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Scalar �elds in gravitational physics

Scalar �elds in gravitational physics:

gravitational potential in Newtonian gravity

variation of \fundamental" constants

Brans-Dicke theory initially elaborated to solve the Mach problem

various compacti�cation schemes

the low-energy limit of the superstring theory

scalar �eld as inaton

scalar �eld as dark energy and/or dark matter

fundamental Higgs bosons, neutrinos, axions, . . .

etc. . .
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Scalar �elds minimally coupled to gravity

S =

Z
d4x
p�g�LGR + LS

�

LGR { gravitational Lagrangian
general relativity; LGR = R
square gravity; LGR = R+ cR2

f(R)-theories; LGR = f(R)
etc...

LS { scalar �eld Lagrangian;
ordinary STT; LS = ��(r�)2 � 2V (�)
� = +1 { canonical scalar �eld
� = �1 { phantom or ghost scalar �eld

with negative kinetic energy
V (�) { potential of self-action

K-essence; Ls = K(X) [X = (r�)2]
etc...
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Scalar �elds nonminimally coupled to gravity

Bergmann-Wagoner-Nordtvedt scalar-tensor theories

S =

Z
d4x
p�g�f(�)R� h(�)(r�)2 � 2V (�)

�
f(�)R =) nonminimal coupling between � and R

Conformal transformation to the Einstein frame (Wagoner, 1970):

~g�� = f(�)g�� ;
d�

d 
= f

�����fh+ 3

2

�
df

d�

�2
�����
�1=2

S =

Z
d4x

p
�~g

h
~R� �( ~r )2 � 2U( )

i

 =) new scalar �eld � = sign

�
fh+ 3

2

�
df
d�

�2�
U( ) =) new e�ective potential
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Scalar �elds nonminimally coupled to gravity

General scalar-tensor theories

S =

Z
d4x
p�g�F (�;R)� (r�)2 � 2V (�)

�
F (�;R) =) generalized nonminimal coupling between � and R

Conformal transformation to the Einstein frame (Maeda, 1989):

~g�� = 
2g�� ;

2

16�
�
����@F (�;R)@R

����

S =

Z
d4x

p
�~g

"
~R

16�
� h(�) �1( ~r�)2 � 3

32�
 �2( ~r )2 + U(�;  )

#

 � 
2 =) new (second!) scalar �eld
U(�;  ) =) new e�ective potential
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Scalar �elds nonminimally coupled to gravity

Some remarks:

A nonminimal scalar �eld is conformally equivalent to the minimal
one possessing some e�ective potential V (�)

A behavior of the scalar �eld is \encoded" in the potential V (�)

The potential V (�) is a very important ingredient of various
cosmological models: a slowly varying potential behaves like an
e�ective cosmological constat providing one or more than one
inationary phases.
An appropriate choice of V (�) is known as a problem of �ne tuning
of the cosmological constant.
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Nonminimal derivative coupling generalization

S =

Z
d4x
p�g�R� g���;��;� � 2V (�)

�

. &

F (�;R;R�� ; : : : )

nonminimal coupling
generalization!

K(�;�; �;�� ; : : : ; R;R�� ; : : : )

nonminimal derivative coupling
generalization!

& .

Theories with higher derivatives!
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Horndeski theory

In 1974, Horndeski derived the action of the most general scalar-tensor
theories with second-order equations of motion
[G.Horndeski, Second-Order Scalar-Tensor Field Equations in a
Four-Dimensional Space, IJTP 10, 363 (1974)]

Horndeski Lagrangian:

LH =
p�g (L2 + L3 + L4 + L5)

L2=G2(X;�) ;

L3=G3(X;�)�� ;

L4=G4(X;�)R+ @XG4(X;�) �
��
�� r�

��r�
�� ;

L5=G5(X;�)G��r���� 1
6 @XG5(X;�) �

���
�� r�

��r�
��r

�� ;

where X = � 1
2 (r�)2, and Gk(X;�) are arbitrary functions,

and ����� = 2! ��[��
�
�], ������� = 3! ��[��

�
��

�
�]
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Fab Four subclass of the Horndeski theory

There is a special subclass of the theory, sometimes called Fab Four (F4),
for which the coe�cients are chosen such that the Lagrangian becomes

LF4 =
p�g (LJ + LP + LG + LR � 2�)

with

LJ=VJ(�)G��r��r�� ;

LP=VP (�)P����r��r��r��� ;

LG=VG(�)R ;
LR=VR(�) (R����R

���� � 4R��R
�� +R2):

Here the double dual of the Riemann tensor is

P��
�� = �1

4
�������� R

��
� = �R��

�� + 2R�
[��

�
�] � 2R�

[��
�
�] �R��[����] ;

whose contraction is the Einstein tensor, P��
�� = G�

� .
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Fab Four subclass of the Horndeski theory

Fab Four Lagrangian:

LF4 =
p�g (LJ + LP + LG + LR � 2�)

The Fab Four model is distinguished by the screening property { it is
the most general subclass of the Horndeski theory in which at
space is a solution, despite the presence of the cosmological term �.

This property suggests that � is actually irrelevant and hence there
is no need to explain its value.

Indeed, however large � is, Minkowski space is always a solution and
so one may hope that a slowly accelerating universe will be a
solution as well.
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Theory with nonminimal kinetic coupling

Action:

S =
1

2

Z �
M2

PlR� (� G�� + " g��)r��r��� 2V (�)
�p�g d4x+ Sm

Field equations:

M2
PlG�� = � T�� + � T (�)

�� + T (m)
��

[�g�� + �G�� ]r�r�� = V 0�

T (�)
�� =�r��r��� 1

2
�g��(r�)2 � g��V (�);

T��=� 1
2
r��r��R+ 2r��r(��R

�
�) � 1

2
(r�)2G�� +r��r��R����

+r�r��r�r���r�r����+ g��
�� 1

2
r�r��r�r��+

1
2
(��)2

�r��r��R
��
�

T (m)
�� =(�+ p)U�U� + pg�� ;

Notice: The �eld equations are of second order!
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Cosmological models: General formulas

Ansatz:

ds2 = �dt2 + a2(t)dx2;

� = �(t)

a(t) cosmological factor, H = _a=a Hubble parameter

Field equations:

3M2
PlH

2 =
1

2
_�2
�
�� 9�H2

�
+ V (�);

M2
Pl(2

_H + 3H2) = �1

2
_�2
h
�+ �

�
2 _H + 3H2 + 4H �� _��1

�i
+ V (�);

d

dt

�
(�� 3�H2)a3 _�

�
= �a3 dV (�)

d�

V (�) � const =) _� =
Q

a3(�� 3�H2)
Q is a scalar charge
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Cosmological models: I. No potential V (�) � 0

Trivial model without kinetic coupling, i.e. � = 0

S =

Z
d4x
p�g �M2

PlR� (r�)2�

Solution:

a0(t) = t1=3; �0(t) =
1

2
p
3�

ln t

ds20 = �dt2 + t2=3dx2

t = 0 is an initial singularity

Sergey Sushkov Horndeski Cosmologis 15 / 47



���

Cosmological models: I. No potential V (�) � 0

Trivial model without kinetic coupling, i.e. � = 0

S =

Z
d4x
p�g �M2

PlR� (r�)2�

Solution:

a0(t) = t1=3; �0(t) =
1

2
p
3�

ln t

ds20 = �dt2 + t2=3dx2

t = 0 is an initial singularity

Sergey Sushkov Horndeski Cosmologis 15 / 47



���

Cosmological models: II. No potential V (�) � 0

Model without free kinetic term, i.e. � = 0

S =

Z
d4x
p�g �M2

PlR� �G���;��;�
�

Solution:

a(t) = t2=3; �(t) =
t

2
p
3�j�j ; � < 0

ds20 = �dt2 + t4=3dx2

t = 0 is an initial singularity
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Cosmological models: III. No potential V (�) � 0

Model for an ordinary scalar �eld (� = 1) with
nonminimal kinetic coupling � 6= 0

S =

Z
d4x
p�g �M2

PlR� (g�� + �G��)�;��;�
	

Asymptotic for t!1:

a(t) � a0(t) = t1=3; �(t) � �0(t) =
1

2
p
3�

ln t

Notice: At large times the model with � 6= 0 has the same behavior like
that with � = 0
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Cosmological models: III. No potential V (�) � 0

Asymptotics for early times

The case � < 0:

at!0 � t2=3; �t!0 � t

2
p
3�j�j

ds2t!0 = �dt2 + t4=3dx2

t = 0 is an initial singularity

The case � > 0:

at!�1 � eH�t; �t!�1 � Ce�t=
p
�

ds2t!�1 = �dt2 + e2H�tdx2

de Sitter asymptotic with H� = 1=
p
9�
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Cosmological models: III. No potential V (�) � 0

Plots of � = ln a in case � 6= 0, � = 1, V = 0.

(a) � < 0;
� = 0;�1;�10;�100

(b) � > 0;
� = 0; 1; 10; 100

De Sitter asymptotics: �(t) =
tp
9�

) H =
1p
9�

Notice: In the model with nonmnimal kinetic coupling one
get de Sitter phase without any potential!
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Cosmological models: IV. Cosmological constant

Models with the constant potential V (�) = M2

Pl
� = const

S =

Z
d4x
p�g �M2

Pl(R� 2�)� [�g�� + �G�� ]�;��;�
�

There are two exact de Sitter solutions:

I. �(t) = H�t; �(t) = �0 = const;

II. �(t) =
tp
3j�j ; �(t) =MPl

����3�H2
� � 1

�

����
1=2

t;

H� =
p
�=3
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Cosmological models: IV. Cosmological constant

Plots of �(t) in case � > 0, � = 1, V =M2
Pl�

(a) H2
� < _�2 < 1=9� (b) 1=9� < _�2 < 1=3� < H2

�

De Sitter asymptotics:
�1(t) = H�t (dashed),

�2(t) = t=
p
9� (dash-dotted),

�3(t) = t=
p
3� (dotted).
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Cosmological models: IV. Cosmological constant

Plots of �(t) in cases � > 0, � = �1 and � < 0, � = 1

(a) � < 0, � = 1 (b) � > 0, � = �1

De Sitter asymptotic:

�1(t) = H�t (dashed).
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Role of potential

S =

Z
d4x
p�g �M2

PlR� [g�� + �G�� ]�;��;� � 2V (�)
	

%

What a role does a potential play in cosmological
models with the nonminimal kinetic coupling?
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Power-law potential V (�) = V0�
N

Skugoreva, Sushkov, Toporensky, PRD 88, 083539 (2013)

Models with the quadratic potential V (�) = 1

2
m2�2

Primary (early-time) \kinetic" ination:

Ht!�1 � 1p
9�

(1 + 1
2�m

2)

Late-time cosmological scenarios:
Oscillatory asymptotic or \graceful" exit from ination

Ht!1 � 2

3t

�
1� sin 2mt

2mt

�

quasi-de Sitter asymptotic or secondary ination

Ht!1 � 1p
3�

�
1�

q
1
6�m

2

�
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Cosmological models: Power-law potential

Initial conditions
�0 = _�0

Initial conditions
�0 = � _�0

De Sitter asymptotics: Ht!�1 � 1=
p
9�(1 + 1

2
�m2),

Ht!1 � 1=
p
3�
�
1�

q
1
6
�m2

�
.
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Higgs potential V (�) = �
4(�

2
� �20)

2

Matsumoto, Sushkov, JCAP2015

Higgs �eld: � ' 0:14, �0 ' 246 GeV

Field equations

H2 =
1
2
_�2 + V (�)

3(M2
Pl +

3
2�

_�2)

�� =[1 + 12�� _�2 + 96�2�2 _�4 + 8��V (�)(12�� _�2 � 1)]�1

�
�
� 2
p
3� _�[1 + 8�� _�2 � 8��V (�)]

q
[ _�2 + 2V (�)](12�� _�2 + 1)� (12�� _�2 + 1)(4�� _�2 + 1)V�

�
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Higgs potential: Dynamical system

Dimensionless variables and parameters:

x =
�

�0
; y =

p
8�G� _�; � = �0t; V0 = 2�G���40;  � G�20

Autonomous dynamical system:

dx

d�
=

r
�

4V0
y;

dy

d�
=

1

�

�
�
q
3��V �10 y

�
1 + y2 � V0(x2 � 1)2

�
�
q
[y2 + 2V0(x2 � 1)2]

�
3
2y

2 + 1
�

� 2
p
�V0

�
3
2y

2 + 1
� �

1
2y

2 + 1
�
x(x2 � 1)

�
;

where � = 1 + 3
2y

2 + 3
2y

4 + V0(x
2 � 1)2

�
3
2y

2 � 1
�
:

Sergey Sushkov Horndeski Cosmologis 27 / 47



���

Higgs potential: Stationary points and phase portrait

Stationary points:
(�1; 0) global minima of V (�); � = ��0, V (��0) = 0
(0; 0) local maximum of V (�); � = 0, V (0) = V0 =

�
4�

4
0

(�1; 0) \wings" of V (�); �! �1
Phase diagrams:

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x

y

1

4
���40 �M2

Pl

(0; 0) { saddle point

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x

y

1

4
���40 > M2

Pl

(0; 0) { stable node!
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Accelerated cosmological scenarios: Quasi-de Sitter

Quasi-de Sitter scenario

t!1 distant future asymptotic

Τ = 0

Τ = 5.5

Τ = 15

Τ = 0

Τ = 6.5

Τ = 17

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

x

y

�! 0; _�! 0

V (�)! V0 = ��40=4 (maximum)

0 5 10 15 20 25 30

0.85

0.90

0.95

1.00

Τ
Κ
H
[
Τ
]

H(t)! H1 =
q

2
3�G��

4
0=const
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Accelerated cosmological scenarios: Big Rip

Big Rip scenario

t! t� �nite time asymptotic

Τ = 0

Τ = 1

Τ = 2.5

Τ = 0

Τ = 1.4

2 3 4 5 6 7 8

0

1

2

3

4

5

6

x

y

�(t) '
r

392�

�

1

(t� � t)2
�!1; _�!1
V (�) ' ��4=4!1

0 1 2 3 4 5
0

2

4

6

8

10

12

Τ
Κ
H
[
Τ
]

H2(t) ' 49

9

1

(t� � t)2 !1
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Accelerated cosmological scenarios: Little Rip

Little Rip scenario

t!1 distant future asymptotic
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Cosmological scenarios with nonminimal kinetic coupling
and matter Sushkov, PRD 85 (2012) 123520

Role of matter?

S =

Z
d4x
p�g �M2

Pl(R� 2�)� [g�� + �G�� ]�;��;�
	
+ Smatter

Stress-energy tensor: T
(m)
�� = diag(�; p; p; p)

Field equations:

3M2
PlH

2 =
1

2
_�2
�
1� 9�H2

�
+M2

Pl� + �;

M2
Pl(2

_H + 3H2) = �1

2
_�2
h
1 + �

�
2 _H + 3H2 + 4H �� _��1

�i
+M2

Pl�� p

d

dt

�
(1� 3�H2)a3 _�

�
= 0

=) _� =
Q

a3(1� 3�H2)
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Cosmological scenarios with nonminimal kinetic coupling
and matter

Modi�ed Friedmann equation:

H2 = H2
0

�

�0 +


m0

a3
+


�0(1� 9�H2)

a6(1� 3�H2)2

�

Constraint for parameters:


�0 +
m0 +

�0(1� 9�H2

0 )

(1� 3�H2
0 )

2
= 1

Universal asymptotic:

H ! H� = 1=
p
9� at a! 0

Notice: The asymptotic H � H� at early cosmological times
is only determined by the coupling parameter � and does not

depend on other parameters!
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Cosmological scenarios: Numerical solutions

Scale factor a(t)

Hubble parameter H(a) Acceleration parameter q
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Cosmological scenarios: Estimations

H�tf � 60 e-folds
tf ' 10�35 sec the end of initial inationary stage

) H� = 1=
p
9� ' 6� 1036 sec�1

� ' 10�74 sec2 or l� = �1=2 ' 10�27 cm

H0 � 70 (km=sec)=Mpc � 10�18 sec�1 Present Hubble parameter
 = 3�H2

0 ' 10�109 Extremely small!

H2 = H2
0

�

�0 +


m0

a3
+


�0(1� 9�H2)

a6(1� 3�H2)2

�
) 
�0 +
m0 +
�0 � 1


�0 = 0:73;
�0 = 0:23;
m0 = 0:04 ) q0 = 0:25
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Screening properties of Horndeski model

The FLRW ansatz for the metric:

ds2 = �dt2 + a2(t)

�
dr2

1�Kr2 + r2(d#2 + sin2 #d'2)

�
;

a(t) cosmological factor, H = _a=a Hubble parameter

Gravitational equations:

�3M2
Pl

�
H2 +

K

a2

�
+

1

2
" 2 � 3

2
�  2

�
3H2 +

K

a2

�
+ �+ � = 0;

�M2
Pl

�
2 _H + 3H2 +

K

a2

�
� 1

2
" 2 � �  2

�
_H +

3

2
H2 � K

a2
+ 2H

_ 

 

�
+ �� p = 0:

The scalar �eld equation:

1

a3
d

dt

�
a3
�
3�

�
H2 +

K

a2

�
� "

�
 

�
= 0;

where  = _�, and � = �(t) is a homogeneous scalar �eld
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Screening properties of Horndeski model

The �rst integral of the scalar �eld equation:

a3
�
3�

�
H2 +

K

a2

�
� "

�
 = Q;

where Q is the Noether charge associated with the shift symmetry
�! �+ �0.

Let Q = 0. One �nds in this case two di�erent solutions:

GR branch:  = 0 =) H2 +
K

a2
=

�+ �

3M2
Pl

Screening branch: H2 +
K

a2
=

"

3�
=)  2 =

� (� + �)� "M2
Pl

� ("� 3� K=a2)

NOTICE: The role of the cosmological constant in the screening solution
is played by "=3� while the �-term is screened and makes no contribution
to the universe acceleration.

Note also that the matter density � is screened in the same sense.
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Screening properties of Horndeski model

Let Q 6= 0, then

 =
Q

a3
�
3� (H2 + K

a2 )� "
� ;

and the modi�ed Friedmann equation reads

3M2
Pl

�
H2 +

K

a2

�
=
Q2

�
"� 3�

�
3H2 + K

a2

��
2a6

�
"� 3� (H2 + K

a2 )
�2 + �+ �:

Introducing dimensionless values and density parameters

H2 = H2
0 y; a = a0 a ; �cr = 3M2

PlH
2
0 ; � =

"

3� H2
0

;


0 =
�

�cr
; 
2 = � K

H2
0a

2
0

; 
6 =
Q2

6� a60H
2
0 �cr

; � = �cr

�

4

a4
+


3

a3

�

gives

the master equation:

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2
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Asymptotical behavior: Late time limit a!1

GR branch:

y = 
0 +

2

a2
+


3

a3
+


4

a4
+

(� � 3
0) 
6

( 
0 � �)2 a6 +O
�

1

a7

�
=) H2 ! �=3

Notice: The GR solution is stable (no ghost) if and only if � > 
0.

Screening branches:

y� = � +

2

a2
� �

( 
0 � �) a3 �

2
6

�a5
� 
6(� � 3
0)� 
3�

2(
0 � �)2 a6 +O
�

1

a7

�

=) H2 ! "=3�

Notice: The screening solutions are stable (no ghost) if and only if
0 < � < 
0.

Sergey Sushkov Horndeski Cosmologis 39 / 47



���

Asymptotical behavior: The limit a! 0

GR branch:

y =

4

a4
+


3

a3
+


2
4 � 3
6


4a2
+

3
3
6


4a
+O(1)

Notice: The GR solution is unstable

Screening branch:

y+=
3
6


4 a2
� 3
3
6


2
4 a

+
5

3
� +

3
6

2
3 + 9
2

6


3
4

+O(a);

y�=
�

3
+

4 �2

27 
6

�

4 a

2 +
3 a
3
�
+O(a4)

Notice: Both screening solutions are stable
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Solutions y(a) for 
0 = 
6 = 1, 
2 = 0, 
3 = 
4 = 0 and for � = 6
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2
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Solutions y(a) for 
0 = 
6 = 1, 
3 = 5, 
4 = 0, � = 0:2. One has 
2 = 0.
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Summary. I.

The nonminimal kinetic coupling provides an essentially new
inationary mechanism which does not need any �ne-tuned
potential.

At early cosmological times the coupling �-terms in the �eld
equations are dominating and provide the quasi-De Sitter behavior
of the scale factor: a(t) / eH�t with H� = 1=

p
9� and � ' 10�74

sec2 (or l� � �1=2 ' 10�27 cm)

The model provides a natural mechanism of epoch change without
any �ne-tuned potential.

The nonminimal kinetic coupling crucially changes a role of the
scalar potential. Power-law and Higgs-like potentials with kinetic
coupling provide accelerated regimes of the Universe evolution.
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Summary. II.

The theory with nonminimal kinetic coupling admits various
cosmological solutions.

Ghost-free solutions exist if � � 0 and " � 0.

The no-ghost conditions eliminate many solutions, as for example
the bounces or the \emerging time" solutions.

For � > 
0 there exists a ghost-free solution. It describes a universe
with the standard late time dynamic dominated by the �-term,
radiation and dust. At early times the matter e�ects are totally
screened and the universe expands with a constant Hubble rate
determined by "=�. Since it contains two independent parameters �
and 
0 � � in the asymptotics, this solution can have an hierarchy
between the Hubble scales at the early and late times. However, at
late times it is not screening and dominated by �, thus invoking
again the cosmological constant problem.
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Conclusions

For 0 < � < 
0 there exist two ghost-free solutions, A and B. The
solution A is sourced by the scalar �eld, with or without the matter,
while the solution B exists only when the matter is present. They
both show the screening because their late time behaviour is
controlled by � � "=� and not by �. Therefore, they could in
principle describe the late time acceleration while circumventing the
cosmological constant problem, and one might probably �nd
arguments justifying that "=� should be small. At the same time,
these solutions cannot describe the early inationary phase. Indeed,
the near singularity behaviour of the solution B does not correspond
to ination, while the solution A does show an inationary phase,
but with essentially the same Hubble rate as at late times, hence
there is no hierarchy between the two Hubble scales.
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THANKS FOR YOUR ATTENTION!
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