
Hot topics in Modern Cosmology XII, Cargèse
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Introduction

I Pauli suggested that the vacuum (zero-point) energies of
all existing fermions and bosons compensate each other.

I The vacuum energy of fermions has a negative sign
whereas that of bosons has a positive one.

I Such a cancellation indeed takes place in supersymmetric
models.

I Zeldovich related vacuum energy to the cosmological
constant.

I Covariant regularization of all contributions leads to finite
values for both the energy density ε and (negative)
pressure p corresponding to a cosmological constant, i.e.
connected by the equation of state p = −ε.



I We examined the conditions for the cancellation of the
ultraviolet divergences of the vacuum energy to the
leading order in ~, i.e. by considering free theories and
neglecting interactions.

I Such conditions are reduced to some sum rules involving
the masses of particles present in the model.

I We applied such considerations to observed particles of
the Standard Model and also studied the finite part of
vacuum energy.

I It is interesting to take interactions into account, at least
to the lowest order of perturbation theory.

I We consider only toy models, including particles with spin
1 and spin 1/2.



Vacuum energy and the balance between the fermion

and boson fields
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The fermion contribution has the opposite sign.
To cancel the quartic ultraviolet divergences proportional to
Λ4, one has to have equal numbers of boson and fermion
degrees of freedom:

NB = NF .

The conditions for the cancellation of quadratic and
logarithmic divergences are∑
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The remaining finite part of the vacuum energy density is
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The quartic divergence satisfies the equation of state for
radiation p = 1

3
ε, the quadratic divergence - p = −1

3
ε (string

gas) the logarithmic divergence behaves as a cosmological
constant with p = −ε.
The finite part of the pressure is

pfinite = −(
∑

m4
s lnms + 3

∑
m4

V lnmV − 2
∑

m4
F lnmF ),

which also behaves as a cosmological constant.



Running masses and anomalous mass dimensions

If we include the interactions, the masses begin their running.∑
γmS = 2

∑
γmF,

where γm is the mass anomalous dimension:

γm ≡ µ
∂m2

∂µ
,

µ is the renormalization mass parameter.∑
m2

SγmS = 2
∑

m2
FγmF.



Our treatment of the anomalous mass dimensions in the
presence of quadratic divergences is based on the approach
presented in

I. Jack, D. R. T. Jones, Quadratic Divergences and
Dimensional Regularization, Nucl. Phys. B 342, 127 (1990),

which uses the version of renormalization group formalism
connected with dimensional regularization

G. ’t Hooft, Dimensional regularization and the
renormalization group, Nucl. Phys. B 61, 455 (1973).



Model, including a Dirac spinor with a mass M and a scalar
field with a mass m.
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The calculation of the analogous quantity for the scalar field
is more complicated because the mass renormalization in this
case includes quadratic divergences. These divergences arise as
poles at the spacetime dimensionality d = 2:
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The terms, including µ2 are responsible for the quadratic
divergences.



The interaction between a pseudoscalar and a fermion is
described by :

L = −hψ̄γ5ψχ.

(γ5)2 = −1, γ5k̂γ5 = k̂ .

The contribution of the this interaction to the anomalous
mass dimension of the fermion field is

γM =
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16π2
.

The contribution of the fermion loop to the anomalous mass
dimension of the pseudoscalar field χ is
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Contribution of potential terms into the vacuum

energy and the auxiliary fields
We should consider not only the mass sum rules, but also the
potential terms. The contributions of the potential terms to
the vacuum energy density have the following structure

Epot =
〈0|T (V exp(i

∫
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〈0|T exp(i
∫
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.

For the term
V = λφ4,

E1 = −3λI 2,

I =

∫
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The contribution of the Yukawa interaction term is given by
the structure

E2 = 〈0|T (g ψ̄ψφ× (−ig)ψ̄ψφ|0〉.

This contribution (for the case of a Majorana spinor) is

E2 = 2g 2

∫
Tr[(p̂ + k̂ + M)(k̂ + M]

[(p + k)2 −M2][k2 −M2][p2 −m2]
.

A simple calculation shows that for the case of the
Wess-Zumino model, when m = M and there are well-known
relations between the coupling constants, the quartic
divergences present in the contributions shown above do not
cancel each other. The point is that the number of fermion
degrees of freedom is doubled off shell. To compensate this
effect, we should introduce the auxiliary scalar fields as is done
in supersymmetric models.



A simple example shows that this exactly gives the doubling of
the leading contribution to vacuum energy.
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On shell this theory is equivalent to the theory where the
auxiliary field F is excluded by means of the equation of
motion
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In the model with the auxiliary field

Evacuum = 〈0|T (−hFφ2 × (ih)Fφ2|0〉 = −3h2I 2.

The propagator of the auxiliary field in the massless theory is
given by

〈0|T (FF )|0〉 = i .

The result is doubled because of the effective doubling of the
number of degrees of freedom.
The requirement of the explicit account of auxiliary fields
arises only in the diagrams possessing quartic ultraviolet
divergences and including only boson propagators, because
their contribution is proportional to the number of degrees of
freedom present off shell in the model under consideration.
This fact gives us a practical recipe: when one calculates
vacuum energy contribution of the scalar field diagrams,
having the shape of “eight”, one should multiply it by the
factor 2.



In the action the term F 2

2
is also present. One can consider

this term as a part of the kinetic energy. The contribution of
this term into vacuum energy is〈
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Summing the kientic and potential energies we reproduce the
correct result. The results for vacuum energy in the model
with an auxiliary field and in the model , where the auxiliary
field is eliminated, coincide. However, the expressions for the
contributions of the potential energy and of the kinetic energy
do not coincide separately. A similar effect can be observed in
the supersymmetric Wess-Zumino model.



A model with one Majorana and two scalar fields

Hint = λ1A
4 + λ2B

4 + λ3A
2B2

+g1ψ̄ψA + g2ψ̄ψB

+mh1A
3 + mh2B

3 + mh3A
2B + mh4AB

2.

The cancellation of the tadpole diagrams for A and B requires

3h1 + h4 = 4g1,

3h2 + h3 = 4g2.



The self-energy operator for the propagator of the field A
obtains the contributions from the vertex A4, from the vertex
A2B2 and from the pair of vertexes ψ̄ψA, A3, A2B and AB2.
The contributions of two quartic vertexes are both
proportional to the integral I . The corresponding coefficients
are 12λ1 and 2λ3.
The contribution of the fermion loop is
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Quadratic divergences present in the integral I should be
canceled because such divergences do not arise in the
self-energy correction to the fermion propagator.

12λ1 + 2λ3 − 8g 2
1 = 0,

12λ2 + 2λ3 − 8g 2
2 = 0.

The contribution of the pairs of the triple scalar vertices is

C2 = (18h2
1 + 4h2

3 + 2h2
4)m2K .

We find similar expressions for the one-loop contributions to
the propagators of the second scalar field and of the Majorana
fermion.



The running of masses should be the same and this gives us
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The contribution of the potential term to vacuum energy.
The contribution of the quartic terms is

E1 = (3λ1 + 3λ2 + λ3)I 2.

The contribution coming from the two scalar-fermion vertices
is

E2 = −8
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The contribution to vacuum energy of the triple scalar
interactions is

E3 = m2(6h2
1 + 6h2

2 + 2h2
3 + 2h2

4)L.

We can now observe that

2E1 + E2 + E3 = 0.

The coefficient 2 in front of the term E1 is introduced to take
into account the fact that the number of boson and fermion
degrees of freedom should be equal also off shell.



The consistency conditions on the constants h1, h2, h3 and h4:

18h2
1 − 27h2

2 + 13h2
3 + 2h2

4 − 36h1h4 − 18h2h3 = 0,

18h2
2 − 27h2

1 + 13h2
4 + 2h2

3 − 36h2h3 − 18h1h4 = 0.

These equations are homogeneous in h1, h2, h3 and h4. We
can fix h1 = 1 and change the value of h2. We shall have a
system of two quadratic equations for h3 and h4. It is
equivalent to one quartic equation. We present some
numerical solutions.



h2 = 1,

h3 = h4 ≈ 3.8

or

h3 = h4 ≈ −0.2.

h2 = 0.9

h3 ≈ 3.56, h4 ≈ 3.58

or

h3 ≈ −0.46, h4 ≈ 0.17.

h2 = 10/9

h3 ≈ 3.98, h4 ≈ 3.96

or

h3 ≈ 0.2, h4 ≈ −0.5.



h2 = 1/2

h3 ≈ 2.8, h4 ≈ 2.9

or

h3 ≈ −1.2, h4 ≈ 1.2.

h2 = 2

h3 ≈ 5.8, h4 ≈ 5.6

or

h3 ≈ 2.5, h4 ≈ −2.4.



h2 = 1/10

h3 ≈ 2.09, h4 ≈ 2.26

or

h3 ≈ −1.8, h4 ≈ 1.9.

h2 = 10

h3 ≈ 22, h4 ≈ 21

or

h3 ≈ 19, h4 ≈ −18.



Model with a Majorana field, a scalar field and a

pseudoscalar field

A toy model where the field B is a pseudoscalar. In this case

h2 = h3 = 0

the interaction between the pseudoscalar and the fermion is
described by the Lagrangian

g2ψ̄γ5ψB .

We have only one condition for the tadpole cancellation for
the scalar field A. The conditions for the cancellation of
quadratic divergences in the propagators of the scalar and
pseudoscalar fields are the same as before.



Requiring that the running of three masses are the same:
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4 + 4g 2
2

4h2
4 + 4g 2

2 = 12g 2
1 − 4g 2

2 .

From these two equations we obtain

g1 = ±h1.

The only consistent option is

g1 = h1

h4 = g1,

g 2
1 = g 2

2

λ1 = λ2.



For the case with one Majorana field, one

scalar and one pseudoscalar we have less

freedom in the choice of the coupling

constants than in the case of two scalar fields

and one Majorana field, but this choice is

still broader than that in the Wess-Zumino

model.



Models with non-degenerate masses

The simplest models of this kind are those which include a
certain number of “triplets” of the types described before, i.e.
with degenerate masses inside any triplet and with coupling
constants (again, describing interactions within a triplet)
which satisfy the relations obtained above.

If we introduce interactions between different triplets with
different masses, then the coupling constants should satisfy
some constraints.



Concluding remarks

I We have studied the Pauli-Zeldovich mechanism for the
cancellation of ultraviolet divergences in vacuum energy
which is associated with the fact that bosons and fermions
produce contributions to it having opposite signs.

I We have taken interactions up to the lowest order of
perturbation theory into account.

I We have constructed a number of simple toy models
having particles with spin 0 and spin 1/2, wherein masses
of the particles are equal while interactions can be quite
non-trivial.

I To make calculations simpler and more transparent, it
was found useful to introduce some auxiliary fields.


