Non-local Modifications of Gravity and Cosmic Acceleration

Valeri Vardanyan

Universiteit Leiden

Cargese-2017

In collaboration with: Yashar Akrami Luca Amendola Alessandra Silvestri

arXiv:1702.08908

Late time cosmology

✤ The Universe is expanding with acceleration.

• Possible explanation: vacuum energy

Technically unnatural

• Modify General Relativity

Many consistent ways to modify! Interesting not only for cosmology.

Modify the Gravity!

- Gravity at the cosmological scales is not fully tested!
- Solar System
- Merging Black Holes
- From Solar System to cosmological scales many orders of magnitude.

Non-Local modifications to GR

• Effective action for Gravity

$$e^{i\Gamma[g_{\mu\nu}]} = e^{iS_{\rm EH}[g_{\mu\nu}]} \int \mathscr{D}\phi \ e^{iS_m[g_{\mu\nu},\phi]}$$

- The effective action typically contains non-localities.
- IR modifications, hence interesting for late time cosmology
- Modify GR without adding a new d.o.f.
- No need for screening mechanisms
- Help constructing scale-free theories
- Several models interesting for cosmology.
- ✤ We are going to suggest another one.

Non-Local modifications to GR

Degravitation

- A beautiful idea to make vacuum energy not to gravitate
- Involves non-local operators

$$\int \left(1 - \frac{m^2}{\Box}\right) G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
$$G_{\mu\nu} = 8\pi G \left[\Box / (\Box - m^2)\right] T_{\mu\nu}$$

N. Arkani Hamed, S. Dimopoulos, G. Dvali, G. Gabadadze, arXiv: 0209227

Deser-Woodard model

 $\bigstar \text{Deser-Woodard} \longrightarrow S = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} [R + \alpha R \frac{1}{\Box} R] + S_{matter}[g, \psi]$

- For FLRW: $\Box \equiv \frac{1}{\sqrt{-g}} \partial_{\rho} \left(\sqrt{-g} g^{\rho\sigma} \partial_{\sigma} \right) \longrightarrow -\frac{1}{a^3} \frac{d}{dt} \left(a^3 \frac{d}{dt} \right)$ $\left[\frac{1}{\Box} f \right](t) \equiv \mathcal{G}[f](t) = -\int_0^t dt' \frac{1}{a^3(t')} \int_0^{t'} dt'' a^3(t'') f(t'')$
- Two branches determined by the sign of the free parameter
 - W/ future acceleration
 - W/ future matter domination

S. Deser, R.P. Woodard, arXiv: 0706.2151

Deser-Woodard model

• Deser-Woodard
$$\longrightarrow S = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} [R + \alpha R \frac{1}{\Box} R] + S_{matter}[g, \psi]$$

- No **new scale** introduced
- Constraint equations of GR are untouched, meaning no new propagating d.o.f.s
- Graviton modes are healthy (kinetic term does not flip the sign, at least for FLRW bckgr)
- No need for an additional screening mechanism!

Unfortunately this simple model does not reproduce the correct cosmological background

Deser-Woodard model

- Deser-Woodard $S = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} [R + \alpha R \frac{1}{\Box} R] + S_{matter}[g, \psi]$

More complicated version of DW

• Deser-Woodard
$$\longrightarrow S = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} [R + \alpha R \frac{1}{2} R] + S_{matter}[g, \psi]$$

 Similar to reconstructing scalar potentials or the general function in f(R) theories. Introduce a general

function here

H. Nersisyan, A. Cid, L. Amendola, arXiv: 1701.00434

S. Park and A. Shafieloo, arXiv: 1608.02541

Maggiore-Mancarella Model

- So called RR model $\longrightarrow \Gamma_{\text{RR}} = \frac{m_{\text{Pl}}^2}{2} \int d^4x \sqrt{-g} \left[R \frac{m^2}{6} R \frac{1}{\Box^2} R \right]$
- Works well at the background and perturbation levels!
- BUT, theoretically the mass-scale turns out to be too small for cosmology.

M. Maggiore and M. Mancarella, arXiv: 1402.0448

Tensorial non-localities

- There are other possible terms as well: Tensorial Non-Localities
- Those are very interesting, i.e. for the degravitation idea.

$$\begin{split} S &= \frac{M_{\rm Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} \left(-R + R f(\triangle) R + R^{\alpha\beta} g(\triangle) R_{\alpha\beta} + R^{\mu\nu\alpha\beta} h(\triangle) R_{\mu\nu\alpha\beta} \right) + \int \mathrm{d}^4 x \sqrt{-g} \mathcal{L}_m \\ g(\triangle) &\equiv \frac{\bar{M_1}^2}{6\Delta} , \qquad \qquad h(\triangle) \equiv \frac{\bar{M_2}^2}{6\Delta} , \\ \triangle &\equiv m^4 + \alpha_1 \Box + \alpha_2 \Box^2 + \beta_1 R_{\alpha\beta} \nabla^\alpha \nabla^\beta + \beta_2 R \Box + \gamma \left(\nabla^\alpha R_{\alpha\beta} \right) \nabla^\beta \\ & \text{There are instabilities.} \end{split}$$

H. Nersisyan, Y. Akrami, L. Amendola, T. Koivisto, J. Rubio, A. Solomon, arXiv: 1610.01799

Connection to Massive/Multimetric Gravity

- Interesting interactions (Non-Local) might exist
- Bigravity is very restrictive, so this can help to enrich the phenomenology.
- Restore gauge (diffeomorphism) invariance

• Perhaps ghost-free spin-2 fields interact through extra fields. Underlying theory unknown. Package the unknown sector into non-localities.

Massive gravity/bi-gravity

Conceptually interesting modification:
 ogive the graviton a small mass
 This leads naturally to a theory with two metrics

Also: field theory motivation:
ohow to construct interacting spin-2 fields?

A Brief History of Massive Gravity

- 1939: Fierz and Pauli develop linear theory
- 1970s: Various problems discovered beyond linear order
 - Ghost!! <u>Boulware-Deser</u>
 - Discontinuity in limit m=0 <u>van Dam-Veltman-Zakharov</u>
 - Funny nonlinear effects <u>Vainshtein</u>
- 2010-11: Loophole found!
 - Nonlinear massive gravity finally constructed <u>de Rham-Gabadadze-Tolley (dRGT)</u>
 - Proved to be ghost-free <u>Hassan-Rosen</u>

There are ghost and gradient instabilities.

A Proposal of a New Model

- Non-Local interaction of two metrics
- Scale-free at the action level

S

• Turns out to have very interesting late time cosmology

$$\begin{split} S &= \frac{M_{Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} [R + \alpha R \frac{1}{\Box} R] + S_{matter} [g, \psi] \\ &= \frac{M_{Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} R + \frac{M_f^2}{2} \int \mathrm{d}^4 x \sqrt{-f} R_f - \frac{M_{Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} \alpha (R_f \frac{1}{\Box} R + R \frac{1}{\Box} R_f) + S_{\mathrm{matter}} [g, \Psi], \end{split}$$

V.V., Akrami, Amendola, Silvestri, arXiv:1702.08908

$$\begin{aligned} \text{Non-Local E.O.M.s} \\ s &= \frac{M_{\text{Pl}}^2}{2} \int d^4 x \sqrt{-g} R + \frac{M_f^2}{2} \int d^4 x \sqrt{-f} R_f - \frac{M_{\text{Pl}}^2}{2} \int d^4 x \sqrt{-g} \alpha (R_f \frac{1}{\Box} R + R \frac{1}{\Box} R_f) + S_{\text{matter}}[g, \Psi], \\ G_{\mu\nu}^f + \Delta G_{\mu\nu}^f &= 0, \quad G_{\mu\nu} + \Delta G_{\mu\nu} = \frac{1}{M_{\text{Pl}}^2} T_{\mu\nu} \end{aligned}$$
$$\Delta G_{\mu\nu} &= -2\alpha [(\frac{1}{\Box} R_f) G_{\mu\nu} + g_{\mu\nu} R_f (1 - \frac{1}{2\Box} R) - \nabla_{\mu} \nabla_{\nu} (\frac{1}{\Box} R_f) - \frac{1}{2} g_{\mu\nu} \nabla^{\rho} (\frac{1}{\Box} R) \nabla_{\rho} (\frac{1}{\Box} R_f) + \nabla_{(\mu} (\frac{1}{\Box} R_f) \nabla_{\nu} (\frac{1}{\Box} R)] \end{aligned}$$

$$\Delta G_{\mu\nu}^{f} = -2\alpha \frac{M_{\rm Pl}^{2}}{M_{f}^{2}} [\sqrt{f^{-1}g} (\frac{1}{\Box}R) R_{\mu\nu}^{f} + f_{\mu\nu} \Box_{f} (\sqrt{f^{-1}g} \frac{1}{\Box}R) - \nabla_{\mu}^{f} \nabla_{\nu}^{f} (\sqrt{f^{-1}g} \frac{1}{\Box}R)]$$

V.V., Akrami, Amendola, Silvestri, arXiv:1702.08908

D.O.F. counting in the non-local formulation

- Dynamical: $G_{ij} = \frac{1}{2}\ddot{h}_{ij} \frac{1}{2}h_{ij}\partial_t^2\log h + \mathcal{O}(\partial_t), \qquad h \equiv \det h_{ij}$
- Constraint: $G_{0\mu}$
- We explicitly check that: $\Delta G_{0\mu}(t_0) = 0$
- Similarly for the reference metric.
- Additionally we check that there are no degrees of freedom which become ghost (See later)

The Localized Version

 It's easier to study such models in terms of auxiliary (nonlocal in terms of scale factor) scalar fields.

$$\begin{split} S = & \frac{M_{\rm Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} R + \frac{M_f^2}{2} \int \mathrm{d}^4 x \sqrt{-f} R_f - \frac{M_{\rm Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} \alpha (R_f U + RV) + \\ & + \int \mathrm{d}^4 x \sqrt{-g} \lambda_1 (R - \Box U) + \int \mathrm{d}^4 x \sqrt{-g} \lambda_2 (R_f - \Box V) + S_{\rm matter}[g, \Psi], \end{split}$$

 $U \equiv \frac{1}{\Box}R,$

 $V \equiv$

 $\frac{1}{-}R_f.$

$$G_{\mu\nu}^{f} + \Delta G_{\mu\nu}^{f} = 0, \qquad \qquad G_{\mu\nu} + \Delta G_{\mu\nu} = \frac{1}{M_{\rm Pl}^2} T_{\mu\nu}$$

$$\Delta G_{\mu\nu} = -2\alpha [VG_{\mu\nu} + g_{\mu\nu}R_f(1 - \frac{1}{2}U) - \nabla_{\mu}\nabla_{\nu}V - \frac{1}{2}g_{\mu\nu}\nabla^{\rho}V\nabla_{\rho}U + \nabla_{(\mu}V\nabla_{\nu)}U],$$

$$\Delta G^f_{\mu\nu} = -2\alpha [\sqrt{f^{-1}g}UR^f_{\mu\nu} + f_{\mu\nu}\Box_f(\sqrt{f^{-1}g}U) - \nabla^f_{\mu}\nabla^f_{\nu}(\sqrt{f^{-1}g}U)],$$

Ghosts?

- If we treat the non-local version as a scalar-tensor theory, there is a ghost d.o.f.
- Those are just localization artifacts.

$$S_{\rm EH}^{(2)} + S_{\rm int} = \int d^4x \left[\frac{1}{2} h_{\mu\nu} \mathscr{E}^{\mu\nu,\rho\sigma} h_{\rho\sigma} + \frac{\kappa}{2} h_{\mu\nu} T^{\mu\nu} \right]$$

$$h_{\mu\nu} = h_{\mu\nu}^{\rm TT} + (\partial_\mu \varepsilon_\nu + \partial_\nu \varepsilon_\mu) + \frac{1}{3} \eta_{\mu\nu} s$$

$$\partial^\mu h_{\mu\nu}^{\rm TT} = 0, \qquad \eta^{\mu\nu} h_{\mu\nu}^{\rm TT} = 0$$

$$S_{\rm EH}^{(2)} + S_{\rm int} = \int d^4x \frac{1}{2} \left[h_{\mu\nu}^{\rm TT} \Box (h^{\mu\nu})^{\rm TT} - \frac{2}{3} s \Box s \right] + \frac{\kappa}{2} \left[h_{\mu\nu}^{\rm TT} (T^{\mu\nu})^{\rm TT} + \frac{1}{3} s T \right]$$

Bianchi Constraints

- From the metric e.o.m.: $-\frac{1}{2}(\frac{1}{\Box}R)\nabla_{\nu}R_{f} = 0.$
- From the reference metric e.o.m.: $\sqrt{f^{-1}g}(\frac{1}{\Box}R)\nabla_f^{\mu}R_{\mu\nu}^f = 0.$

 $\nabla_{\nu}R_f = 0 \checkmark$

- Too strong constraint!
- At least for background we find a solution compatible w/ the constraint
- Perturbations compatible?
- Motivates to add more interesting terms (e.g. tensorial)

The Equivalent Phenomenological model

• For all practical purposes we can use:

$$S = \frac{M_{\rm Pl}^2}{2} \int \mathrm{d}^4 x \sqrt{-g} (R + m^2 \frac{1}{\Box} R) + S_{\rm matter}[g, \Psi]$$

- One-parameter model of cosmic acceleration
- Interesting without the connection to bigravity
- Could also originate from somewhere else

Cosmology

$$g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} = -\mathrm{d}t^2 + a^2(t)\delta_{ij}\mathrm{d}x^i\mathrm{d}x^j \qquad h \equiv H/H_0$$

$$h^{2} = \Omega_{\rm M}^{0} e^{-3N} + \Omega_{\rm R}^{0} e^{-4N} + 2v - \frac{1}{6} \frac{m^{2}}{H_{0}^{2}} u - (2\xi v - v')(2 + \frac{1}{3}u')$$

Phenomenology: CPL

 $\rho_{\rm NL}' + 3\rho_{\rm NL}(1+w_{\rm NL}) = 0$

$$w(z) = w_0 + w_a z / (1+z)$$

 $w_0 = -1.075$ and $w_a = 0.045$

No ghosts

On Testing Modified Gravity Theories

Linear Perturbations:

$$\begin{split} ds^2 &= a^2(\eta) \left[-(1+2\Psi) d\eta^2 + (1-2\Phi) dx^2 \right] \\ k^2 \Psi &= -4\pi \mu(a,k) Ga^2 \left[\rho \Delta + 3(\rho+P) \sigma \right] \\ k^2 \left[\Phi - \gamma(a,k) \Psi \right] &= 12\pi \mu(a,k) Ga^2(\rho+P) \sigma \\ \diamondsuit \text{ Phenomenological Parametrization (MGCAMB)} \\ \bigstar \text{ Map to EFT Language (EFTCAMB)} \end{split}$$

www.eftcamb.org

What else can be done?

- Non-local modifications are quite appealing for cosmology.
- The model presented here leads to an interesting accelerating background.
- We should still study the perturbations of this model.
- Tensorial structures: might cure some of the instabilities.
- Derive more realistic interaction models.
- It can also potentially solve some issues within Massive/bi-metric theories.