show the EE power spec-
trum estimated in a realistic Planck case (diamonds); the
1σ errors are shown by the shaded area. The results for the
noiseless case (squares with the component separation error
bars) show that the accuracy of our estimation of the power
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Fig. 3 A smoothed window function using Gauss-smoothing method with parameters δc = 1◦

and β = 10−4.

where the expression of Bpure
lm is shown in Eq.(22). The Bpure(n̂) is related to B(n̂) in Eq.(9) by

Bpure(n̂) = B(n̂)W (n̂). (33)

The Fig.5 is a visualization of Bpure(n̂). Since we assume CBB
l = 0, all the non-zero value pixels in Fig.5

are attributed to the numerical error.

Interesting enough, the third panel in Fig.5 shows that the numerical errors mostly concentrate on two

bands, due to the program design of HEALPix package. The HEALPix package divides the sky into three

parts, and resembles them after operation, so there will be some residue on the joint. Besides, due to this

kind of residue locates in two narrow bands, we can mask them out to remove most of the contamination

with little information lost. In Fig.6, We mask out two bands centered at 48◦ and 132◦ and the width of each

band is 6◦, then the map looks much cleaner. How to quantify this further reduction on the numerical errors

in the constructed pure B-mode map is another important topic in this area, we leave it as a new work.

In order to quantify the numerical errors of pure B-mode map in harmonic space, we define the pseudo

power spectrum as:

Dpure
l =

1

2l+ 1

∑

m

Bpure
lm Bpure∗

lm . (34)
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Real vs ideal

  r=0 ideal (dashed), real (solid)
r=0.1 ideal (dashed), real (solid)

  r=0 unlensed B-
map



Testing different soothing 
scales

• In order to remove the multipoles dominated by 
noise, the calculation of the MF requires smoothing 
the maps to be analysed 

• Even though different smoothing scales of the 
same CMB map have a high correlation, they must 
be taken into account in order to extract all its 
available information

θ s = 10',20 ',30 ',40 ',50 ',60 '



MF: ideal case-real case r=0

θ s = 10' θ s = 40' θ s = 60'



Adding sky cuts and avoiding 
the leakage signal:   statistics  χ 2

12 Yi-Fan Wang, Kai Wang, Wen Zhao

Fig. 6 The pure B-mode field constructed by SZ method with Gaussian-smoothed window func-

tion. The right one has been masked out the contamination bands, and the left one has not, with

the same plotting scale.

ing functions become relatively flat. While the Gaussian-smoothing function is continuous for any order

derivatives around the boundaries, so the numerical errors can be deeply reduced in the numerical calcula-

tions. This can also explain why the leakage residuals in the constructed B-mode map are quite small when

the Gaussian-smoothing function is adopted (see Fig.5).

4 CONCLUSION

Detection of B-mode polarization is the main aim of the future CMB observations. For the real analysis,

the incomplete sky survey induces the mixture of the E-mode and B-mode. In order to separate E- and

B-mode of CMB on an incomplete sky, we need to smooth the edge of window function. In this article

we present a comparison of the effects on numerical errors brought by different smoothing methods of

the window function. We found that Gaussian-smoothing method with large δc brings cleaner map, but

also more information loss, while sin- and cos-smoothing methods do better when δc is small, i.e. less

information loss.
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tion. The right one has been masked out the contamination bands, and the left one has not, with

the same plotting scale.
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Sky cut 1 Sky cut 2 Sky cut 3

10’ 20’ 30’ 40’ 50’ 60’

cut 1 18.93 9.53 4.27 1.62 0.71 0.34

cut 2 17.27 8.55 3.80 1.42 0.63 0.30

cut 3 15.78 7.97 3.56 1.28 0.57 0.27

r=0



Comparing different tensor-
to-scalar ratios

χ 2

10’ 20’ 30’ 40’ 50’ 60’

       
(r=0) 18.93 9.53 4.27 1.62 0.71 0.34

     
(r=0.1) 21.18 11.00 4.41 1.63 0.62 0.29

χ 2

χ 2

r=0 r=0.1

Total       220.23 268.74



The correlation coefficient of 
the MF

• The large values of the total      for both r=0 and r=0.1 show 
that the MF for different smoothing scales are very correlated 

• The E-to-B leakage is not a stochastic noise, and it is 
always relevant in the same sky regions 

• The total      depends on the correlation coefficients 
instead of a direct sum of the     values for each smoothing 
scale

χ 2

χ 2
χ 2
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FIG. 3: The correlation coefficient values, ⇢aa0 = Caa0/
p
CaaCa0a0 , for r = 0 (left panel), and for r = 0.1 (right panel) are represented by

the colors. The axis correspond to a and a0: the binning number of the threshold value, the different kinds of MFs and the smoothing scale.
Both panels correspond to the calculations when only the UT78 Planck polarization mask is considered (sky cut 1).

FIG. 4: The difference between the mean values of real and ideal case for the MFs considering r = 0 over 500 simulations. From top to
bottom: ✓s = 100, 400, 600, respectively. From left to right: the first, second and third MF, respectively.

A. Betti numbers

The morphological properties of the excursion sets can be also quantified in terms of topological quantities called the Betti
numbers. They provide an intuitive understanding of the topology of isosurfaces. For a two-dimensional manifold, such as the
CMB field, there are two non-zero Betti numbers. The excursion set consists of many connected regions (number of hot spots)
�

0

, and independent tunnels (number of cold spots) �
1

. For each threshold ⌫, we can mathematically express �
0

and �

1

as line

ρaa ' = Caa ' CaaCa 'a '



Kurtosis: Ideal case - real 
case

Figure 11. The value for the kurtosis for 500 simulations considering r = 0 for the ideal and real
cases as specified in the figure. From top to bottom: ✓s = 100, 400, 600, respectively.
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Skewness: ideal case - real 
case

Figure 9. The value for the skewness for 500 simulations considering r = 0 for the ideal and real
cases as specified in the figure. From top to bottom: ✓s = 100, 400, 600, respectively.

effectiveness of the E/B separation method.
However, by comparing the MFs and Betti numbers applied to the B-mode maps gener-

ated in the ideal and real cases, we find that the effect of leakage residuals decreases quickly
with the increasing of ✓s, which significantly shows that the residuals are dominant by the
higher multipoles. This result is consistent with the one derived from the power spectrum
analysis. In addition, we also found that the leakage cannot be ignored when combining the
results of all the smoothing scales, ✓s, in both models, r = 0 and r = 0.1. Considering indi-
vidual smoothing scales leads to the mistaken conclusion that the significance of the leakage
is small and that it can be safely neglected. It is then important to point out that the large
correlation of the MFs for different smoothing scales is expected since the leakage is not ran-
domly distributed in the sky. The E-to-B leakage plays an important role in the final B-map
and must be taken into account to avoid misinterpretation of the data.

At the end of this paper, we should mention that as one of the main com-
ponents of the B-type polarization, the lensed B-mode plays a crucial role for
both the detection of primordial gravitational waves and the statistical analysis
of the CMB maps. For the future CMB analysis, the de-lensing could become
important if the tensor-to-scalar ratio is small, i.e. r < 0.01. For this reason, a
number of practical methods have been developed to reconstruct the lensing field
and further CMB de-lensing of the B-map, by using CMB data alone [57], or
combining the CMB data the large-scale structure data [58]. The effectiveness of
these methods depend strongly on the instrumental noises and survey strategy
of CMB experiments, as well as those of other observations [59], which are out
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Conclusions
• The leakage is dominated by high multipoles: its 

significance becomes smaller by increasing the 
smoothing scale 

• The imprint of the leakage is still noticeable in the 
MF analysis even when the contamination bands 
and the poles are excluded 

• These regions do not play an important roll in the 
overall leakage contribution



• Even though the leakage seems not relevant for 
individual smoothing scales, it is definitely relevant 
when they are all combined 

• The E-to-B leakage should be carefully considered 
when analysing partial sky CMB B-mode data in 
order to avoid misinterpretation of the data 

• We did not find any imprint of the E-to-B leakage in 
the simulated B-maps when considering both 
skewness and kurtosis statistics for both r=0 and 
r=0.1


