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Inflation

The inflationary scenario is based on the two cornerstone
independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) — a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).

NB The latter effect requires breaking of the weak and null
energy conditions for matter inhomogeneities.



Outcome of inflation

In the super-Hubble regime (k < aH) in the coordinate
representation:

ds? = dt?* — a*(t)(8jm + him)dx'dx™, I,m=1,2,3

= 2< 5/m + Z 4 e,m

D=0, g9 el =0, e M =1

¢ describes prlmordlal scalar perturbatlons, g — primordial
tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:
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In fact, metric perturbations h,, are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in ¢, g).

In particular:

Ce = CuiB—al)+0 ((ak . éTk)z)+...+O(1O’1OO)(§k+§l)+, N

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and —k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



Present status of inflation
Now we have numbers: P. A. R. Ade et al., arXiv:1502.01589

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum n; = 1 in
the first order in [n, — 1| ~ N ! has been discovered (using
the multipole range ¢ > 40):

ne—1
< (r) >= / PC/Ek) dk, Polk) = (2:21%005) 107 <:0>

ko = 0.05Mpc™t, n, —1 = —0.035 =+ 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely n, — 1, relating it finally to

Ny = In "8 ~ 67.2.




From " proving” inflation to using it as a tool

Present status of inflation: transition from " proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ns(k) — 1 and

r(k).
The reconstruction approach — determining curvature and
inflaton potential from observational data.

The most important quantities:
1) for classical gravity — H, H
2) for super-high energy particle physics — m? .

Simple (one-parameter, in particular) models may be good in
the first approximation (indeed so), but it is difficult to expect
them to be absolutely exact, small corrections due to new
physics should exist (indeed so).



Combined results from Planck/BISEP2/Keck Array
P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)
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Inflation in f(R) gravity

Purely geometrical realization of inflation.

The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

L / f(R)v/—gd*x + Sy,

= 167G

f(R)=R+F(R), R=R!
Here f”(R) is not identically zero. Usual matter described by

the action S, is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f(R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) mg ~ const.

Metric variation is assumed everywhere.



Field equations

1 1% v 1% v 174
6 C (R - *5 R) == (T wisy + Tiomy + Tl o))
where G = Gy = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

v ! v ]‘ 1 v 1 / !/
87GT,! pey = F'(R) RH—5 F(R)(SH—I—(VHV — 5l,vﬂ,,vv) F'(R).

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = Rys of the algebraic equation

RF'(R) = 2f(R) .

The special role of 7(R) oc R? gravity: admits de Sitter
solutions with any curvature.



Duality to the GR-+scalar field dynamics

In the Einstein frame, free particles of usual matter do not
follow geodesics and atomic clocks do not measure proper
time.

From the Jordan (physical) frame to the Einstein one:

FIR—f
glw = f/gluﬂ /£¢ \[ In f/ o W

where x° = 87G.
Inverse transformation:

R = <\f6n d‘;gf) + 4f{2\/(gb)> exp <\/§mp>
f(R) = <\/6lid\c/,gb) + 2K2V(¢)> exp (2\5;@)

V(¢) should be at least C*.




Background FRW equations in f(R) gravity

ds® = dt* — a°(t) (dx* + dy® + dz°)

H R =6(H + 2H?)

Il
L |-

The trace equation (4th order)

3 d [ 3df'(R) / _ _
S (a T) Rf'(R) 4+ 2f(R) = 87 G(pm — 3pm)

The 0-0 equation (3d order)

df'(R)

3H
dt

— 3(H + H))f'(R) + @ = 871Gpm



Reduction to the first order equation

In the absence of spatial curvature and p,, = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR (R —6H?)f'(R) — f(R)

dH ~— H(R —12H?)f"(R)




Analogues of large-field (chaotic) inflation: F(R) ~ R?A(R)
for R — oo with A(R) being a slowly varying function of R,

namely
A(R) A(R)
A(R —  |A"(R — .

Analogues of small-field (new) inflation, R ~ Ry:

2F(R,)
Ry

2F(Ry)

F'(Ri) =
R?

5 F//(Rl) ~

Thus, all inflationary models in f(R) gravity are close to the
simplest one over some range of R.



Perturbation spectra in slow-roll f(R) inflationary

models
Let f(R) = R? A(R). In the slow-roll approximation
|R| < H|R]:
2A 2
_ Kigz: P, (k) = e
6472 A2R? 122

3[R A
N(k) = —= dR
() 2/Rf A'R2

where the index k means that the quantity is taken at the
moment t = t, of the Hubble radius crossing during inflation
for each spatial Fourier mode k — a(t,)H(t).

NB The slow-roll approximation is not specific for inflation
only. It was first used in A. A. Starobinsky, Sov. Astron. Lett.
4, 82 (1978) for a bouncing model (a scalar field with

V = @ in the closed FLRW universe).

Pc(k)




The simplest models producing the observed scalar
slope

R2
f(R)=R+ ;1

M=26x10"° (?\?) Mp =~ 3.2 x 10'3 GeV
2 12
n,—1= N ~ —0.036, r= N2 ~ 0.004

Hys(N = 55) = 1.4 x 10* GeV

The same prediction from a scalar field model with

>\¢4 , - .
V(¢) = = at large ¢ and strong non-minimal coupling to
gravity ER¢? with £ < 0, [£] > 1, including the
Brout-Englert-Higgs inflationary model.



The Lagrangian density for the simplest 1-parametric model:

R N2 ,

L= R* = 5x 10 R?
167G | 28872P (k) 166 >~

1. The specific case of the fourth order gravity in 4D

£:

+ AR? + BC,3.5C*?"° + (small rad. corr.
167G By

for which A>> 1, A> |B|.

2. Another, completely different way: a non-minimally coupled
scalar field with a large negative coupling & (£conr = £):

6
R R 1,
ST = " —V(p), £<0, 1.
R SR Lo V(o). €<0, Jel>
In this limit, the Higgs-like scalar tree level potential
V(p) = M just produces f(R) = ¢ (R + 6’%) with
M? = X\/2476?G and ¢* = |£|R/A (plus small corrections

).




Post-inflationary evolution in the R + R? model
First order equation:

1 : dx
32, e -
x=H ,ysz H, dt73x2/3y
y_
dx  12x13y

The y-axis corresponds to inflection points 2 — 2 = 0, a 4 0.
A curve reaching the y-axis at the point (0, o < 0) continues
from the point (0, —yp) to the right.

Late-time asymptotic:

2 8M
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Scalaron decay and creation of matter

Transition to the FLRWRD stage: occurs through the same
mechanism which has been used for generation of
perturbations: creation of particle-antiparticle pairs of all
quantum matter fields by fast oscillations of R. Technically:
one-loop quantum corrections from all matter quantum fields
have to be added to the action of the R + R? gravity. In the
particle interpretation: scalaron decays into particles and
particles with the energy £ = M/2.

Thus, the viable f(R) inflationary model is (weakly) non-local
already!



The most effective decay channel: into minimally coupled
scalars with m < M. Then the formula obtained in Ya. B.
Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977)

can be used:
1 d R?

T2tV €™ = 576
The corresponding (partial) decay rate is
= GQ—’\ZS ~ 10%* 57!, that leads to the maximal temperature
T ~ 3 x 10° GeV at the beginning of the FLRWRD stage and
to N & 53 for the reference scale in the CMB measurements
(k/a(ty) = 0.05 Mpc™1), see D. S. Gorbunov, A. G. Panin,
Phys. Lett. B 700, 157 (2011) and F. Bezrukov, D. Gorbunov,
Phys. Lett. B 713, 365 (2012) for more details.



Slow-roll inflation reconstruction in f(R) gravity

., L / dN
~ O 9672 | P(W)

2dInA

InR = const+/dN

The additional "aesthetic” assumptions that P, o« N” and
that the resulting f(R) can be analytically continued to the
region of small R without introducing a new scale, and it has
the linear (Einstein) behaviour there, leads to 5 = 2 and the
R + R? inflationary model with r = 15 = 3(n, — 1)?
unambiguously.



For P, = PyN? ("scale-free reconstruction”):

1 No 5 167T2N0PC
A= 1 M= ———
6M2 < i N> ’ K2

Two cases:
1. N> Ny always.

1 R\ V/3/(2No)
A= — 1+ (2
6M? R

For Np = 3/2, Ry = 6M? we return to the simplest R + R?
inflationary model.

2. Ny > 1.
2
3/(2No)
Al L (1Y
6M? Ro\ V/3/(2No)
1— (%)



Constant-roll inflation in f(R) gravity

Search for viable inflationary models outside the slow-roll
approximation. Can be done in many ways. A simple and
elegant generalization in GR:

¢ = BHp, B = const

The required exact form of V/(¢) for this was found in
H. Motohashi, A. A. Starobinsky and J. Yokoyama, JCAP
1509, 018 (2015).

Natural generalization to f(R) gravity (H. Motohashi and
A. A. Starobinsky, arXiv:1704.08188):

d*f'(R)
dt?

df'(R)
dt

= BH

, [ = const



Then it follows from the field equations:
f'(R) oc H?/(1=P)

The exact solution for the required f(R) in the parametric
form (v = 1):

(R) = 2(3-B)C M (33(5 + el 1 (34 3)(1 - )

= 2390 (355~ 1)l I 4 (54-3)(2 - )

Viable inflationary models exist for —0.1 < [ < 0.



Generality of inflation

Some myths regarding the onset of inflation:

1. Inflation begins with V(¢) ~ ¢ ~ M3,.

2. As a consequence, its formation is strongly suppressed in
models with a plateau-type potentials favored by observations.
3. Beginning of inflation in some patch requires causal
connection throughout the patch.

4. One of weaknesses of inflation is that it does not solve the
singularity problem.



Theorem. In inflationary models in GR and f(R) gravity, there
exists an open set of classical solutions with a non-zero
measure in the space of initial conditions at curvatures much
exceeding those during inflation which have a metastable
inflationary stage with a given number of e-folds.

For the GR inflationary model this follows from the generic
late-time asymptotic solution for GR with a cosmological
constant found in A. A. Starobinsky, JETP Lett. 37, 55
(1983). For the R + R? model, this was proved in

A. A. Starobinsky and H.-J. Schmidt, Class. Quant. Grav. 4,
695 (1987). For the power-law and f(R) = RP inflation — in
V. Miller, H.-J. Schmidt and A. A. Starobinsky, Class. Quant.
Grav. 7, 1163 (1990).



Generic late-time asymptote of classical solutions of GR with a
cosmological constant A both without and with hydrodynamic
matter (also called the Fefferman-Graham expansion):

ds® = dt? — ~jedx’dx*

2Hgt —Hopt
Yik = €~ ay + by +e ey + ...

where H? = A/3 and the matrices aj, by, cik are functions of
spatial coordinates. a;, contains two independent physical
functions (after 3 spatial rotations and 1 shift in time +
spatial dilatation) and can be made unimodular, in particular.
b is unambiguously defined through the 3-D Ricci tensor
constructed from a;.. c; contains a number of arbitrary
physical functions (two - in the vacuum case, or with
radiation).

The appearance of an inflating patch does not require that all
parts of this patch should be causally connected at the
beginning of inflation.



What was before inflation?

In classical gravity (GR or modified f(R)): generic space-like
curvature singularity.

Generic initial conditions near a curvature singularity in
modified gravity models (the R + R? and Higgs ones).:
anisotropic and inhomogeneous (though quasi-homogeneous
locally).

Two types singularities with the same structure at t — O:

3
ds® = dt2—z |t]2P afi)af,’;) dx'dx™ 0 < s<3/2, u=s(2—s)
i=1

where p; <1, s =5 p;, u=>.p? and agi)7 p; are
functions of r. Here R? < R,;R".

Type A. 1 <5 <3/2, Roc |t|'° — 400

Type B.0<s<1, R— Ry <0, f'(Ry) =0

Spatial gradients may become important for some period
before the beginning of inflation.



What is needed for beginning of inflation in classical
(modified) gravity, is:

1) the existence of a sufficiently large compact expanding
region of space with the Riemann curvature much exceeding
that during the end of inflation (~ M?) — realized near a
curvature singularity;

2) the average value < R > over this region positive and
much exceeding ~ M?, too, — type A singularity;

3) the average spatial curvature over the region is either
negative, or not too positive.

Recent numerical studies confirming this in GR: W. H. East,
M. Kleban, A. Linde and L. Senatore, JCAP 1609, 010 (2016);
M. Kleban and L. Senatore, JCAP 1610, 022 (2016).

On the other hand, causal connection is certainly needed to
have a "graceful exit” from inflation, i.e. to have practically
the same amount of the total number of e-folds during
inflation N,; in some sub-domain of this inflating patch.



Weakly non-local UV-complete gravity models

R + R? gravity interacting with quantum matter fields is
renormalizable in the scalar sector and can be even
asymptotically free. However, in the tensor sector a ghost
appears due to the squared Weyl term.

To avoid it, a subclass of weakly non-local (quasi-polynomial)
UV-complete quadratic in curvature generalizations of gravity
is considered which do not have ghosts and are
super-renormalizable (or even finite). Their action is:

2
5= [ d'xy=g| "R+ REOR + Cup Fo(D) O

where zF(z) and zF(z) are exponentials of entire functions
up to constants.



R? inflation as a particular solution of non-local
gravity

A.S. Koshelev, L. Modesto, L. Rachwal and A. A. Starobinsky,
Occurrence of exact R? inflation in non-local UV-complete
gravity, JHEP 1611, 067 (2016); arXiv:1604.03127

For the R + R? model, (JR = M?R. Thus, its solutions are
also particular solutions of this non-local gravity if, in symbolic
notation,

M2
F(IM?) = Zhm

F'(M?) =0

Spectrum of scalar perturbations: the same is in the local

R + R? model. For proving it, the fact that these perturbations
are conformally flat (& + W = 0) at the inflationary stage in
the leading slow-roll approximation plays a crucial role.



Tensor perturbations are different. The absence of the tensor
ghost requires:

12 M2 <_ R
1+

2 (6-5) = (o §) — exp(2(0))

where w(z) is some entire function and the bar means a
background solution. As a result:

12 ) R
r—Nzexp w 6



Conclusions

» First quantitative observational evidence for small
quantities of the first order in the slow-roll parameters:
ns(k) — 1 and r(k).

» The typical inflationary predictions that [n, — 1| is small
and of the order of N;l, and that r does not exceed
~ 8(1 — ng) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ~ 1014 GOV, Mipf ~ 1013 GeV.

» Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f(R)) gravity can do it as well.

» From the scalar power spectrum P (k), it is possible to
reconstruct an inflationary model both in the Einstein and
f(R) gravity up to one arbitrary physical constant of
integration.



> In the f(R) gravity, the simplest R + R? model is

one-parametric and has the preferred values n, — 1 = —
and r = 13 = 3(ns — 1)?. The first value produces the

best fit to present observational CMB data.

2
N

» Even without using the observed value of n; — 1, the
assumptions of the absence of any new physical scale
both during inflation and after it and of the model
applicability up to the zero values of space-time curvature
distinguish the case P;(k) o In’(ks/k) and R + R? model
unambiguously.

» Thus, it has sense to search for primordial GW from
inflation at the level r > 103!



» Inflation is generic in the R + R? inflationary model and
close ones. Thus, its beginning does not require causal
connection of all parts of an inflating patch of space-time
(similar to spacelike singularities). However, graceful exit
from inflation requires approximately the same number of
e-folds during it for a sufficiently large compact set of
geodesics. To achieve this, causal connection inside this
set is necessary (though still may appear insufficient).

» The fact that inflation does not "solve” the singularity
problem, i.e. it does not remove a curvature singularity
preceding it, can be an advantage, not its weakness.

» Solutions of the R + R? inflationary model can also be
particular solutions of some non-local UV-complete
modifications of gravity without ghosts.
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