The standard model of cosmology is flat $\Lambda C D M$:

$$
K=0, \quad a(t)=a_{0}\left(\frac{\cosh [\sqrt{3 \Lambda} t]-1}{\cosh \left[\sqrt{3 \Lambda} t_{0}\right]-1}\right)^{1 / 3}
$$

Our task: Integrate the velocity equation:

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t}= & \left\{F\left[-\frac{a^{\prime}}{\mathcal{E}} j(\mathcal{P})^{2}+\frac{a^{\prime 2}}{\mathcal{E}^{2}}(\mathcal{L} \cdot \mathcal{P}) j(\mathcal{P})\right]+\frac{1}{a s}(1+q) j(\mathcal{P})\right\} \mathbf{x} \\
& +F\left[\mathcal{P}+\frac{a^{\prime}}{\mathcal{E}} \mathcal{L} \times \mathcal{P}+\frac{a^{\prime 2}}{\mathcal{E}^{2}}(\mathcal{L} \cdot \mathcal{P}) \mathcal{L}\right]+\frac{1}{a s}(1+q) \mathcal{L}
\end{aligned}
$$

with

$$
F(t):=\frac{q(t) / a(t)}{\mathcal{E}\left[1+\frac{s^{2}}{\mathcal{E}^{2}} a^{\prime}(t)^{2}+\frac{\mathcal{S}^{2}}{\mathcal{E}^{2}}\right]}
$$

Let us choose initial conditions at emission time t_{e} :

$$
\mathbf{x}_{e}=0, \quad \mathbf{p}_{e}=\left(\begin{array}{c}
\left\|\mathbf{p}_{e}\right\| \\
0 \\
0
\end{array}\right), \quad \mathbf{s}_{e}=\left(\begin{array}{c}
s \\
s_{e}^{\perp} \\
0
\end{array}\right)
$$

- Special solutions: straight lines

$$
\mathbf{s}_{e}^{\perp}=0 \quad \Rightarrow \quad \tilde{\mathbf{x}}(t)=\frac{\mathbf{p}_{e}}{\left\|\mathbf{p}_{e}\right\|} \int_{t_{e}}^{t} \frac{d \tau}{a(\tau)}, \quad \mathbf{p}(t)=\frac{a_{e}}{a(t)} \mathbf{p}_{e}, \quad \mathbf{s}(t)=s \frac{\mathbf{p}_{e}}{\left\|\mathbf{p}_{e}\right\|}
$$

These are the null geodesics (spin is "enslaved").

[^0]- Special solutions: straight lines

$$
\mathbf{s}_{e}^{\perp}=0 \quad \Rightarrow \quad \tilde{\mathbf{x}}(t)=\frac{\mathbf{p}_{e}}{\left\|\mathbf{p}_{e}\right\|} \int_{t_{e}}^{t} \frac{d \tau}{a(\tau)}, \quad \mathbf{p}(t)=\frac{a_{e}}{a(t)} \mathbf{p}_{e}, \quad \mathbf{s}(t)=s \frac{\mathbf{p}_{e}}{\left\|\mathbf{p}_{e}\right\|}
$$

These are the null geodesics (spin is "enslaved").

- "Precessing" solutions:

Initial conditions $s_{e}^{\perp}=\hbar$ (Quantum Mechanics) and e.g.
$\lambda_{\mathrm{Ly}_{\alpha}}=8.72 \cdot 10^{-34} \mathrm{am},{ }^{1} z=2.4$. Then with $\Lambda=3 \cdot 0.685 / \mathrm{am}^{2}$ and $t_{0}=0.951$ as the time of emission is $t_{e}=0.188$ as.

For a more modest $\lambda=1.2 \cdot 10^{-2} \mathrm{am}$, Runge \& Kutta readily tell us:
$\star \quad R(S)(S)>0$.
$\star \quad$ The longitudinal offset of the trajectory from its companion null geodesic is

$$
\left|x^{1}(t)-\tilde{x}^{1}(t)\right|=O\left(\epsilon^{2}\right), \quad \epsilon:=s_{e}^{\perp} / \mathcal{E}
$$

[^1]Figure: The trajectory of the photon, $\mathbf{x}(t)$, in comoving coordinates for $s_{e}^{\perp}=\hbar$ is the helix. The dashed line is the null geodesic $\left(s_{e}^{\perp}=0\right)$. The initial transverse spin \mathbf{s}_{e}^{\perp} is indicated by the short arrow at the left.

Figure: The three spin components $s^{1}(t), s^{2}(t)$, and $s^{3}(t)$.

Perturbative solutions

We return to generic, flat RW spacetimes and linearize the equations of motion w.r.t. the small dimensionless parameters

$$
\eta:=\frac{s}{\mathcal{E}} \quad \& \quad \epsilon:=\frac{s_{e}^{\perp}}{\mathcal{E}} .
$$

Perturbative solutions

We return to generic, flat RW spacetimes and linearize the equations of motion w.r.t. the small dimensionless parameters

$$
\eta:=\frac{s}{\mathcal{E}} \quad \& \quad \epsilon:=\frac{s_{e}^{\perp}}{\mathcal{E}} .
$$

Put $\left(x^{1}, x^{2}, x^{3}\right)=\left(\tilde{x}^{1}, \epsilon y^{2}, \epsilon y^{3}\right)+O\left(\epsilon^{2}\right)$ and linearize $d \mathbf{x} / d t$:

$$
\begin{aligned}
& \frac{d x^{1}}{d t} \sim \frac{1}{a}+a_{e}^{\prime} \frac{1+q}{a} y^{2} \frac{\epsilon^{2}}{\eta}, \\
& \frac{d y^{2}}{d t} \sim \frac{1+q}{a}\left[1-a_{e}^{\prime} x^{1}+y^{3}\right] \frac{1}{\eta}, \\
& \frac{d y^{3}}{d t} \sim-\frac{1+q}{a} y^{2} \frac{1}{\eta}
\end{aligned}
$$

Birefringence

- Recall that $\left(x^{1}(t), 0,0\right)$ is (up to second order terms) the null geodesic; with the change of time coordinate

$$
t \mapsto \theta(t) \sim \frac{1}{|\eta|}\left[x^{1}(t)+\frac{1}{a^{\prime}(t)}-\frac{1}{a_{e}^{\prime}}\right]
$$

the transverse trajectory is now governed by the equations

$$
\frac{d y^{2}}{d \theta} \sim \operatorname{sign}(\eta)\left(y^{3}+1-a_{e}^{\prime} x^{1}\right), \quad \frac{d y^{3}}{d \theta} \sim-\operatorname{sign}(\eta) y^{2}
$$

Birefringence

- Recall that $\left(x^{1}(t), 0,0\right)$ is (up to second order terms) the null geodesic; with the change of time coordinate

$$
t \mapsto \theta(t) \sim \frac{1}{|\eta|}\left[x^{1}(t)+\frac{1}{a^{\prime}(t)}-\frac{1}{a_{e}^{\prime}}\right]
$$

the transverse trajectory is now governed by the equations

$$
\frac{d y^{2}}{d \theta} \sim \operatorname{sign}(\eta)\left(y^{3}+1-a_{e}^{\prime} x^{1}\right), \quad \frac{d y^{3}}{d \theta} \sim-\operatorname{sign}(\eta) y^{2}
$$

- With the previous initial conditions and setting $\epsilon=|\eta|$, we obtain:

$$
y^{2}(t) \sim \operatorname{sign}(\eta) \sin \theta(t) \quad \& \quad y^{3}(t) \sim \cos \theta(t)-1+a_{e}^{\prime} x^{1}(t)
$$

The trajectory is therefore a Left/Right helix depending on the helicity $\operatorname{sign}(\eta)=\operatorname{sign}(s)$ of the photon, i.e. birefringence of light.

Period, center and radius of the helix

- The instantaneous period of the helix in cosmic time is $T_{\text {helix }}(t) \sim 2 \pi d t / d \theta$,

$$
T_{\text {helix }}(t) \sim \frac{a(t)}{a_{e}} \frac{T_{e}}{1+q(t)}
$$

Period, center and radius of the helix

- The instantaneous period of the helix in cosmic time is $T_{\text {helix }}(t) \sim 2 \pi d t / d \theta$,

$$
T_{\text {helix }}(t) \sim \frac{a(t)}{a_{e}} \frac{T_{e}}{1+q(t)}
$$

- Its center at time t is located in comoving coordinates at

$$
\mathbf{x}_{\text {center }}(t) \sim\left(\begin{array}{c}
x^{1}(t) \\
0 \\
-|\eta|\left(1-a_{e}^{\prime} x^{1}(t)\right)
\end{array}\right) .
$$

Period, center and radius of the helix

- The instantaneous period of the helix in cosmic time is
$T_{\text {helix }}(t) \sim 2 \pi d t / d \theta$,

$$
T_{\text {helix }}(t) \sim \frac{a(t)}{a_{e}} \frac{T_{e}}{1+q(t)}
$$

- Its center at time t is located in comoving coordinates at

$$
\mathbf{x}_{\text {center }}(t) \sim\left(\begin{array}{c}
x^{1}(t) \\
0 \\
-|\eta|\left(1-a_{e}^{\prime} x^{1}(t)\right)
\end{array}\right)
$$

- Its comoving radius is time-independent and equal to $|\eta|$. Its true radius is

$$
R_{\text {helix }}(t) \sim \frac{a(t)}{a_{e}} \frac{c T_{e}}{2 \pi}=\frac{z+1}{2 \pi} \lambda_{e}
$$

λ_{e} being the wavelength at emission.

Conclusions and open questions

- The gravitational field of an expanding universe produces birefringence of light.
- This birefringence carries information on the acceleration of the universe.
- Can this birefringence of photons be measured?
- Does the gravitational field of a gravitational wave also produce birefringence of light?
- If yes, what information is carried by this birefringence?
- If yes, can this birefringence of photons be measured?

[^0]: ${ }^{1}$ Astro-units such that: $c=1 \mathrm{am} / \mathrm{as}, ~ \hbar=1 \mathrm{ag} \mathrm{am}^{2} /$ as and $H_{0}=1 / \mathrm{as}$.

[^1]: ${ }^{1}$ Astro-units such that: $c=1 \mathrm{am} / \mathrm{as}, \hbar=1 \mathrm{ag} \mathrm{am}^{2} /$ as and $H_{0}=1 / \mathrm{as}$.

