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General Relativity (GR):

SEH = −
m2

Pl

16π

∫∫∫
d 4x

√
−g R

describes basic properties of the universe in very good agreement with observations.

mPl = 1.22 · 1019 GeV is the Planck mass

Beyond the frameworks of GR:

SF = −
m2

Pl

16π

∫∫∫
d 4x

√
−g [R + F(R)]

F(R) = −R2/(6m2):

was suggested by V.Ts. Gurovich and A.A. Starobinsky for
elimination of cosmological singularity (JETP 50 (1979) 844).

It was found that the the addition of the R2-term leads to inflationary
cosmology. (A. A. Starobinsky, Phys. Lett. B91, 99 (1980))

As in any cosmological scenario the problem of graceful exit from inflation
and the problem of the universe heating are of primary importance.

Review: A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)
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We generalize and extend the analysis of our earlier paper

ADR, “Cosmological evolution in R2 gravity,” JCAP 1202 (2012) 049.

starting from the inflationary stage till to large time: mt � 1.

I. Cosmological Equations in R2-theory
The term describing particle production is included as a source into
equation for the energy density evolution.
Modified EoM are rewritten in a convenient dimensionless form and
solved numerically and analytically.

II. Solution ab ovo to Γt ... 1
1 Solution at inflationary epoch.
2 Numerical solutions at post-inflationary epoch
3 Asymptotic solution at τ � 1 and w = 1/3 (RD)
4 Asymptotic solution at τ � 1 and w = 0 (MD)
5 Energy influx to cosmological plasma from the scalaron decay

III. Solution at Γt &&& 1
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II. Solution from inflation to Γt ... 1
One can find very simple analytical expressions for H(t) and R(t).
A. A. Starobinsky, Phys. Lett. B91, 99 (1980); A. De Felice and S. Tsujikawa Living
Rev. Rel. 13, 3 (2010); arXiv:1002.4928.

The system of the cosmological equations (in absence of the usual matter) was

transformed into a single first order non-linear equation (Starobinsky)

ADS: The second order equation for R, the covariant law of conservation
of the matter energy density, and the ”kinematical” relation between R
and the Hubble parameter in spatially flat universe are employed.

We keep the matter effects from the very beginning.

We found numerically that the onset of the simple asymptotic behavior of
R(t) and H(t) started almost immediately after inflation.

We have calculated the energy density of the usual matter, which drops
down as 1/t with some weak superimposed oscillation.

When Γt < 1 the usual matter has very weak impact on the cosmological
expansion which is determined by the oscillating R.

During this time the universe evolution was quite different from the GR one.
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I. Cosmological Equations in R2-theory

II. Solution ab ovo to Γt ... 1, but mt � 1

III. Solution at Γt &&& 1
We study the approach to the usual GR cosmology.

GR is recovered when the energy density of matter becomes larger
than that of the exponentially decaying scalaron.

We argue that the approach is somewhat delayed. It takes place not
at Γt ∼ 1, as it may be naively expected, but at Γt ∼ ln (m/Γ).

IV. Conclusions
A rather long regime during which the cosmological evolution differs from the
standard FLRW cosmology could lead, in particular, to modification of high
temperature baryogenesis scenarios, to a variation of the frozen abundances of
heavy dark matter particles, and to necessity of reconsideration of the formation
of primordial black holes.
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I. Cosmological Equations in R2-theory
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Let us consider the theory described by the action:

Stot = −
m2

Pl

16π

∫∫∫
d 4x

√
−g

(
R −

R2

6m2

)
+ Sm

m is a constant parameter with dimension of mass

The modified Einstein equations

Rµν −
1

2
gµνR −

1

3m2

(
Rµν −

1

4
Rgµν + gµνD2−DµDν

)
R =

8π

m2
Pl

Tµν

D2 ≡ gµνDµDν is the covariant D’Alembert operator.

The energy-momentum tensor of matter Tµν

Tµ
ν = diag(%,−P,−P,−P)

where % is the energy density, P is the pressure of matter.

The matter distribution is homogeneous and isotropic

P = w%
non-relativistic: w = 0, relativistic: w = 1/3, vacuum-like: w = −1
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FRW: ds2 = dt2 − a2(t)
[
dr 2 + r 2dϑ2 + r 2 sin2 ϑ dϕ2

]
, H = ȧ/a

The curvature scalar:

R = −6Ḣ − 12H2

The covariant conservation condition DµT
µ
ν = 0:

%̇ = −3H(%+ P) = −3H(1 + w)%

Trace equation:

D2R + m2R = −
8πm2

m2
Pl

Tµ
µ

For homogeneous field, R = R(t), and with P = w%:

R̈ + 3HṘ + m2R = −
8πm2

m2
Pl

(1− 3w)%

This is the Klein-Gordon (KG) type equation for massive scalar field R, which is

sometimes called “scalaron”. It differs from KG by the liquid friction term.
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R̈ + 3HṘ + m2R = −8πm2

m2
Pl

(1− 3w)%

This equation:

does not include the effects of particle production by the curvature scalar;

is a good approximation at inflationary epoch, when particle production by
R(t) is practically absent, because R is large and friction is large, so R
slowly evolves down to zero.

At some stage, when H becomes smaller than m, R starts to oscillate
efficiently producing particles.

It commemorates the end of inflation, the heating of the universe, which was
originally void of matter, and the transition from the accelerated expansion
(inflation) to a de-accelerated one.

The latter resembles the usual Friedmann matter dominated expansion
regime but differs in many essential features.

For the harmonic potential the particle production can be approximately
described by an additional friction term ΓṘ.
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An account of Particle Production

The effects of particle production by a scalar field for an arbitrary potential
in KG equation in one loop approximation: A. Dolgov, S. Hansen, Nucl.
Phys. B548 (1999) 408-426.
The case of particle production by the curvature scalar: EA, A. D. Dolgov
and L. Reverberi, JCAP 1202 (2012) 049.
Generally the one-loop effects on the particle production lead to non-local in
time integro-differential equation.
In the case of strictly harmonic oscillations the equation can be reduced to a
simple differential equation with the liquid friction term ΓṘ.

In the considered case the potential is harmonic and we can use the
friction term approximation. The particle production rate:

Γ =
m3

48m2
Pl

Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977); A. A.
Starobinsky, Quantum Gravity, eds. M. A. Markov, P. C. West, Plenum Publ. Co.,
New York, 1982, pp. 103-128; A. Vilenkin, Phys. Rev. D32, 2511 (1985);
EA, A. Dolgov, L. Reverberi, JCAP 1202 (2012) 049.
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Equations with an account of Particle Production

Equation for R acquires an additional friction term:

R̈ + (3H + Γ)Ṙ + m2R = −
8πm2

m2
Pl

(1− 3w)%

Particle production leads to an emergence of the source term in Eq. for %:

%̇ = −3H(1 + w)%+
mR2

ampl

1152π

where Rampl is the amplitude of R(t)-oscillations.

The state of the cosmological matter depends not only upon the spectrum of
the decay products but also on the thermal history of the produced particles.

Depending on that, the parameter w may be not exactly equal to 0 or 1/3.
The equation of state can be not simple P = w% with constant w .

Two limiting values w = 0 and 1/3 are possible simple examples.

Different values of w would not change the presented results significantly.
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Dimensionless Equations

Dimensionless time variable and dimensionless functions

τ = tm, H = mh, R = m2r , % = m4y , Γ = mγ.

The system of dimensionless equations

h′ + 2h2 = −r/6

r ′′ + (3h + γ)r ′ + r = −8πµ2(1− 3w)y
y ′ + 3(1 + w)h y = S[r ]

prime denotes derivative over τ , µ = m/mPl , γ = µ2/48

The source term is taken as:

S[r ] =
〈r 2〉

1152π
.

〈r2〉 means amplitude squared of harmonic oscillations, r2
ampl , of the

dimensionless curvature r(τ ).
For inharmonic oscillations we approximate 〈r2〉 as 2(r ′)2 or (−2r ′′r).
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Source term S[r ] = 〈r2〉/(1152π)

The function 〈r 2〉 slowly changes with time.
Such a form for the description of the particle creation is true only during
the epoch when r(τ) is a harmonically oscillating function with slowly
varying amplitude.

So it is surely inapplicable during inflation.

In principle we can switch on this source only after inflation is over.

However, the ultimate result for y (or %) does not depend on the
history of the particle production. The reasons:

During inflation the energy density of the normal matter very quickly
red-shifted away and we arrive to the moment of the universe heating with
essentially the same, vanishingly small, value of y (or %).

In other words, initial condition for the energy density of matter at the onset
of the particle production is always y = 0 (% = 0).

We show numerically that this is indeed true with very high precision.
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II. Solution ab ovo to Γt . 1

Solution at inflationary epoch
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Solutions at inflationary epoch:

from the ”very beginning” up to high τ (τ � 1), but small γτ . 1

The initial conditions should be chosen in such a way that at least 70
e-foldings during inflation are ensured:

Ne =

∫ τinf

0
h dτ ≥ 70

τinf is the moment when inflation terminated.

This can be achieved if the initial value of r is sufficiently large, practically
independently on the initial values of h and y .
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Solutions at inflationary epoch:

from the ”very beginning” up to high τ (τ � 1), but small γτ . 1

We can roughly estimate the duration of inflation neglecting higher
derivatives in equations for h and r .

A. A. Starobinsky, Phys. Lett. B91, 99 (1980); A. De Felice and S.
Tsujikawa, Living Rev. Rel. 13, 3 (2010); arXiv:1002.4928;
A. S. Koshelev et al., 2016, 2017,...

Simplified system to estimate the duration of inflation (y = 0, γ� 1):

h2 = −r/12, 3hr ′ = −r

Solutions:√
−r(τ ) =

√
−r0− τ/

√
3, h(τ ) = (

√
−3r0− τ )/6, r0 = r(τ = 0)

The duration of inflation is roughly determined by the condition h = 0, i.e.

τinf =
√
−3r0 ⇒ Ne ≈ r0/4

.
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Exact System: h′ + 2h2 = −r/6, y ′ + 3(1 + w)h y = S [r ]

r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y

Numerical solutions: Evolution of h(τ ) at the inflationary stage

10 20 30 40 50
τ

1

2

3

4

5

h

10 20 30 40 50
τ

1

2

3

4

5

6

7

h

Initial values of dimensionless curvature r0 = 300 (left) and r0 = 600 (right).

Initially hin = 0, but it quickly reaches the value h(0) =
√
−r0/12.

The numbers of e-foldings: Ne ≈ r0/4 = 75 (left) and 150 (right).

An excellent agreement with numerical solutions demonstrates high precision of the slow
roll approximation and weak impact of particle production at (quasi)inflationary stage.
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Exact System: h′ + 2h2 = −r/6, y ′ + 3(1 + w)h y = S [r ]

r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y

Evolution of the dimensionless energy density of matter y(τ ) during inflation for
w = 0 (blue) and w = 1/3 (magenta).

10 20 30 40 50
τ

0.005

0.010

0.015

0.020

0.025

0.030

y

10 20 30 40 50
τ

0.02

0.04

0.06

0.08

0.10

y

Left panel: initially yin = 0. Right panel: yin = 0.1.

The initial fast rise of % from zero during short time is generated by the
S[r ]-term. The results are not sensitive to the form of S[r ].
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Exact System: h′ + 2h2 = −r/6, y ′ + 3(1 + w)h y = S [r ]

r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y

Evolution of the dimensionless curvature scalar r(τ ) for
rin = −300 (magenta) and rin = −600 (blue)

10 20 30 40 50
τ

-600

-500

-400

-300

-200

-100

r

60 70 80 90 100
τ

-0.2

-0.1

0.1

0.2

r

Left panel: evolution during inflation.

Right panel: evolution after the end of inflation, the curvature scalar starts
to oscillate.
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II. Solution ab ovo to Γt . 1

Solution at inflationary epoch

Solution at post-inflationary epoch
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Numerical solutions at post-inflationary epoch

The behavior of R, H and %, or dimensionless quantities r , h, and y is
drastically different at the vacuum-like dominated stage (inflation) and
during scalaron dominated stage.

Now we will find the laws of evolution of r(τ ), h(τ ), and y(τ ) after
inflation till γτ ∼ 1.

The numerical solutions will be presented from the end of inflation to large
τ � 1, but not too large because the numerical procedure for huge
τ ∼ 1/γ becomes unstable.

However, we can find pretty accurate analytical solution, asymptotically
valid at any large τ up to τ ∼ 1/γ.

Very good agreement between numerical and analytical solutions at large
but not huge τ allows to trust asymptotic analytical solution at huge τ .
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Exact System: h′ + 2h2 = −r/6, y ′ + 3(1 + w)h y = S [r ]

r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y , µ = m/mPl = 0.1, γ = µ2/48

Evolution of the curvature scalar, τ r(τ ), in post-infationary epoch.

620 640 660 680 700
τ

-4

-2

2

4

rτ

620 640 660 680 700
τ

-4

-2

2

4

rτ

Left panel (w = 1/3) : initially rin = −300 (red), rin = −600 (blue). There is
absolutely no difference between the curves.
Right panel (rin = −300): w = 1/3 (red) and w = 0 (blue). The difference is
minuscule.
The source term here is taken as S[r ] = (r ′)2/1152π. The results are not
sensitive to its form.
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Exact System: h′ + 2h2 = −r/6, y ′ + 3(1 + w)h y = S [r ]

r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y , µ = m/mPl = 0.1

Evolution of the Hubble parameter, hτ , in post-inflationary epoch for
w = 1/3 (red) and w = 0 (blue)

620 640 660 680 700
τ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

hτ

The dependence on w is very weak, except for small values of h.

If h is very close to zero, it may become negative because of numerical
error due to insufficient precision.
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Exact System: h′ + 2h2 = −r/6, y ′ + 3(1 + w)h y = S [r ]

r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y

Energy density of matter as a function of time for
w = 1/3 (red) and w = 0 (blue)

40 60 80 100
τ

0.01

0.02

0.03

0.04

0.05

yτ

620 640 660 680 700
τ

0.0014

0.0016

0.0018

0.0020

0.0022

yτ

Evolution of yτ at small τ (left) and at large τ (right).

The magnitude of % for these two values of w are noticeably different in contrast
to other relevant quantities, r and h, which very weakly depend upon w .
The product yτ tends to a constant value with rising τ till γτ remains small.
This behavior much differs from the standard matter density evolution % ∼ 1/t2.
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Asymptotic solution at τ � 1, γτ . 1 and w = 1/3

Simple form of numerical solutions at large τ :

r oscillates with the amplitude decreasing as 1/τ around zero

h also oscillates almost touching zero with the amplitude also decreasing as
1/τ around some constant value close to 2/3.

In the case w = 1/3 we have the system of equations

h′ + 2h2 = −r/6, (1)

r ′′ + 3hr ′ + r = 0, (2)

y ′ + 4h y =
< r2 >

1152π
,

We search for the asymptotic expansion of h and r at τ � 1 in the form:

r =
r1 cos(τ + θr )

τ
+

r2

τ 2
, h =

h0 + h1 sin(τ + θh)

τ

rj and hj are some constant coefficients to be calculated from Eqs.(1)-(2)

the constant phases θj are determined through the initial conditions and will
be adjusted by the best fit of the asymptotic solution to the numerical one
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Finally we find:

h =
2

3τ
[1 + sin (τ + θ)], r = −

4 cos(τ + θ)

τ
−

4

τ 2

Comparison of numerical calculations with analytical estimates for the
adjusted ”by hand” phase θ = −2.9π/4

2020 2040 2060 2080 2100
τ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

hτ

2020 2040 2060 2080 2100
τ

-4

-2

2

4

rτ

Left panel: comparison of numerical solution for hτ (red) with analytic
estimate (blue).

Right panel: the same for numerically calculated rτ .

The difference between the red and blue curves is not observable.
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Equation for energy density: y ′ + 4h y =< r 2 > /(1152π)

〈r2〉 = 16/τ 2 is the square of the amplitude of the harmonic oscillations.

Analytical integration gives:

y(τ ) =
1

72π

∫∫∫ τ

τ0

dτ2

τ 2
2

exp

[
−4

∫∫∫ τ

τ2

dτ1h(τ1)

]
τ0� τ is some initial value of the dimensionless time.

Taking asymptotical h(τ ) we can partly perform integration over dτ1 as∫ τ

τ2

dτ1h(τ1) =
2

3
ln
τ

τ2
+

∫ τ

τ2

dτ1
τ1

sin(τ1 + θ)

It is convenient to introduce new integration variables:

η1 = τ1/τ, η2 = τ2/τ

In terms of these variables we lastly obtain:

y(τ ) =
1

72πτ

∫∫∫ 1

η0

dη2 η
2/3
2 exp

[
−

8

3

∫ 1

η2

dη1

η1

sin (τη1 + θ)

]
The integral in the exponent is small, so the exponential factor is close to unity
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Asymptotic behavior of the solution for w = 1/3

y1/3 =
1

120πτ
+

1

45π

cos (τ + θ)

τ 2
− 1

27πτ2

∫ 1

ε

dη2

η
1/3
2

cos (τη2 + θ)

the subindex (1/3) indicates that w = 1/3
ε = τ0/τ � 1. The last integral is proportional to 1/τ 2/3 and is subdominant.

25 30 35 40 45 50
τ

0.90

0.95

1.00

1.05

1.10

120πτy

260 270 280 290 300
τ

0.995

1.000

1.005

1.010

120πτy

Comparison of the integral solution

y(τ) =
1

72π

∫ τ

τ0

dτ2
τ 22

exp

[
−4

∫ τ

τ2

dτ1h(τ1)

]
for the dimensionless energy density 120πτ y(τ) (blue) with the asymptotic expression
120πτ y1/3(τ) (red) for moderately large τ (left panel) and very large τ (right panel).
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Asymptotic solution at τ � 1, γτ ... 1 and w = 0

For w = 0 equations take the form

h′+ 2h2 = −r/6

r ′′+ 3hr ′+ r = −8πµ2y
y ′+ 3h y = S[r ]

µ� 1⇒ the impact of the r.h.s. in Eq. for r is not essential⇒ we can use:

h =
2

3τ
[1 + sin (τ + θ)], r = −

4 cos(τ + θ)

τ
−

4

τ 2

The only essential difference with the w = 1/3 case arises in the equation
governing the evolution of the energy density, y(τ ).
There appears coefficient (-3) in the exponent, instead of (-4):

y(τ) =
1

72π

∫ τ

τ0

dτ2
τ22

exp

[
−3

∫ τ

τ2

dτ1h(τ1)

]
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Asymptotic behavior of the solution for w = 0

y0 =
1

72πτ
+

cos (τ + θ)

36πτ 2

25 30 35 40 45 50
τ

0.95

1.00

1.05

1.10

72π τy

920 940 960 980 1000
τ

0.998

0.999

1.000

1.001

1.002

72πτy

Comparison of the integral solution

y(τ) =
1

72π

∫ τ

τ0

dτ2
τ 22

exp

[
−3

∫ τ

τ2

dτ1h(τ1)

]
for the dimensionless energy density 72πτ y(τ) (blue) with the asymptotic expression
72πτ y0(τ) (red) for moderately large τ (left panel) and very large τ (right panel).
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II. Solution ab ovo to Γt . 1

Energy influx to cosmological plasma from the

scalaron decay
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Energy influx to cosmological plasma from the scalaron decay

Energy conservation demands equality of the energy influx induced by

S[r ] =
〈r2〉

1152π
to the loss of scalaron energy density due to its decay with the width
Γ = m3/(48m2

Pl ).
To check that let us consider a simplified model:

AR =
m2

Pl

48πm4

∫∫∫
d 4x

√
−g

[
(DR)2

2
−

m2R2

2
−

8πm2

m2
Pl

Tµ
µR

]
which leads to the proper equation of motion

D2R + m2R = −
8πm2

m2
Pl

Tµ
µ

To determine the energy density of the scalaron field we have to redefine this field
in such a way that the new field is canonically normalized, that is its kinetic term
enters the action with the coefficient 1/2.
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Energy influx to cosmological plasma from the scalaron decay

Canonically normalized scalar field:

Φ =
mPl√

48πm2
R

Correspondingly, the energy density of the scalaron field:

%R =
Φ̇2 + m2Φ2

2
=

m2
Pl (Ṙ

2 + m2R2)

96πm4

The energy production rate is given by:

%̇R = 2Γ%R =
Ṙ2 + m2R2

2304πm
=

m3

72πt2

The coefficient 2 in front of Γ appears because a pair of particles is
produced in the scalaron decay.

We take Γ = m3/(48m2
Pl ), r = −4 cos(τ + θ)/τ − 4/τ 2 and

differentiate only the quickly oscillating factor.
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Energy influx to cosmological plasma from the scalaron decay

Let us compare result

%̇R = 2Γ%R =
Ṙ2 + m2R2

2304πm
=

m3

72πt2

with

%̇ = −3H(1 + w)%+
mR2

ampl

1152π
or S[r ] =

〈r2〉
1152π

we take the amplitude of harmonic oscillations of R equal to Rampl = 4m/t.

The contribution of the particle production is exactly the same as above:

%̇source =
mR2

ampl

1152π
=

m3

72πt2
.
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According to the results obtained above the cosmological evolution in
R2-gravity is strongly different the usual FRW-cosmology.

Firstly, the energy density of matter in R2 modified gravity at RD stage

drops down as

%R2 =
m3

120πt
instead of %GR =

3H2m2
Pl

8π
=

3m2
Pl

32πt2

Secondly, the Hubble parameter quickly oscillates with time

h =
2

3τ
[1 + sin (τ + θ)]

almost touching zero, and it is the same for w = 1/3 and w = 0.
The curvature scalar drops down as m/t and oscillates changing sign

r = −
4 cos(τ + θ)

τ
−

4

τ 2

instead of being proportional to the trace of the energy-momentum tensor
of matter, which is identically zero at RD stage and monotonically decreases
with time, as 1/t2 at MD stage.

It is noteworthy that R is not related to the energy density of matter
as is true in GR.
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Comments on the cosmological evolution at τ ... 1/γ

Because of this difference between the cosmological evolution in the
R2-theory and GR, the conditions for thermal equilibrium in the primeval
plasma also very much differ.

Assuming that the equilibrium with temperature T is established, we
estimate the particle reaction rate as

Γpart ∼ α2T ,

α is the coupling constant of the particle interactions, α ∼ 10−2

Equilibrium is enforced if Γpart > H or α2Tt > 1.

The energy density of relativistic matter in thermal equilibrium:

%therm =
π2g∗

30
T 4

g∗ is the number of relativistic species in the plasma, g∗ ∼ 100
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The equilibrium condition for R2 cosmology:(
α2tT

)
R2

=
30α2

120π3g∗

(
m
T

)3

= 8 · 10−9

(
m
T

)3

> 1

Analogously for GR-cosmology:(
α2tT

)
GR

= α2

(
90

32π3g∗

)1/2 mPl

T
= 3 · 10−6 mPl

T
> 1

Equilibrium between light particles in R2-cosmology is established, when
TR2 < 2 · 10−3m, while TGR < 3 · 10−6mPl .

Expressions above determine the temperature below which thermal
equilibrium is established in the primeval plasma.

This temperature is not the same as the so called heating temperature Th,
which is defined by the condition that all energy of the scalaron field is
transferred into the energy of the plasma. This takes place at tΓ ≈ 1.

Th ≈
m

(192π2)1/4

√
m

mPl

For m = 3 · 1013 Gev Th ≈ 6 · 108 GeV.
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III. Solution at Γt & 1
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Solution at γτ & 1, γ = µ2/48 and µ = m/mPl

h′+ 2h2 = −r/6

r ′′+ (3h + γ)r ′+ r = −8πµ2(1− 3w)y
y ′+ 3(1 + w)h y = S[r ]

A straightforward numerical solution of this system quickly becomes unreliable due to
very small exponential suppression factor exp (−γτ/2), when γτ � 1.

The case of relativistic matter: w = 1/3, homogeneous Eq. for r .
Eliminating the first derivative r ′ by introducing the new function v according to:

r = exp

[
−γ(τ − τ0)/2 − (3/2)

∫ τ

τ0

dτ1h(τ1)

]
v

we come to the equation

v ′′ +

[
1−

(γ + 3h)2

4

]
v = 0

Since in realistic case γ � 1 and h ... γ, as h ∼ 1/τ , and by assumption γτ &&& 1, the

second term in square brackets can be neglected and we find: v = −4γ cos (τ + θ)
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Large γτ/2 limit

Curvature r exponentially vanishes at large γτ/2, so the r.h.s. of

h′ + 2h2 = −r/6→ 0

⇒ Hubble parameter h→ 1/(2τ ) as in the standard cosmology at RD stage.

The energy density in this limit satisfies

y ′ + 3(1 + w)h y = S[r ]

with vanishing r.h.s. ⇒ y drops down as 1/a4 as expected.

NB: It is not clear if the standard relation between H and % is fulfilled?

H2 =
8π

3

%

m2
Pl

00-component of the R2-modified gravity equation:

H2 +
1

m2

[
2ḦH − Ḣ2 + 6ḢH2

]
=

8π%

3m2
Pl

Curvature exponentially disappeared at γτ > 1⇒ Ḣ + 2H2 = 0 =⇒
The term in square brackets vanishes and the normal cosmology is restored.
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The case of nonrelativistic dominance: w = 0 or some deviations from

the strict w = 1/3

We study
r ′′ + (3h + γ)r ′ + r = −8πµ2(1− 3w)y

non-zero r.h.s. might change the asymptotical exponential decrease of r .

Making the transformation

r = exp

[
−γ(τ − τ0)/2− (3/2)

∫ τ

τ0

dτ1h(τ1)

]
v(τ )

we arrive to

v ′′ + v = −8πµ2(1− 3w)y(τ) exp

[
γ(τ − τ0)/2 + (3/2)

∫ τ

τ0

dτ1h(τ1)

]
The value of (1 − 3w) is not yet specified here, we only assume that it is nonzero.

The unhomogeneous part of the solution:

v(τ) = −8πµ2(1 − 3w)

∫ τ

τ0

dτ1 sin(τ − τ1)y(τ1) exp

[
γ(τ1 − τ0)

2
+

3

2

∫ τ1

τ0

dτ1h(τ1)

]
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We find for the curvature scalar:

r = −8πµ2(1 − 3w)

∫ τ

τ0

dτ1y(τ1) sin(τ − τ1) exp

[
−γ

2
(τ − τ1) − 3

2

∫ τ

τ1

dτ2h(τ2)

]
+rh

where rh is a solution of the homogeneous equation:

rh = r0 cos(τ + θr ) exp

[
−
γ

2
(τ − τ0) −

3

2

∫ τ

τ0

dτ2h(τ2)

]
.

the solution of the homogeneous equation, rh , drops down exponentially as e−γτ/2

the inhomogeneous part does not; integral for r is dominated by τ1 close to τ .

Let us assume that the standard GR became valid after sufficiently long
cosmological time and check if this assertion is compatible with equations above.

So we take, according to the standard cosmological laws with w > −1:

a ∼ t
2

3(1+w) , H =
2

3(1 + w)t
, % =

3H2m2
Pl

8π
=

m2
Pl

6π(1 + w)2t2
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Introducing new integration variables x = τ1/τ , x2 = τ2/τ and taking integral over dx2
we obtain:

rinh = − 4(1 − 3w)

3(1 + w)2τ

∫ 1

ε

dx sin [τ(1 − x)]

(
1

x

) 1+2w
1+w

exp
[
−γτ

2
(1 − x)

]
,

rinh is the contribution to r from the inhomogeneous term and ε = τ0/τ � 1.

For large τ and γτ this integral can be estimated as:

rinh =
2(1 − 3w)

3(1 + w)2τ

∫ ∞
0

dζ e−τζ

[(
1

ε+ iζ

) 1+2w
1+w

exp

(
−iτ(1 − ε)−γτ(1 − ε− iζ)

2

)

−
(

1

1 + iζ

) 1+2w
1+w

exp

(
i
γτζ

2

)
+ h.c.

]
Since τ � 1, the integrals effectively ”sit” at ζ ∼ 1/τ because of exp ( − ζτ)

In the leading order the second term in the square brackets is equal to (−1) and
together with the hermitian conjugate after integration they give −2/τ .

The first term is exponentially suppressed at large γτ/2, as ∼ exp ( − γτ/2).

A large pre-exponential factor ∼ τ (1+2w)/(1+w) slows down the approach to GR

RGR = −
8π

m2
Pl

(1− 3w)% =
4(1− 3w)

3(1 + w)2t2
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More general anzatz: htest(τ) = (h1 + h2 sin(τ + θh))/τ, y(τ) = y1/τ
β

Is it possible to adjust the constants h1, h2, y1, and β to restore GR?

rinh ≈ 8πµ2y1(1 − 3w)

τβ−1

∫ ∞
0

dζ e−τζ

( 1

ε + iζ

)β− 3h1
2

exp

(
−iτ(1 − ε) − γτ(1 − ε− iζ)

2

)
−
(

1

1 + iζ

)β− 3h1
2

exp

(
i
γτζ

2

)
+ h.c.


Keeping in mind that ζ ∼ 1/τ and that ε = τ0/τ � 1/τ we simplify the result as:

rinh ≈ 16πµ2y1(1 − 3w)

τβ

[(
τ

τ0

)β−3h1/2

e−γ(τ−τ0)/2 cos (τ − τ0) − 1

]

This expression is a small correction to homogeneous solution

r = −4 cos(τ + θ)

τ
− 4

τ 2
,

for which β = 1, y1 = 1/(72π), and h1 = 2/3.

At γτ > 1, the first term dies down and only the last non-oscillating term survives.
In this limit the particle production by R vanishes, or strongly drops down.
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The transition from the modified R2-regime to GR

According to
y ′+ 3(1 + w)h y = S[r ]=⇒ 0

in the absence of particle production the dimensionless energy density
drops down as

y ∼
1

a3(1+w)
.

Since the oscillations exponentially disappear, the derivatives of H in

H2 +
1

m2

[
2ḦH − Ḣ2 + 6ḢH2

]
=

8π%

3m2
Pl

can be neglected and H satisfies the GR relation

H2 =
8π

3

%

m2
Pl

with % = m4y decreasing as 1/τ 2 independently of the value of w .
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The transition from the modified R2-regime to GR

rinh ≈
16πµ2y1(1− 3w)

τβ

[(
τ

τ0

)β−3h1/2

e−γ(τ−τ0)/2 cos (τ − τ0)− 1

]

due to the inhomogeneous part of the solution for r which does not drop
down exponentially, i.e. due to the last term in the square brackets.

It is natural to expect that the GR regime starts roughly at τ &&& 1/γ.
Simple estimate for w 6= 1/3:

We have to compare the value of the curvature scalar r = 2µ2/(9τ ) with
homogeneous solution for the curvature: r ∼ 4 exp (− γτ/2)/τ .

These expressions become comparable at γτ ≈ 2 ln (1/µ2),
where ln (1/µ2) may be much larger than unity.

Similar arguments cannot be applied to w = 1/3, because in this case RGR ≡ 0.
In realistic case w differs from zero either due to presence of massive particles in
the primeval plasma or because of the conformal anomaly.
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Cosmological history in R2-gravity: 4 distinct epoch

1 An exponential (inflationary) expansion: the universe was void and dark with
slowly decreasing curvature scalar R(t). The initial value of R should be
quite large, R > 300m2, to ensure sufficiently long inflation (Ne ≥ 70).

2 Scalaron dominated epoch: R dropped down and started to oscillate as

R ∼ m cos (mt)/t

The curvature oscillations resulted in the onset of creation of usual matter, which
remains subdominant.

The universe expansion is described by unusual law with the Hubble parameter

H = (2/3t)[1 + sin (mt)]

Such a regime was realised asymptotically for large time, mt � 1, but Γt ... 1.

3 Transition period to GR: the oscillations of all relevant quantities damps down
exponentially and the particle production by curvature switches off, becoming
negligible. Presumably it takes place when Γt becomes larger than unity by the
logarithmic factor, ln (mPl/m).

4 After this time we arrive to the usual GR cosmology.
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The END

Thank You for Your Attention
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