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The standard cosmological model

• Planck data is 
consistent with a 
cosmological constant 
scenario

Planck Collaboration: Cosmological parameters

The parameter ⌦K decreases exponentially with time during
inflation, but grows only as a power law during the radiation
and matter-dominated phases, so the standard inflationary pre-
diction has been that curvature should be unobservably small
today. Nevertheless, by fine-tuning parameters it is possible to
devise inflationary models that generate open (e.g., Bucher et al.
1995; Linde 1999) or closed universes (e.g., Linde 2003). Even
more speculatively, there has been interest recently in multi-
verse models, in which topologically-open “pocket universes”
form by bubble nucleation (e.g., Coleman & De Luccia 1980;
Gott 1982) between di↵erent vacua of a “string landscape” (e.g.,
Freivogel et al. 2006; Bousso et al. 2015). Clearly, the detection
of a significant deviation from ⌦K = 0 would have profound
consequences for inflation theory and fundamental physics.

The Planck power spectra give the constraint

⌦K = �0.052+0.049
�0.055 (95%,Planck TT+lowP). (47)

The well-known geometric degeneracy (Bond et al. 1997;
Zaldarriaga et al. 1997) allows for the small-scale linear CMB
spectrum to remain almost unchanged if changes in⌦K are com-
pensated by changes in H0 to obtain the same angular diam-
eter distance to last scattering. The Planck constraint is there-
fore mainly determined by the (wide) priors on H0, and the ef-
fect of lensing smoothing on the power spectra. As discussed in
Sect. 5.1, the Planck temperature power spectra show a slight
preference for more lensing than expected in the base ⇤CDM
cosmology, and since positive curvature increases the amplitude
of the lensing signal, this preference also drives⌦K towards neg-
ative values.

Taken at face value, Eq. (47) represents a detection of posi-
tive curvature at just over 2�, largely via the impact of lensing
on the power spectra. One might wonder whether this is mainly
a parameter volume e↵ect, but that is not the case, since the best
fit closed model has ��2

⇡ 6 relative to base ⇤CDM, and the fit
is improved over almost all the posterior volume, with the mean
improvement being h��2

i ⇡ 5 (very similar to the phenomeno-
logical case of ⇤CDM+AL). Addition of the Planck polarization
spectra shifts ⌦K towards zero by �⌦K ⇡ 0.015:

⌦K = �0.040+0.038
�0.041 (95%,Planck TT,TE,EE+lowP), (48)

but ⌦K remains negative at just over 2�.
What’s more, the lensing reconstruction from Planck mea-

sures the lensing amplitude directly and, as discussed in
Sect. 5.1, this does not prefer more lensing than base ⇤CDM.
The combined constraint shows impressive consistency with a
flat universe:

⌦K = �0.005+0.016
�0.017 (95%,Planck TT+lowP+lensing). (49)

The dramatic improvement in the error bar is another illustration
of the power of the lensing reconstruction from Planck.

The constraint can be sharpened further by adding external
data that break the main geometric degeneracy. Combining the
Planck data with BAO, we find

⌦K = 0.000 ± 0.005 (95%, Planck TT+lowP+lensing+BAO).
(50)

This constraint is unchanged at the quoted precision if we add
the JLA supernovae data and the H0 prior of Eq. (30).

Figure 26 illustrates these results in the ⌦m–⌦⇤ plane. We
adopt Eq. (50) as our most reliable constraint on spatial curva-
ture. Our Universe appears to be spatially flat to a 1� accuracy
of 0.25 %.
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Fig. 27. Samples from the distribution of the dark energy pa-
rameters w0 and wa using Planck TT+lowP+BAO+JLA data,
colour-coded by the value of the Hubble parameter H0. Contours
show the corresponding 68 % and 95 % limits. Dashed grey lines
intersect at the point in parameter space corresponding to a cos-
mological constant.

6.3. Dark energy

The physical explanation for the observed accelerated expansion
of the Universe is currently not known. In standard ⇤CDM the
acceleration is provided by a cosmological constant, i.e., an ad-
ditional fluid satisfying an equation of state w ⌘ pDE/⇢DE = �1.
However, there are many possible alternatives, typically de-
scribed either in terms of extra degrees of freedom associated
with scalar fields or modifications of general relativity on cos-
mological scales (for reviews see, e.g., Copeland et al. 2006;
Tsujikawa 2010). A detailed study of these models and the con-
straints imposed by Planck and other data are presented in a sep-
arate paper, Planck Collaboration XIV (2016).

Here we will limit ourselves to the most basic extensions
of ⇤CDM, which can be phenomenologically described in
terms of the equation of state parameter w alone. Specifically
we will use the camb implementation of the “parameterized
post-Friedmann” (PPF) framework of Hu & Sawicki (2007) and
Fang et al. (2008) to test whether there is any evidence that w
varies with time. This framework aims to recover the behaviour
of canonical (i.e., those with a standard kinetic term) scalar field
cosmologies minimally coupled to gravity when w � �1, and
accurately approximates them for values w ⇡ �1. In these mod-
els the speed of sound is equal to the speed of light, so that the
clustering of the dark energy inside the horizon is strongly sup-
pressed. The advantage of using the PPF formalism is that it is
possible to study the phantom domain, w < �1, including transi-
tions across the “phantom barrier,” w = �1, which is not possible
for canonical scalar fields.

The CMB temperature data alone do not tightly constrain w,
because of a strong geometrical degeneracy, even for spatially-
flat models. From Planck we find

w = �1.54+0.62
�0.50 (95%,Planck TT+lowP), (51)

i.e., almost a 2� shift into the phantom domain. This is partly,
but not entirely, a parameter volume e↵ect, with the average ef-
fective �2 improving by h��2

i ⇡ 2 compared to base ⇤CDM.
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This is consistent with the preference for a higher lensing am-
plitude discussed in Sect. 5.1.2, improving the fit in the w < �1
region, where the lensing smoothing amplitude becomes slightly
larger. However, the lower limit in Eq. (51) is largely determined
by the (arbitrary) prior H0 < 100 km s�1Mpc�1, chosen for the
Hubble parameter. Much of the posterior volume in the phan-
tom region is associated with extreme values for cosmological
parameters, which are excluded by other astrophysical data. The
mild tension with base ⇤CDM disappears as we add more data
that break the geometrical degeneracy. Adding Planck lensing
and BAO, JLA and H0 (“ext”) gives the 95 % constraints

w = �1.023+0.091
�0.096 Planck TT+lowP+ext, (52a)

w = �1.006+0.085
�0.091 Planck TT+lowP+lensing+ext, (52b)

w = �1.019+0.075
�0.080 Planck TT,TE,EE+lowP+lensing+ext.

(52c)

The addition of Planck lensing, or using the full Planck tem-
perature+polarization likelihood together with the BAO, JLA,
and H0 data does not substantially improve the constraint of
Eq. (52a). All of these data set combinations are compatible with
the base ⇤CDM value of w = �1. In PCP13, we conservatively
quoted w = �1.13+0.24

�0.25, based on combining Planck with BAO,
as our most reliable limit on w. The errors in Eqs. (52a)–(52c) are
substantially smaller, mainly because of the addition of the JLA
SNe data, which o↵er a sensitive probe of the dark energy equa-
tion of state at z <⇠ 1. In PCP13, the addition of the SNLS SNe
data pulled w into the phantom domain at the 2� level, reflecting
the tension between the SNLS sample and the Planck 2013 base
⇤CDM parameters. As noted in Sect. 5.3, this discrepancy is no
longer present, following improved photometric calibrations of
the SNe data in the JLA sample. One consequence of this is the
tightening of the errors in Eqs. (52a)–(52c) around the ⇤CDM
value w = �1 when we combine the JLA sample with Planck.

If w di↵ers from �1, it is likely to change with time. We
consider here the case of a Taylor expansion of w at first order in
the scale factor, parameterized by

w = w0 + (1 � a)wa. (53)

More complex models of dynamical dark energy are discussed
in Planck Collaboration XIV (2016). Figure 27 shows the 2D
marginalized posterior distribution for w0 and wa for the com-
bination Planck+BAO+JLA. The JLA SNe data are again cru-
cial in breaking the geometrical degeneracy at low redshift and
with these data we find no evidence for a departure from the
base ⇤CDM cosmology. The points in Fig. 27 show samples
from these chains colour-coded by the value of H0. From these
MCMC chains, we find H0 = (68.2 ± 1.1) km s�1Mpc�1. Much
higher values of H0 would favour the phantom regime, w < �1.

As pointed out in Sects. 5.5.2 and 5.6 the CFHTLenS weak
lensing data are in tension with the Planck base ⇤CDM param-
eters. Examples of this tension can be seen in investigations of
dark energy and modified gravity, since some of these models
can modify the growth rate of fluctuations from the base ⇤CDM
predictions. This tension can be seen even in the simple model
of Eq. (53). The green regions in Fig. 28 show 68 % and 95 %
contours in the w0–wa plane for Planck TT+lowP combined with
the CFHTLenS H13 data. In this example, we have applied ultra-
conservative cuts, excluding ⇠� entirely and excluding measure-
ments with ✓ < 170 in ⇠+ for all tomographic redshift bins. As
discussed in Planck Collaboration XIV (2016), with these cuts
the CFHTLenS data are insensitive to modelling the nonlinear
evolution of the power spectrum, but this reduction in sensitiv-
ity comes at the expense of reducing the statistical power of the

Fig. 28. Marginalized posterior distributions for (w0,wa) for var-
ious data combinations. We show Planck TT+lowP in combi-
nation with BAO, JLA, H0 (“ext”), and two data combinations
that add the CFHTLenS data with ultra-conservative cuts as de-
scribed in the text (denoted “WL”). Dashed grey lines show the
parameter values corresponding to a cosmological constant.

weak lensing data. Nevertheless, Fig. 28 shows that the combina-
tion of Planck+CFHTLenS pulls the contours into the phantom
domain and is discrepant with base⇤CDM at about the 2� level.
The Planck+CFHTLenS data also favour a high value of H0. If
we add the (relatively weak) H0 prior of Eq. (30), the contours
(shown in cyan) in Fig. 28 shift towards w = �1. It therefore
seems unlikely that the tension between Planck and CFHTLenS
can be resolved by allowing a time-variable equation of state for
dark energy.

A much more extensive investigation of models of dark
energy and also models of modified gravity can be found in
Planck Collaboration XIV (2016). The main conclusions of that
analysis are as follows:

• an investigation of more general time-variations of the equa-
tion of state shows a high degree of consistency with w = �1;
• a study of several dark energy and modified gravity models

either finds compatibility with base⇤CDM, or mild tensions,
which are driven mainly by external data sets.

6.4. Neutrino physics and constraints on relativistic

components

In the following subsections, we update Planck constraints on
the mass of standard (active) neutrinos, additional relativistic de-
grees of freedom, models with a combination of the two, and
models with massive sterile neutrinos. In each subsection we
emphasize the Planck-only constraint, and the implications of
the Planck result for late-time cosmological parameters mea-
sured from other observations. We then give a brief discussion of
tensions between Planck and some discordant external data, and
assess whether any of these model extensions can help to resolve
them. Finally we provide constraints on neutrino interactions.
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But a quick search on dark energy shows…



Problems in the standard scenario 

• We need a very fine-tuned 
particle physics theory that 
makes the vacuum energy 
density extremely small but still 
different from 0 

We could consider a quantum field as an infinite set of harmonic oscillators, where the
minimum energy of such a field should be also infinite. However, if we trust our theory
only up to a certain cuto↵, like the Planck scale Mpl, from dimensional consideration we
would get the form

⇢⇤ ⇠ ~M4
pl
. (5)

Indeed, we measure the vacuum fluctuations by the Casimir e↵ect in the laboratory.
For the Planck scale Mpl = (8⇡G)�1/2

⇠ 1018
GeV , we expect

⇢⇤ ⇠ (1018
GeV )4 ⇠ 2 ⇥ 10110

erg/cm
3
. (6)

However, most of cosmological observations imply

⇢obs⇤  (10�12
GeV )4 ⇠ 2 ⇥ 10�10

erg/cm
3
. (7)

There is 120 orders of magnitude di↵erence between the theoretical expectation and the
observational value. This discrepancy has been called ‘the worst theoretical prediction in
the history of physics!’.

Why is the vacuum energy so small? Does it somehow cancel out exactly a factor of
10120? These are major outstanding issues in physics and cosmology. Some supersym-
metric theories predict a cosmological constant that is exactly zero. In supersymmetric
theories, the number of fermionic and bosonic degrees of freedom are equal. The energy
of the vacuum fluctuations per degree of freedom is the same in magnitude but opposite
in sign for fermions and bosons of the same mass. Therefore the fermion and boson con-
tributions cancel each other and the total vacuum energy density vanishes [9]. But it is
not helpful to solve the problem because supersymmetry has to be broken today, as it is
not observed in nature.

If supersymmetry is broken, supersymmetric partners can have di↵erent masses of order
⇤4

SUSY
, where ⇤SUSY is the supersymmetry breaking scale. Assuming ⇤SUSY ⇠ 1TeV , the

vacuum energy density becomes ⇢⇤ ⇠ (103
GeV )4 which is still 60 orders of magnitude

larger than the observational limit.

2.2 Coincidence problem

The second cosmological constant problem is why ⇢⇤ is not only small but also of the
same order of magnitude as the present mass density of the Universe. In other words, why
does cosmic acceleration happen to begin right now and not at some point in the past or
future?

If the vacuum energy were big and dominant from the earlier epoch, there would
be no chance to form structures in the Universe, like galaxies, stars, planets and us,
intelligent lives. In other words, observers will only observe the states which are allowed
for observers. This consideration is the so-called anthropic principle. According to the
anthropic principle, the Universe may not be determined directly by one specific process,
but there are di↵erent expanding regions at di↵erent times and space or of di↵erent terms
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the theoretical expectation and the observational value



Coincidence problem

• The cosmological 
constant energy density 
is coincidentally of the 
same order of magnitude 
as the present mass 
density of the universe  

• Why does cosmic 
acceleration happen 
to begin now and not 
at some point in the 
past or in the future?

Anthropic considerations?


The conditions for the existence of 
observers in an ensemble set upper bounds 
on the dark energy density

2

expectation proximity is r ≈ 0 ≪ 0.35.

Fig. 1.— This figure shows the history of the energy density
of the universe according to concordance ΛCDM. The dotted line
shows the energy density in radiation (photons, neutrinos and other
relativistic modes). The radiation density dilutes as a−4 as the
universe expands. The dashed line shows the density in ordinary
non-relativistic matter, which dilutes as a−3. The solid line shows
the energy of the vacuum (the cosmological constant) which has
remained constant since the end of inflation. The lower panel shows
the proximity r of the matter density to the vacuum energy density
(see Eq. 1). The proximity r is only large for a brief moment in
the log(a) history of the cosmos. The coincidence problem is that
matter and density happen to have very similar densities (r is large)
at the current time t0.

Weinberg (1987); Garriga et al. (1999); Lineweaver and
Egan (2007) and others have argued that the coincidence
problem can be made quantitatively meaningful if the
hypothetical variability of t0 is limited to values allowed
by the temporal distribution of terrestrial planets. In
(Lineweaver and Egan 2007) we assessed the severity
of the coincidence problem under ΛCDM and demon-
strate that the observed proximity r ≈ 0.35 is likely for
terrestrial-planet bound observers. It may be the case
that future developments in fundamental physics reveal
the cosmological constant to be uniquely determined.
Lineweaver and Egan (2007) shows that the smallness
and coincidence problems would then be simultaneously
solved.

The smallness of the DE density may be understood
in the context of multiverse models in which ρde is a
stochastic variable. The smallness of the observed value
is explained because much larger values preclude the for-
mation of galaxies - those universes are devoid of ob-
servers and are anthropically selected against (Weinberg
1987; Martel et al. 1998; Pogosian and Vilenkin 2007).
The solution to the coincidence problem in these scenar-
ios was given by (Garriga et al. 1999). Although these
solutions are attractive, the theoretical foundations for
such multiverses are not well understood, and these so-
lutions may be altogether inappropriate.

Dynamical dark energy (DDE) models including
quintessence, phantom, k-essence, Chaplygin gas and
others have also had some success simultaneously tack-
ling the smallness and coincidence problems. In these
models the dark energy is treated as a new matter field
which is effectively homogenous, and evolves as the uni-
verse expands. Some examples from the literature are
given in section 2. Many DDE models are designed to

ensure that ρde ∼ ρm for a large fraction of the his-
tory/future of the universe (Dodelson et al. 2000; Sahni
and Wang 2000; Chimento et al. 2000; Zimdahl et al.
2001; Sahni 2002; Chimento et al. 2003; Ahmed et al.
2004; França and Rosenfeld 2004; Mbonye 2004; Guo and
Zhang 2005; Pavón and Zimdahl 2005; Scherrer 2005;
Zhang 2005; França 2006; Feng et al. 2006; Nojiri and
Odintsov 2006; Amendola et al. 2006, 2007; Sassi and
Bonometto 2007). This is at least partly motivated to
avoid the coincidence3 - by having ρde ∼ ρm during ex-
tended or repeated periods one may hope to ensure that
r = O(1) is the expectation. Precisely when, and for
how long, must a DDE model have ρde ∼ ρm in order to
solve the coincidence? A carefully considered discussion
of this has not yet been given.

Thus the general goal of the present paper is to deter-
mine which dynamical behaviours are required to solve
the coincidence problem, and which are unnecessary,
based on an estimate of the temporal distribution of ter-
restrial planets. In particular we ask the question, “Does
a dark energy model naturally fitting contemporary con-
straints on the density ρde and the equation of state
parameters, necessarily solve the cosmic coincidence?”
Both positive and negative answers have interesting con-
sequences. An answer in the affirmative will simplify
considerations that go into DDE modeling: the coinci-
dence is solved by all models naturally fitting cosmolog-
ical constraints. An answer in the negative would an-
nounce a unique and peculiar opportunity to constrain
the DE equation of state parameters more strongly than
contemporary cosmological surveys.

In Section 2 we present several examples of how dark
energy dynamics have been used to solve the coincidence
problem. Current observational constraints on dark en-
ergy dynamics are discussed in Section 3. We discuss the
treatment of anthropic observational selection effects in
Section 4 and estimate the relevant temporal distribu-
tion of observers in Section 5. Our main analysis and
the results are presented in Section 6 and we conclude in
Section 7.

2. DYNAMIC DARK ENERGY MODELS IN THE
FACE OF THE COSMIC COINCIDENCE

There are many interesting DDE models in the liter-
ature. Though it is beyond the scope of this article to
provide a complete review, this section looks at a few
representative examples in order to set the context and
motivation of our work. Figure 2 illustrates density his-
tories typical of quintessence, tracking oscillating energy,
k-essence, interacting quintessence, phantom fields, late-
time scaling DE, and Chaplygin gas. They are discussed
in turn below, then the main points are summarized.

The most relevant references are given. Readers seek-
ing more detail are referred to the excellent review article

3 It is worth noting that in the context of DDE models “the coin-
cidence problem” sometimes refers to difficulties where the model
must be fine-tuned or constructed in an ad-hoc manner in order to
fit cosmological observations of the present densities ρde, ρm and
DE equation of state wde (let us refer to these as fine-tuning prob-
lems henceforth). We don’t address fine-tuning problems (you may
want to see (Bludman 2004; Linder 2006)). What we refer to as the
coincidence problem is when, according to the model, an observer
has to be special amongst hypothetical observers populating the
model, in order to observe r as large as we do (i.e. r >

∼ 0.35).
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• To solve the problems regarding the cosmological 
constant many alternatives are discussed in the literature  
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• Quintessence 

• Phantom 

• Quintom 

• Modified gravity…
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the interacting DE models. A lot of e↵ort has been made
to constrain and forecast parameters in alternative DE
scenarios in the past years (see, for instance, Refs. [30–
33]). However, for interacting DE models, only recently,
Ref. [34] performed a forecast analysis of the capability of
eLISA to constraint such models, finding that it can only
be competitive if the onset of the deviation from ⇤CDM
of these models occurs relatively late in the evolutionary
history of the universe. Earlier studies are outdated since
they have explored the forecast of Planck-like CMB sur-
veys alone on phenomenological interacting DE models
[35] or with earlier configurations of Euclid-like experi-
ments [36]. Others have explored the forecast for field
theory implementations of coupled DE [37]. In this pa-
per, we consider a combination of future state-of-the-art
probes: the baryon acoustic oscillations (BAO) informa-
tion that can be obtained from an updated Euclid-like
experiment [38] and the primary CMB fluctuations from
a possible future experiment like AdvACT [39]. The goal
is to test their ability to constrain the phenomenological
interacting DE models described in this paper and deter-
mine how their combination can help break the degen-
eracies between the di↵erent cosmological parameters.

The paper is organized as follows. In Sec. II, we de-
scribe the phenomenological models of which we perform
the parameter forecast. Sec. III is devoted to the method-
ology we use to calculate the marginalized errors on the
chosen parameters, followed by the results in Sec. IV.
Finally, in Sec. V, we draw our conclusions.

II. THE INTERACTING DARK ENERGY
MODELS

In the standard cosmological model, the energy mo-
mentum tensor for radiation, baryons, cold DM, and
DE is conserved separately, i.e., for each component.
Conversely, in an interacting DE model, the fluid equa-
tions for the DE and DM are not conserved individ-
ually, but the dark sector as a whole satisfies the
usual energy-conservation equation. In a Friedmann-
Robertson-Walker universe, the conservation equations
for the fluids that exchange energy are:

⇢̇DM + 3H⇢DM = +Q ,

⇢̇DE + 3H(1 + wDE)⇢DE = �Q , (1)

where H is the Hubble parameter, ⇢DM and ⇢DE are
the energy densities for DM and DE, respectively, and
wDE ⌘ pDE/⇢DE is the DE EoS. It is clear from the
DM conservation equation that we assume pDM = 0, i.e.,
the DM EoS is that of pressureless matter (dust). Here,
Q represents the interaction kernel that can be written
phenomenologically as Q = 3H(⇠1⇢DM + ⇠2⇢DE), where
the coupling coe�cients (the constants ⇠1 and ⇠2) are
to be determined by observations (see, e.g., Refs. [14–
17, 28, 40, 41]). The energy flow from DE to DM is de-
fined by Q > 0, and conversely, Q < 0 defines an energy
flow from DM to DE. Considering the stability of the

cosmological perturbations when wDE is kept constant,
two choices can be made [42]: first, one can take ⇠1 = 0
and ⇠2 6= 0, together with a constant DE EoS within the
range �1 < wDE < �1/3 (dubbed model 1) or wDE < �1
(model 2); second, one can take ⇠2 = 0 and ⇠1 6= 0 with
wDE < �1, defining our third considered model (for a
summary, see Table I). For all three models, the other
components follow the standard conservation equations.
For a review of the topic, we refer to Refs. [16, 43].

TABLE I. Interacting DE models considered in the analysis
of this paper.

Model Q DE EoS
1 3⇠2H⇢DE �1 < wDE < �1/3
2 3⇠2H⇢DE wDE < �1
3 3⇠1H⇢DM wDE < �1

When one allows for an energy flow between DE and
DM, the energy densities present a di↵erent evolution for
each model. The presence of this change in the redshift
dependency leads to an e↵ective EoS for DM and for DE,
which depends on the form of the interaction. For models
1 and 2, the energy densities for DM and DE are given
by (see Ref. [41])
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In both cases, the baryon energy density (⇢b) is given by
the standard expression, i.e., it is proportional to (1+z)3.
Note that the quantities measured today are identified by
the superscript 0. For example, using the definition of the
cold DM density parameter today, ⌦c ⌘ ⇢
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the interacting DE models. A lot of e↵ort has been made
to constrain and forecast parameters in alternative DE
scenarios in the past years (see, for instance, Refs. [30–
33]). However, for interacting DE models, only recently,
Ref. [34] performed a forecast analysis of the capability of
eLISA to constraint such models, finding that it can only
be competitive if the onset of the deviation from ⇤CDM
of these models occurs relatively late in the evolutionary
history of the universe. Earlier studies are outdated since
they have explored the forecast of Planck-like CMB sur-
veys alone on phenomenological interacting DE models
[35] or with earlier configurations of Euclid-like experi-
ments [36]. Others have explored the forecast for field
theory implementations of coupled DE [37]. In this pa-
per, we consider a combination of future state-of-the-art
probes: the baryon acoustic oscillations (BAO) informa-
tion that can be obtained from an updated Euclid-like
experiment [38] and the primary CMB fluctuations from
a possible future experiment like AdvACT [39]. The goal
is to test their ability to constrain the phenomenological
interacting DE models described in this paper and deter-
mine how their combination can help break the degen-
eracies between the di↵erent cosmological parameters.

The paper is organized as follows. In Sec. II, we de-
scribe the phenomenological models of which we perform
the parameter forecast. Sec. III is devoted to the method-
ology we use to calculate the marginalized errors on the
chosen parameters, followed by the results in Sec. IV.
Finally, in Sec. V, we draw our conclusions.

II. THE INTERACTING DARK ENERGY
MODELS

In the standard cosmological model, the energy mo-
mentum tensor for radiation, baryons, cold DM, and
DE is conserved separately, i.e., for each component.
Conversely, in an interacting DE model, the fluid equa-
tions for the DE and DM are not conserved individ-
ually, but the dark sector as a whole satisfies the
usual energy-conservation equation. In a Friedmann-
Robertson-Walker universe, the conservation equations
for the fluids that exchange energy are:

⇢̇DM + 3H⇢DM = +Q ,

⇢̇DE + 3H(1 + wDE)⇢DE = �Q , (1)

where H is the Hubble parameter, ⇢DM and ⇢DE are
the energy densities for DM and DE, respectively, and
wDE ⌘ pDE/⇢DE is the DE EoS. It is clear from the
DM conservation equation that we assume pDM = 0, i.e.,
the DM EoS is that of pressureless matter (dust). Here,
Q represents the interaction kernel that can be written
phenomenologically as Q = 3H(⇠1⇢DM + ⇠2⇢DE), where
the coupling coe�cients (the constants ⇠1 and ⇠2) are
to be determined by observations (see, e.g., Refs. [14–
17, 28, 40, 41]). The energy flow from DE to DM is de-
fined by Q > 0, and conversely, Q < 0 defines an energy
flow from DM to DE. Considering the stability of the

cosmological perturbations when wDE is kept constant,
two choices can be made [42]: first, one can take ⇠1 = 0
and ⇠2 6= 0, together with a constant DE EoS within the
range �1 < wDE < �1/3 (dubbed model 1) or wDE < �1
(model 2); second, one can take ⇠2 = 0 and ⇠1 6= 0 with
wDE < �1, defining our third considered model (for a
summary, see Table I). For all three models, the other
components follow the standard conservation equations.
For a review of the topic, we refer to Refs. [16, 43].

TABLE I. Interacting DE models considered in the analysis
of this paper.

Model Q DE EoS
1 3⇠2H⇢DE �1 < wDE < �1/3
2 3⇠2H⇢DE wDE < �1
3 3⇠1H⇢DM wDE < �1

When one allows for an energy flow between DE and
DM, the energy densities present a di↵erent evolution for
each model. The presence of this change in the redshift
dependency leads to an e↵ective EoS for DM and for DE,
which depends on the form of the interaction. For models
1 and 2, the energy densities for DM and DE are given
by (see Ref. [41])
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the standard expression, i.e., it is proportional to (1+z)3.
Note that the quantities measured today are identified by
the superscript 0. For example, using the definition of the
cold DM density parameter today, ⌦c ⌘ ⇢
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the interacting DE models. A lot of e↵ort has been made
to constrain and forecast parameters in alternative DE
scenarios in the past years (see, for instance, Refs. [30–
33]). However, for interacting DE models, only recently,
Ref. [34] performed a forecast analysis of the capability of
eLISA to constraint such models, finding that it can only
be competitive if the onset of the deviation from ⇤CDM
of these models occurs relatively late in the evolutionary
history of the universe. Earlier studies are outdated since
they have explored the forecast of Planck-like CMB sur-
veys alone on phenomenological interacting DE models
[35] or with earlier configurations of Euclid-like experi-
ments [36]. Others have explored the forecast for field
theory implementations of coupled DE [37]. In this pa-
per, we consider a combination of future state-of-the-art
probes: the baryon acoustic oscillations (BAO) informa-
tion that can be obtained from an updated Euclid-like
experiment [38] and the primary CMB fluctuations from
a possible future experiment like AdvACT [39]. The goal
is to test their ability to constrain the phenomenological
interacting DE models described in this paper and deter-
mine how their combination can help break the degen-
eracies between the di↵erent cosmological parameters.

The paper is organized as follows. In Sec. II, we de-
scribe the phenomenological models of which we perform
the parameter forecast. Sec. III is devoted to the method-
ology we use to calculate the marginalized errors on the
chosen parameters, followed by the results in Sec. IV.
Finally, in Sec. V, we draw our conclusions.

II. THE INTERACTING DARK ENERGY
MODELS

In the standard cosmological model, the energy mo-
mentum tensor for radiation, baryons, cold DM, and
DE is conserved separately, i.e., for each component.
Conversely, in an interacting DE model, the fluid equa-
tions for the DE and DM are not conserved individ-
ually, but the dark sector as a whole satisfies the
usual energy-conservation equation. In a Friedmann-
Robertson-Walker universe, the conservation equations
for the fluids that exchange energy are:

⇢̇DM + 3H⇢DM = +Q ,

⇢̇DE + 3H(1 + wDE)⇢DE = �Q , (1)

where H is the Hubble parameter, ⇢DM and ⇢DE are
the energy densities for DM and DE, respectively, and
wDE ⌘ pDE/⇢DE is the DE EoS. It is clear from the
DM conservation equation that we assume pDM = 0, i.e.,
the DM EoS is that of pressureless matter (dust). Here,
Q represents the interaction kernel that can be written
phenomenologically as Q = 3H(⇠1⇢DM + ⇠2⇢DE), where
the coupling coe�cients (the constants ⇠1 and ⇠2) are
to be determined by observations (see, e.g., Refs. [14–
17, 28, 40, 41]). The energy flow from DE to DM is de-
fined by Q > 0, and conversely, Q < 0 defines an energy
flow from DM to DE. Considering the stability of the

cosmological perturbations when wDE is kept constant,
two choices can be made [42]: first, one can take ⇠1 = 0
and ⇠2 6= 0, together with a constant DE EoS within the
range �1 < wDE < �1/3 (dubbed model 1) or wDE < �1
(model 2); second, one can take ⇠2 = 0 and ⇠1 6= 0 with
wDE < �1, defining our third considered model (for a
summary, see Table I). For all three models, the other
components follow the standard conservation equations.
For a review of the topic, we refer to Refs. [16, 43].

TABLE I. Interacting DE models considered in the analysis
of this paper.

Model Q DE EoS
1 3⇠2H⇢DE �1 < wDE < �1/3
2 3⇠2H⇢DE wDE < �1
3 3⇠1H⇢DM wDE < �1

When one allows for an energy flow between DE and
DM, the energy densities present a di↵erent evolution for
each model. The presence of this change in the redshift
dependency leads to an e↵ective EoS for DM and for DE,
which depends on the form of the interaction. For models
1 and 2, the energy densities for DM and DE are given
by (see Ref. [41])
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with r ⌘ ⇢DM/⇢DE. For model 3, the evolution of the
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In both cases, the baryon energy density (⇢b) is given by
the standard expression, i.e., it is proportional to (1+z)3.
Note that the quantities measured today are identified by
the superscript 0. For example, using the definition of the
cold DM density parameter today, ⌦c ⌘ ⇢
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3

where we use the same notation as in Ref. [1] with h

defined such that H0 = 100h km s�1 Mpc�1, and where
H0 and !c ⌘ h

2⌦c are the Hubble parameter and the
physical density of cold DM today.

Since DM and DE are currently only measured gravi-
tationally and since gravity only probes the total energy
momentum tensor, degeneracies in the cosmological pa-
rameters are inevitable. As it is already known in the
literature (see, e.g., Refs. [14, 44, 45]), and as we can see
in the expressions for the energy densities of the coupled
dark components, there is a degeneracy between wDE and
⌦c. At the background level, the fact that only the to-
tal energy momentum can be measured also leads to a
degeneracy between the coupling constant and wDE, as
we can see in the e↵ective DE EoS for models 1 and 2
[see Eq. (3)]. For model 3, this degeneracy is no longer
present today since w

e↵

DE
' wDE for r ⌧ 1 (i.e., when

⇢DE � ⇢DM). In that case, the DE EoS and the interact-
ing constant can be measured independently using the
background evolution [14].

To be able to compare theoretical predictions from
the di↵erent phenomenological models with experiments,
the cosmological perturbations for these models have
been calculated in Ref. [14]. In this reference, the
linear perturbations are calculated by perturb-
ing the Friedmann-Lemâıtre-Robertson-Walker
spacetime and the energy-momentum tensor of
the coupled DM-DE fluid. First, the back-
ground interaction four-vector is given by Q

⌫
(�)

=

[Q, 0, 0, 0]T , which represents the exchange of en-
ergy density only [c.f. Eq. (1)]. The subscript �
stands for either DE in the case of models 1 and
2 or DM in the case of model 3. Then, the per-
turbed four-vector representing the perturbation
in the interaction between the DM and DE fluids,
�Q

⌫
(�)

, can be decomposed into

�Q
0

(�)
= ±
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� 

a
Q +

1

a
�Q

◆
,

�Qp(�) = Q
I
p(�)

���
t
+ Q

0

(�)
vt . (7)

The ± sign refers to DM or DE respectively;
�Qp(�) is the potential of the perturbed energy-

momentum transfer �Qi
(�)

; Q
I
p(�)

���
t
is the external

non-gravitational force density; and vt is the aver-
age velocity of the energy transfer. Since we have
a stationary energy transfer, we only consider in-

ertial drag e↵ects, so Q
I
p(�)

���
t
and vt vanish, which

implies that �Qi
(�)

= 0. One can then evaluate the
linear order perturbation equations for DM and
DE (we refer to Ref. [14] for more details; see also
Ref. [46] for another study of the perturbations
in this context).

With the perturbations, one can then compute
the CMB temperature angular power spectrum
(CTT

` ) and the matter power spectrum (Pmatter(k)).

10 100 1000

� (multipole)

1000

2000

3000

4000

5000

6000

7000

�(
�
+

1)
C

T
T

�
/2

�
[µ

K
2
]

⇠2 = 0

⇠2 = �0.01

⇠2 = �0.1

10�4 10�3 10�2 10�1 100

k [h/Mpc]

101

102

103

104

105

P
m

a
tt

er
(k

)
[(
M

p
c/

h
)3

]

FIG. 1. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠2 for model 1. The other pa-
rameters assume the fiducial values given in Sec. III, Table
III. In particular, wDE = �0.9434.

The corresponding spectra are shown for di↵er-
ent values of the coupling constant for each of the
models described in Table I in Figs. 1 (model 1),
2 (model 2), and 3 (model 3). By computing the
perturbations, one can also evaluate the growth
rate (f(z)) and the root mean square of matter
fluctuations today at a characteristic length scale
of 8 Mpc/h (�8(z)) in order to illustrate how the
interaction a↵ects the growth of structure. This
is shown in Fig. 4. The plots are generated using a
modified version of the CAMB software package [47], which
incorporates the physics of interacting DE. Moreover,
the cosmological parameters (excluding the values for the
coupling constants ⇠2 and ⇠1 for the power spectra)
are assumed to take the fiducial values given in Sec. III,
see Table III for Fig. 1, Table IV for Fig. 2, and Table V
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FIG. 2. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠2 for model 2. The other pa-
rameters assume the fiducial values given in Sec. III, Table
IV. In particular, wDE = �1.087.

for Fig. 3.

As noted in Ref. [14], changes in the DE EoS
mainly influence the low-` angular power spec-
trum and can shift the overall amplitude of the
matter power spectrum slightly. For this reason, we
only show the changes caused by varying the coupling
constant in the power spectra. From the plots, we
see that interacting DE can have e↵ects that are
degenerate with changing the DE EoS, but these
degeneracies can be broken by including all the
information from both the CMB angular power
spectrum and the matter power spectrum today.
Indeed, interacting DE generally changes the size
of the CMB acoustic peaks and it a↵ect the am-
plitude of Pmatter only at large k, which can hardly
be mimicked by a di↵erent EoS.

FIG. 3. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠1 for model 3. The other pa-
rameters assume the fiducial values given in Sec. III, Table V.
In particular, wDE = �1.06.

Generally, we can see that for large couplings (⇠1,2 =
0.1), the changes in the acoustic peaks of the power spec-
tra compared to wCDM (⇠1,2 = 0) are very pronounced,
so large couplings can be easily ruled out by observations.
However, in general, small couplings introduce more sub-
tle changes that are harder to be distinguished, and from
previous analyzes, small couplings are preferred by the
observations [15–28], although with small significance.
Although subtle, these changes behave di↵erently
depending on the model chosen, so it is important
to understand how each model a↵ects the power
spectra.

For model 1, let us first note that the interact-
ing constant must be negative [17]. This means
that there is an energy flow from DM to DE and
that the DM energy density is higher in the past
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Generally, we can see that for large couplings (⇠1,2 =
0.1), the changes in the acoustic peaks of the power spec-
tra compared to wCDM (⇠1,2 = 0) are very pronounced,
so large couplings can be easily ruled out by observations.
However, in general, small couplings introduce more sub-
tle changes that are harder to be distinguished, and from
previous analyzes, small couplings are preferred by the
observations [15–28], although with small significance.
Although subtle, these changes behave di↵erently
depending on the model chosen, so it is important
to understand how each model a↵ects the power
spectra.

For model 1, let us first note that the interact-
ing constant must be negative [17]. This means
that there is an energy flow from DM to DE and
that the DM energy density is higher in the past



Motivations

• The coincidence problem could be solved by imposing 
the requirement that the ratio of the energy densities of 
DM and DE is a constant in the expansion history of the 
universe, such that ρ = ρc/ρd 

• It is observationally distinguishable from the ΛCDM model 

• Check if future experiments will be able to distinguish 
between different cosmological models



Models evolution

• When one allows for an energy flow between DE and 
DM, the energy densities present a different evolution for 
each model 

• Models 1 and 2: 

• Model 3:
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the interacting DE models. A lot of e↵ort has been made
to constrain and forecast parameters in alternative DE
scenarios in the past years (see, for instance, Refs. [30–
33]). However, for interacting DE models, only recently,
Ref. [34] performed a forecast analysis of the capability of
eLISA to constraint such models, finding that it can only
be competitive if the onset of the deviation from ⇤CDM
of these models occurs relatively late in the evolutionary
history of the universe. Earlier studies are outdated since
they have explored the forecast of Planck-like CMB sur-
veys alone on phenomenological interacting DE models
[35] or with earlier configurations of Euclid-like experi-
ments [36]. Others have explored the forecast for field
theory implementations of coupled DE [37]. In this pa-
per, we consider a combination of future state-of-the-art
probes: the baryon acoustic oscillations (BAO) informa-
tion that can be obtained from an updated Euclid-like
experiment [38] and the primary CMB fluctuations from
a possible future experiment like AdvACT [39]. The goal
is to test their ability to constrain the phenomenological
interacting DE models described in this paper and deter-
mine how their combination can help break the degen-
eracies between the di↵erent cosmological parameters.

The paper is organized as follows. In Sec. II, we de-
scribe the phenomenological models of which we perform
the parameter forecast. Sec. III is devoted to the method-
ology we use to calculate the marginalized errors on the
chosen parameters, followed by the results in Sec. IV.
Finally, in Sec. V, we draw our conclusions.

II. THE INTERACTING DARK ENERGY
MODELS

In the standard cosmological model, the energy mo-
mentum tensor for radiation, baryons, cold DM, and
DE is conserved separately, i.e., for each component.
Conversely, in an interacting DE model, the fluid equa-
tions for the DE and DM are not conserved individ-
ually, but the dark sector as a whole satisfies the
usual energy-conservation equation. In a Friedmann-
Robertson-Walker universe, the conservation equations
for the fluids that exchange energy are:

⇢̇DM + 3H⇢DM = +Q ,

⇢̇DE + 3H(1 + wDE)⇢DE = �Q , (1)

where H is the Hubble parameter, ⇢DM and ⇢DE are
the energy densities for DM and DE, respectively, and
wDE ⌘ pDE/⇢DE is the DE EoS. It is clear from the
DM conservation equation that we assume pDM = 0, i.e.,
the DM EoS is that of pressureless matter (dust). Here,
Q represents the interaction kernel that can be written
phenomenologically as Q = 3H(⇠1⇢DM + ⇠2⇢DE), where
the coupling coe�cients (the constants ⇠1 and ⇠2) are
to be determined by observations (see, e.g., Refs. [14–
17, 28, 40, 41]). The energy flow from DE to DM is de-
fined by Q > 0, and conversely, Q < 0 defines an energy
flow from DM to DE. Considering the stability of the

cosmological perturbations when wDE is kept constant,
two choices can be made [42]: first, one can take ⇠1 = 0
and ⇠2 6= 0, together with a constant DE EoS within the
range �1 < wDE < �1/3 (dubbed model 1) or wDE < �1
(model 2); second, one can take ⇠2 = 0 and ⇠1 6= 0 with
wDE < �1, defining our third considered model (for a
summary, see Table I). For all three models, the other
components follow the standard conservation equations.
For a review of the topic, we refer to Refs. [16, 43].

TABLE I. Interacting DE models considered in the analysis
of this paper.

Model Q DE EoS
1 3⇠2H⇢DE �1 < wDE < �1/3
2 3⇠2H⇢DE wDE < �1
3 3⇠1H⇢DM wDE < �1

When one allows for an energy flow between DE and
DM, the energy densities present a di↵erent evolution for
each model. The presence of this change in the redshift
dependency leads to an e↵ective EoS for DM and for DE,
which depends on the form of the interaction. For models
1 and 2, the energy densities for DM and DE are given
by (see Ref. [41])
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• Present observations, however, are not able to 
confidently distinguish between these alternative 
interacting DE models and ΛCDM  

• Since DM and DE are currently only measured 
gravitationally and since gravity only probes the total 
energy momentum tensor, degeneracies in the 
cosmological parameters are inevitable.  



Can future cosmological experiments distinguish 
alternative models from the LCDM?



The Fisher matrix

• Fisher matrices are frequently used to constraint 
cosmological parameters using different data sets 

• The inverse of the Fisher matrix is the covariance matrix 

• Where       and      are the 1-    uncertainties in the 
parameters x and y respectively.

F[ ]−1 = C[ ]=
σ x
2 σ xy

σ xy σ y
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

σ x σ y σ



The observables: the CMB
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assumed fiducial values of a set of cosmological
parameters for each considered model. The total
number of parameters is 5N + 3 for a BAO sur-
vey divided in N redshift bins. The derivatives
of the observables with respect to the model pa-
rameters in Eq. (12) are then calculated around
this best fit point, which values were extracted,
for each considered interacting DE model, from
the results of Ref. [17]. Finally, we must derive
the errors on H(z) and DA(z) to later propagate
them into the desired dark sector parameters for
the interacting DE models.

After marginalizing the Fisher matrix defined above
over G(zi), �(zi), and P

i
shot

, a sub-matrix is then calcu-
lated as follows,

F
DE

mn =
X

↵, �

@p↵

@qm
F

(sub)

↵�

@p�

@qn
, (14)

where p↵, p� 2 P \ {G(zi), �(zi), P i
shot

} and qm, qn 2 Q,
the latter being the final set of parameters defined as
Q = {!b, !c, h, wDE, ⇠2} for models 1 and 2 and Q =
{!b, !c, h, wDE, ⇠1} for model 3.

The constraints on the dark sector parameters are then
determined by how well the survey is able to estimate the
values of H(z) and DA(z).

B. Information from CMB

In the context of cosmological parameters forecast, we
use the CMB information as a second probe to test the
ability of future surveys to constrain a possible interac-
tion in the dark sector and possibly to distinguish be-
tween the di↵erent interacting models described previ-
ously and the ⇤CDM model. We use the modified CAMB
software package [47] to generate the numerical power
spectra (CTT

` , C
EE
` , C

TE
` ) for our cosmological models

with `  3000. We do not consider primordial B-modes
(i.e., we assume a vanishing primordial tensor power
spectrum) or CMB lensing in the analysis. The latter
is justified by the fact that the HALOFIT [52] non-linear
implementation present in CAMB has only been tested
against N-body simulations for ⇤CDM cosmologies and
the non-linear structure evolution starts to a↵ect the
lensing signal already at ` > 400 (see Ref. [53] for studies
of CMB lensing and of the non-linear regime in coupled
DE cosmologies). We then construct the Fisher matrix
for the CMB temperature anisotropy and polarization as
follows (see Ref. [54]),

Fij =
X

`

X

X,Y

@C
X
`

@pi
(Cov�1

` )XY
@C

Y
`

@pj
, (15)

where C
X
` represents the power in the `-th multipole,

and where X stands for TT (temperature), EE (E-mode
polarization), and TE (temperature and E-mode polar-
ization cross-correlation). The covariance matrix is given

by

[Cov`] =
2

(2` + 1)fsky

2

4
⌅TTTT
` ⌅TTEE

` ⌅TTTE
`

⌅TTEE
` ⌅EEEE

` ⌅EETE
`

⌅TTTE
` ⌅EETE

` ⌅TETE
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3

5 ,

(16)
and the elements of the matrix are given in Appendix A.

TABLE II. Advanced ACT [39] specifications with fsky = 0.5.
The frequency of the detector, the beam resolution (✓beam),
and the map noise (�T ) are given in the three columns.

Frequency [GHz] ✓beam �T [µK-arcmin]
90 2.20 7.8
150 1.30 6.9
230 0.90 25

In the near future, CMB surveys will continue to
improve, especially ground-based instruments designed
to measure polarization. The Advanced Atacama Cos-
mology telescope (AdvACT) [39] is expected to obtain
precise measurements of the CMB small-scale polariza-
tion, enabling us to tackle a wide range of cosmologi-
cal physics. In particular, it will tighten the constraints
on the cosmological parameters of alternative models to
⇤CDM. The instrumental setup of AdvACT is outlined
in Table II. This is the information that we incorporate
in our Fisher matrix analysis to obtain the CMB forecast
(see Appendix A for details about how noise is handled).

IV. RESULTS AND DISCUSSION

Following the methodology described in the previous
section, we compute the Fisher matrices for the three in-
teracting DE models presented in Sec. II considering a
Euclid-like future BAO survey and an AdvACT-like fu-
ture CMB experiment. We also consider the combination
of BAO and CMB future measurements. Assuming that
the probes are uncorrelated, the Fisher matrices add as
follows [55]

F
total

ij = F
BAO

ij + F
CMB

ij . (17)

We first show the result for model 1 in Table III,
where the di↵erent columns represent the cosmological
parameter, its fiducial value, and the 68% confidence level
(C. L.) constraints that would result from AdvACT, Eu-
clid, and the combination of AdvACT and Euclid, re-
spectively. We notice that the marginalized error for
the DE EoS improves drastically for the combined anal-
ysis, being �(wDE) = 0.026 for Euclid, �(wDE) = 0.028
for AdvACT, and �(wDE) = 0.0044 for their combina-
tion: an improvement by a factor of ⇠ 6 when compared
with each individual probe. The constraint on the DM
density improves by a factor of ⇠ 3 for the combined
analysis (�(!c) = 0.00053), compared with Euclid alone
(�(!c) = 0.0017). A similar improvement occurs for the
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where the di↵erent columns represent the cosmological
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Appendix A: The elements of the CMB covariance
matrix

In this appendix, we write down explicitly the elements
of the CMB covariant matrix given in Eq. (16):

⌅TTTT
` =

�
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`

�2
, (A1)

⌅EEEE
` =

�
CEE
`

�2
, (A2)

⌅TETE
` =

�
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�2
+ CTT

` CEE
` , (A3)

⌅TTEE
` =

�
C

TE
`

�2
, (A4)

⌅TTTE
` = C

TE
` CTT

` , (A5)

⌅EETE
` = C

TE
` CEE

` . (A6)

In these equations, we defined CX
` ⌘ C

X
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parameters more e�ciently in combination with other
probes such as the CMB. The information stored in the
BAO peaks present in the matter power spectrum can
be used to determine the Hubble parameter H(z) and
the angular diameter distance DA(z) as a function of the
redshift, which subsequently allows us to calculate the
DE parameters. Let us first define the observed power
spectrum in redshift space using a particular reference
cosmology (in our case, ⇤CDM), which di↵ers from the
true cosmology (for details about this methodology, see
Ref. [49]), as follows,

Pobs(k
(ref)

? , k
(ref)

k ) =

 
D

(ref)

A (z)

DA(z)

!2✓
H(z)

H(ref)(z)

◆

⇥ Pg(k?, kk) + Pshot , (8)

where Pshot is the unknown Poisson shot noise. The
Hubble parameter H(z) and angular diameter distance
DA(z) values in the reference cosmology (⇤CDM) are
distinguished from the values in the true cosmology by
the superscript ‘(ref)’.

The angular diameter distance is given by

DA(z) =
c

1 + z

Z z

0

dz

H(z)
, (9)

hence it depends on the evolution of the Hubble parame-
ter. We can write H(z) as a function of the DE and DM
parameters, knowing that it is related to the DE and DM
densities through the Friedmann equation,

H(z)2 =
8⇡G

3
[⇢DE(z) + ⇢DM(z) + ⇢b(z)] , (10)

where the evolution of the di↵erent energy densities de-
pend on the model chosen as seen in Sec. II [cf. Eqs. (2)
and (4)].

The wavenumbers across and along the line of sight
in the true cosmology are denoted by k? and kk,
and they are related to the ones in the reference cos-

mology by k
(ref)

? = k?DA(z)/D
(ref)

A (z) and k
(ref)

k =

kkH
(ref)(z)/H(z). The galaxy power spectrum, Pg, can

be written as follows:

Pg(k
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⇥ Pmatter, z=0(k)e�k2µ2�2
r . (11)

In the equation above, we defined µ ⌘ k · r̂/k, where r̂
is the unit vector along the line of sight. The exponen-
tial damping factor is due to redshift uncertainties (�z),
where �r ⌘ c�z/H(z). Also, G(z), �(z), and b(z) are the
growth function, the linear redshift space distortion pa-
rameter, and the linear galaxy bias, respectively, which
are related through the definition �(z) ⌘ f/b(z). The
linear matter power spectrum, Pmatter, z=0(k), as well as
the growth rate, f , are generated using a modified ver-
sion of CAMB to account for the physics of interacting DE.

The e↵ect of the interaction in these models was
described in the previous section.

The above provides the necessary information to per-
form a Fisher matrix forecast for future BAO experi-
ments. The Fisher matrix formalism has become the
standard method for predicting the precision with which
various cosmological parameters can be extracted from
future data. The advantage of it relies on the fact that
it is a fast approach and generally returns accurate esti-
mates for the parameter errors from the derivatives of the
observables with respect to the model parameters around
the best fit value. We note, though, that it is not always
justified to use the Fisher matrix approach as opposed
to a Monte Carlo Markov Chain (MCMC) posterior like-
lihood estimation method (see, e.g., Ref. [50]). This is
especially true when one does not know whether the cos-
mological parameters of the given theoretical model will
be Gaussian or not for a given set of cosmological data.
This is why older studies have preferred an MCMC ap-
proach [35, 36], but these papers have shown that the
estimated likelihood contours for cosmological parame-
ters of phenomenological interacting DE could be well-
approximated by Gaussian ellipses. Furthermore, many
MCMC analyzes with current data have shown similar
Gaussian-like likelihood curves. Hence, we believe that
the Fisher matrix approach is well justified in this case,
though we must keep in mind that the constraints found
are probably lower bounds on the marginalized errors
(i.e., it is the best-case scenario).

For the matter power spectrum obtained from galaxy
surveys, the Fisher matrix is given by (see Ref. [51])

Fij =

Z
1

�1

Z kmax

kmin

@ ln Pg(k, µ)

@pi

@ ln Pg(k, µ)

@pj

⇥ Ve↵(k, µ)
2⇡k

2 dk dµ

2(2⇡)3
, (12)

where pi and pj are elements of the set of parameters for
the given cosmological model. The e↵ective volume of
the survey, Ve↵, can be written, for a constant comoving
number density (n̄), as

Ve↵(k, µ) =


n̄Pg(k, µ)

1 + n̄Pg(k, µ)

�2
Vsurvey . (13)

In this paper, we present the expected cosmological im-
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unbiased estimator of a given parameter, given that the
true value of the parameters are that of a so-called fiducial
model. Mathematically, these minimum errors are simply
the square roots of the diagonal elements of the inverse of
the Fisher matrix.

Assuming the likelihood function for the bandpowers of
a galaxy redshift survey to be Gaussian, the Fisher matrix
can be approximated as (Tegmark 1997)
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where the derivatives are evaluated at the parameter val-
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Vsurvey, (10)

where the last equality holds only if the comoving number
density n is constant in position. Here, µ = k⃗ · r̂/k, where

r̂ is the unit vector along the line of sight and k⃗ is the
wave vector with norm k = |⃗k|. Due to azimuthal sym-
metry around the line of sight, the power spectrum P (k⃗)
depends only on k and µ, but of course it has an implicit
dependence on the cosmological parameters pi. Equations
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or larger than kmax have been dropped. We use kmax

to exclude information from the non-linear regime, where
our linear power spectra are inaccurate. We adopt con-
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corresponding R = π/2k. At z = 0, this sets kmax =
0.1h Mpc−1, which is consistent with the numerical simu-
lations of Meiksin, White, & Peacock (1999) and notice-
ably smaller than that used by most published analysis of
past redshift surveys. The kmax values used for different
redshift bins are listed in Table 1. The maximum scale
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In principle, the mapping from the observed galaxy sep-
arations to the physical separations and wavevectors de-
pends upon the cosmological functions DA(z) and H(z),
which are varying continuously across the redshift range
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however, we opt to break the survey into a series of slabs
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a rectilinear division between the transverse and radial di-
rections. This approximation is harmless as regards the
statistical power of the survey or the parameter degenera-

cies involved. We use redshift bins that are narrow enough
to finely sample the dark energy behavior.

3.3. Parameters

A Fisher matrix formalism relies upon a detailed param-
eterization of its space of models. The performance fore-
casts are only as realistic as the generality of the permitted
models. For our forecasts, we proceed in two stages. First,
we define a very general parameterization based on CDM
cosmologies and assigning independent parameters to each
redshift bin. This permits us to forecast cosmographical
constraints independent of any dark energy model. Sec-
ond, we introduce a smaller set of parameters to describe
dark energy by relating the distances in different redshift
bins. This will allow us to combine many distance mea-
surements into constraints on a low-dimensional dark en-
ergy model.

3.3.1. Cold Dark Matter Cosmography

We use a very general space of cold dark matter models.
Our parameter include the matter density (Ωmh2), baryon
density (Ωbh2), matter fraction(Ωm), the optical depth to
reionization (τ), the spectral tilt (ns), the tensor-to-scalar
ratio (T/S), and the normalization (ln AS

2). Our fiducial
model is Ωm = 0.35, h = 0.65, ΩΛ = 0.65, ΩK = 0,
Ωbh2 = 0.021, τ = 0.05, tilt, ns = 1, and T/S = 0.

We supplement this model with many additional param-
eters to describe the behavior at each redshift. For the
CMB, we include an unknown angular distance DA,CMB

to the last scattering surface at z = 1000. For each redshift
survey bin, we add a parameter for the angular diameter
distance (lnDA), the Hubble parameter (lnH), the linear
growth function (lnG), the linear redshift distortion (ln β),
and an unknown shot noise Pshot. With 5 additional pa-
rameters in each of 6 redshift bins, the total number of
parameters for the CMB and galaxy surveys is 38. The
fiducial values of these parameters are evaluated at the
central redshift of each slice, and the fiducial values of β
are computed from the values of the bias as found from
the fiducial values of the observed galaxy clustering.

By keeping DA(z), H(z), and G(z) as separate param-
eters at each redshift, we have avoided any assumption
thus far of a specific dark energy model. The only cross-
talk between the various distances and amplitudes occurs
through the parameters of Ωmh2, Ωbh2, and ns that set
the shape of the galaxy power spectrum. In other words,
a good constraint at one redshift implies nothing for an-
other redshift because we have specified nothing about the
behavior of the distances as a function of redshift.

The unknown white shot noise Pshot is a shot noise in the
observed power spectrum at each redshift bin that remains
even after the conventional shot noise of inverse number
density is subtracted from the observed power spectrum.
These terms can arise from galaxy clustering bias (Seljak
2000) even on large scales because they zero-lag terms in
the correlation function, which are permitted in the theo-
ries of local bias (Coles 1993).

The partial degeneracy between redshift distortions and
cosmological distortions requires care because the broad-
band aspects of the observed power spectra are extremely
well-constrained in these surveys. If one knew the pre-
cise amplitude of the matter power spectrum at a given
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parameters more e�ciently in combination with other
probes such as the CMB. The information stored in the
BAO peaks present in the matter power spectrum can
be used to determine the Hubble parameter H(z) and
the angular diameter distance DA(z) as a function of the
redshift, which subsequently allows us to calculate the
DE parameters. Let us first define the observed power
spectrum in redshift space using a particular reference
cosmology (in our case, ⇤CDM), which di↵ers from the
true cosmology (for details about this methodology, see
Ref. [49]), as follows,

Pobs(k
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k ) =

 
D

(ref)

A (z)
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!2✓
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where Pshot is the unknown Poisson shot noise. The
Hubble parameter H(z) and angular diameter distance
DA(z) values in the reference cosmology (⇤CDM) are
distinguished from the values in the true cosmology by
the superscript ‘(ref)’.

The angular diameter distance is given by

DA(z) =
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0

dz
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, (9)

hence it depends on the evolution of the Hubble parame-
ter. We can write H(z) as a function of the DE and DM
parameters, knowing that it is related to the DE and DM
densities through the Friedmann equation,

H(z)2 =
8⇡G

3
[⇢DE(z) + ⇢DM(z) + ⇢b(z)] , (10)

where the evolution of the di↵erent energy densities de-
pend on the model chosen as seen in Sec. II [cf. Eqs. (2)
and (4)].

The wavenumbers across and along the line of sight
in the true cosmology are denoted by k? and kk,
and they are related to the ones in the reference cos-

mology by k
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be written as follows:
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In the equation above, we defined µ ⌘ k · r̂/k, where r̂
is the unit vector along the line of sight. The exponen-
tial damping factor is due to redshift uncertainties (�z),
where �r ⌘ c�z/H(z). Also, G(z), �(z), and b(z) are the
growth function, the linear redshift space distortion pa-
rameter, and the linear galaxy bias, respectively, which
are related through the definition �(z) ⌘ f/b(z). The
linear matter power spectrum, Pmatter, z=0(k), as well as
the growth rate, f , are generated using a modified ver-
sion of CAMB to account for the physics of interacting DE.

The e↵ect of the interaction in these models was
described in the previous section.

The above provides the necessary information to per-
form a Fisher matrix forecast for future BAO experi-
ments. The Fisher matrix formalism has become the
standard method for predicting the precision with which
various cosmological parameters can be extracted from
future data. The advantage of it relies on the fact that
it is a fast approach and generally returns accurate esti-
mates for the parameter errors from the derivatives of the
observables with respect to the model parameters around
the best fit value. We note, though, that it is not always
justified to use the Fisher matrix approach as opposed
to a Monte Carlo Markov Chain (MCMC) posterior like-
lihood estimation method (see, e.g., Ref. [50]). This is
especially true when one does not know whether the cos-
mological parameters of the given theoretical model will
be Gaussian or not for a given set of cosmological data.
This is why older studies have preferred an MCMC ap-
proach [35, 36], but these papers have shown that the
estimated likelihood contours for cosmological parame-
ters of phenomenological interacting DE could be well-
approximated by Gaussian ellipses. Furthermore, many
MCMC analyzes with current data have shown similar
Gaussian-like likelihood curves. Hence, we believe that
the Fisher matrix approach is well justified in this case,
though we must keep in mind that the constraints found
are probably lower bounds on the marginalized errors
(i.e., it is the best-case scenario).

For the matter power spectrum obtained from galaxy
surveys, the Fisher matrix is given by (see Ref. [51])
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where pi and pj are elements of the set of parameters for
the given cosmological model. The e↵ective volume of
the survey, Ve↵, can be written, for a constant comoving
number density (n̄), as

Ve↵(k, µ) =


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1 + n̄Pg(k, µ)
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In this paper, we present the expected cosmological im-
plications of the BAO measurements for a Euclid-like sur-
vey (for specifications of the Euclid survey, see, for exam-
ple, Ref. [38] and references therein). We assume an area
of 15 000 deg2, a redshift accuracy of �z/(1+ z) = 0.001,
and a redshift range 0.5  z  2.1.
We then take 15 redshift bins of width �z = 0.1

centered on zi. The set of parameters of interest
to obtain constraints on the dark sector is P =
{!b ⌘ h

2⌦b, !c, h, H(zi), DA(zi), G(zi), �(zi), P i
shot

}.
For a given redshift slice, the parameters H(zi),
DA(zi), G(zi), �(zi), and P

i
shot

are estimated simul-
taneously with !b, !c, and h and according to the
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M. Tegmark (1997) 
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be used to determine the Hubble parameter H(z) and
the angular diameter distance DA(z) as a function of the
redshift, which subsequently allows us to calculate the
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spectrum in redshift space using a particular reference
cosmology (in our case, ⇤CDM), which di↵ers from the
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where �r ⌘ c�z/H(z). Also, G(z), �(z), and b(z) are the
growth function, the linear redshift space distortion pa-
rameter, and the linear galaxy bias, respectively, which
are related through the definition �(z) ⌘ f/b(z). The
linear matter power spectrum, Pmatter, z=0(k), as well as
the growth rate, f , are generated using a modified ver-
sion of CAMB to account for the physics of interacting DE.

The e↵ect of the interaction in these models was
described in the previous section.

The above provides the necessary information to per-
form a Fisher matrix forecast for future BAO experi-
ments. The Fisher matrix formalism has become the
standard method for predicting the precision with which
various cosmological parameters can be extracted from
future data. The advantage of it relies on the fact that
it is a fast approach and generally returns accurate esti-
mates for the parameter errors from the derivatives of the
observables with respect to the model parameters around
the best fit value. We note, though, that it is not always
justified to use the Fisher matrix approach as opposed
to a Monte Carlo Markov Chain (MCMC) posterior like-
lihood estimation method (see, e.g., Ref. [50]). This is
especially true when one does not know whether the cos-
mological parameters of the given theoretical model will
be Gaussian or not for a given set of cosmological data.
This is why older studies have preferred an MCMC ap-
proach [35, 36], but these papers have shown that the
estimated likelihood contours for cosmological parame-
ters of phenomenological interacting DE could be well-
approximated by Gaussian ellipses. Furthermore, many
MCMC analyzes with current data have shown similar
Gaussian-like likelihood curves. Hence, we believe that
the Fisher matrix approach is well justified in this case,
though we must keep in mind that the constraints found
are probably lower bounds on the marginalized errors
(i.e., it is the best-case scenario).

For the matter power spectrum obtained from galaxy
surveys, the Fisher matrix is given by (see Ref. [51])
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the angular diameter distance DA(z) as a function of the
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rameter, and the linear galaxy bias, respectively, which
are related through the definition �(z) ⌘ f/b(z). The
linear matter power spectrum, Pmatter, z=0(k), as well as
the growth rate, f , are generated using a modified ver-
sion of CAMB to account for the physics of interacting DE.

The e↵ect of the interaction in these models was
described in the previous section.

The above provides the necessary information to per-
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future data. The advantage of it relies on the fact that
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where we use the same notation as in Ref. [1] with h

defined such that H0 = 100h km s�1 Mpc�1, and where
H0 and !c ⌘ h

2⌦c are the Hubble parameter and the
physical density of cold DM today.

Since DM and DE are currently only measured gravi-
tationally and since gravity only probes the total energy
momentum tensor, degeneracies in the cosmological pa-
rameters are inevitable. As it is already known in the
literature (see, e.g., Refs. [14, 44, 45]), and as we can see
in the expressions for the energy densities of the coupled
dark components, there is a degeneracy between wDE and
⌦c. At the background level, the fact that only the to-
tal energy momentum can be measured also leads to a
degeneracy between the coupling constant and wDE, as
we can see in the e↵ective DE EoS for models 1 and 2
[see Eq. (3)]. For model 3, this degeneracy is no longer
present today since w

e↵

DE
' wDE for r ⌧ 1 (i.e., when

⇢DE � ⇢DM). In that case, the DE EoS and the interact-
ing constant can be measured independently using the
background evolution [14].

To be able to compare theoretical predictions from
the di↵erent phenomenological models with experiments,
the cosmological perturbations for these models have
been calculated in Ref. [14]. In this reference, the
linear perturbations are calculated by perturb-
ing the Friedmann-Lemâıtre-Robertson-Walker
spacetime and the energy-momentum tensor of
the coupled DM-DE fluid. First, the back-
ground interaction four-vector is given by Q

⌫
(�)

=

[Q, 0, 0, 0]T , which represents the exchange of en-
ergy density only [c.f. Eq. (1)]. The subscript �
stands for either DE in the case of models 1 and
2 or DM in the case of model 3. Then, the per-
turbed four-vector representing the perturbation
in the interaction between the DM and DE fluids,
�Q

⌫
(�)

, can be decomposed into

�Q
0

(�)
= ±

✓
� 

a
Q +

1

a
�Q

◆
,

�Qp(�) = Q
I
p(�)

���
t
+ Q

0

(�)
vt . (7)

The ± sign refers to DM or DE respectively;
�Qp(�) is the potential of the perturbed energy-

momentum transfer �Qi
(�)

; Q
I
p(�)

���
t
is the external

non-gravitational force density; and vt is the aver-
age velocity of the energy transfer. Since we have
a stationary energy transfer, we only consider in-

ertial drag e↵ects, so Q
I
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and vt vanish, which

implies that �Qi
(�)

= 0. One can then evaluate the
linear order perturbation equations for DM and
DE (we refer to Ref. [14] for more details; see also
Ref. [46] for another study of the perturbations
in this context).

With the perturbations, one can then compute
the CMB temperature angular power spectrum
(CTT

` ) and the matter power spectrum (Pmatter(k)).
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FIG. 1. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠2 for model 1. The other pa-
rameters assume the fiducial values given in Sec. III, Table
III. In particular, wDE = �0.9434.

The corresponding spectra are shown for di↵er-
ent values of the coupling constant for each of the
models described in Table I in Figs. 1 (model 1),
2 (model 2), and 3 (model 3). By computing the
perturbations, one can also evaluate the growth
rate (f(z)) and the root mean square of matter
fluctuations today at a characteristic length scale
of 8 Mpc/h (�8(z)) in order to illustrate how the
interaction a↵ects the growth of structure. This
is shown in Fig. 4. The plots are generated using a
modified version of the CAMB software package [47], which
incorporates the physics of interacting DE. Moreover,
the cosmological parameters (excluding the values for the
coupling constants ⇠2 and ⇠1 for the power spectra)
are assumed to take the fiducial values given in Sec. III,
see Table III for Fig. 1, Table IV for Fig. 2, and Table V
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where we use the same notation as in Ref. [1] with h

defined such that H0 = 100h km s�1 Mpc�1, and where
H0 and !c ⌘ h

2⌦c are the Hubble parameter and the
physical density of cold DM today.

Since DM and DE are currently only measured gravi-
tationally and since gravity only probes the total energy
momentum tensor, degeneracies in the cosmological pa-
rameters are inevitable. As it is already known in the
literature (see, e.g., Refs. [14, 44, 45]), and as we can see
in the expressions for the energy densities of the coupled
dark components, there is a degeneracy between wDE and
⌦c. At the background level, the fact that only the to-
tal energy momentum can be measured also leads to a
degeneracy between the coupling constant and wDE, as
we can see in the e↵ective DE EoS for models 1 and 2
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present today since w

e↵

DE
' wDE for r ⌧ 1 (i.e., when

⇢DE � ⇢DM). In that case, the DE EoS and the interact-
ing constant can be measured independently using the
background evolution [14].

To be able to compare theoretical predictions from
the di↵erent phenomenological models with experiments,
the cosmological perturbations for these models have
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linear perturbations are calculated by perturb-
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spacetime and the energy-momentum tensor of
the coupled DM-DE fluid. First, the back-
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FIG. 1. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠2 for model 1. The other pa-
rameters assume the fiducial values given in Sec. III, Table
III. In particular, wDE = �0.9434.

The corresponding spectra are shown for di↵er-
ent values of the coupling constant for each of the
models described in Table I in Figs. 1 (model 1),
2 (model 2), and 3 (model 3). By computing the
perturbations, one can also evaluate the growth
rate (f(z)) and the root mean square of matter
fluctuations today at a characteristic length scale
of 8 Mpc/h (�8(z)) in order to illustrate how the
interaction a↵ects the growth of structure. This
is shown in Fig. 4. The plots are generated using a
modified version of the CAMB software package [47], which
incorporates the physics of interacting DE. Moreover,
the cosmological parameters (excluding the values for the
coupling constants ⇠2 and ⇠1 for the power spectra)
are assumed to take the fiducial values given in Sec. III,
see Table III for Fig. 1, Table IV for Fig. 2, and Table V
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FIG. 2. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠2 for model 2. The other pa-
rameters assume the fiducial values given in Sec. III, Table
IV. In particular, wDE = �1.087.

for Fig. 3.

As noted in Ref. [14], changes in the DE EoS
mainly influence the low-` angular power spec-
trum and can shift the overall amplitude of the
matter power spectrum slightly. For this reason, we
only show the changes caused by varying the coupling
constant in the power spectra. From the plots, we
see that interacting DE can have e↵ects that are
degenerate with changing the DE EoS, but these
degeneracies can be broken by including all the
information from both the CMB angular power
spectrum and the matter power spectrum today.
Indeed, interacting DE generally changes the size
of the CMB acoustic peaks and it a↵ect the am-
plitude of Pmatter only at large k, which can hardly
be mimicked by a di↵erent EoS.

FIG. 3. Plots of the CMB temperature power spectrum (up-
per panel) and matter power spectrum (lower panel) for three
di↵erent coupling parameters ⇠1 for model 3. The other pa-
rameters assume the fiducial values given in Sec. III, Table V.
In particular, wDE = �1.06.

Generally, we can see that for large couplings (⇠1,2 =
0.1), the changes in the acoustic peaks of the power spec-
tra compared to wCDM (⇠1,2 = 0) are very pronounced,
so large couplings can be easily ruled out by observations.
However, in general, small couplings introduce more sub-
tle changes that are harder to be distinguished, and from
previous analyzes, small couplings are preferred by the
observations [15–28], although with small significance.
Although subtle, these changes behave di↵erently
depending on the model chosen, so it is important
to understand how each model a↵ects the power
spectra.

For model 1, let us first note that the interact-
ing constant must be negative [17]. This means
that there is an energy flow from DM to DE and
that the DM energy density is higher in the past
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parameters more e�ciently in combination with other
probes such as the CMB. The information stored in the
BAO peaks present in the matter power spectrum can
be used to determine the Hubble parameter H(z) and
the angular diameter distance DA(z) as a function of the
redshift, which subsequently allows us to calculate the
DE parameters. Let us first define the observed power
spectrum in redshift space using a particular reference
cosmology (in our case, ⇤CDM), which di↵ers from the
true cosmology (for details about this methodology, see
Ref. [49]), as follows,

Pobs(k
(ref)

? , k
(ref)

k ) =

 
D

(ref)

A (z)

DA(z)

!2✓
H(z)

H(ref)(z)

◆

⇥ Pg(k?, kk) + Pshot , (8)

where Pshot is the unknown Poisson shot noise. The
Hubble parameter H(z) and angular diameter distance
DA(z) values in the reference cosmology (⇤CDM) are
distinguished from the values in the true cosmology by
the superscript ‘(ref)’.

The angular diameter distance is given by

DA(z) =
c

1 + z

Z z

0

dz

H(z)
, (9)

hence it depends on the evolution of the Hubble parame-
ter. We can write H(z) as a function of the DE and DM
parameters, knowing that it is related to the DE and DM
densities through the Friedmann equation,

H(z)2 =
8⇡G

3
[⇢DE(z) + ⇢DM(z) + ⇢b(z)] , (10)

where the evolution of the di↵erent energy densities de-
pend on the model chosen as seen in Sec. II [cf. Eqs. (2)
and (4)].

The wavenumbers across and along the line of sight
in the true cosmology are denoted by k? and kk,
and they are related to the ones in the reference cos-

mology by k
(ref)

? = k?DA(z)/D
(ref)

A (z) and k
(ref)

k =

kkH
(ref)(z)/H(z). The galaxy power spectrum, Pg, can

be written as follows:

Pg(k
(ref)

? , k
(ref)

k ) = b
2(z)

�
1 + �µ

2
�2
✓

G(z)

G(z = 0)

◆2

⇥ Pmatter, z=0(k)e�k2µ2�2
r . (11)

In the equation above, we defined µ ⌘ k · r̂/k, where r̂
is the unit vector along the line of sight. The exponen-
tial damping factor is due to redshift uncertainties (�z),
where �r ⌘ c�z/H(z). Also, G(z), �(z), and b(z) are the
growth function, the linear redshift space distortion pa-
rameter, and the linear galaxy bias, respectively, which
are related through the definition �(z) ⌘ f/b(z). The
linear matter power spectrum, Pmatter, z=0(k), as well as
the growth rate, f , are generated using a modified ver-
sion of CAMB to account for the physics of interacting DE.

The e↵ect of the interaction in these models was
described in the previous section.

The above provides the necessary information to per-
form a Fisher matrix forecast for future BAO experi-
ments. The Fisher matrix formalism has become the
standard method for predicting the precision with which
various cosmological parameters can be extracted from
future data. The advantage of it relies on the fact that
it is a fast approach and generally returns accurate esti-
mates for the parameter errors from the derivatives of the
observables with respect to the model parameters around
the best fit value. We note, though, that it is not always
justified to use the Fisher matrix approach as opposed
to a Monte Carlo Markov Chain (MCMC) posterior like-
lihood estimation method (see, e.g., Ref. [50]). This is
especially true when one does not know whether the cos-
mological parameters of the given theoretical model will
be Gaussian or not for a given set of cosmological data.
This is why older studies have preferred an MCMC ap-
proach [35, 36], but these papers have shown that the
estimated likelihood contours for cosmological parame-
ters of phenomenological interacting DE could be well-
approximated by Gaussian ellipses. Furthermore, many
MCMC analyzes with current data have shown similar
Gaussian-like likelihood curves. Hence, we believe that
the Fisher matrix approach is well justified in this case,
though we must keep in mind that the constraints found
are probably lower bounds on the marginalized errors
(i.e., it is the best-case scenario).

For the matter power spectrum obtained from galaxy
surveys, the Fisher matrix is given by (see Ref. [51])

Fij =

Z
1

�1

Z kmax

kmin

@ ln Pg(k, µ)

@pi

@ ln Pg(k, µ)

@pj

⇥ Ve↵(k, µ)
2⇡k

2 dk dµ

2(2⇡)3
, (12)

where pi and pj are elements of the set of parameters for
the given cosmological model. The e↵ective volume of
the survey, Ve↵, can be written, for a constant comoving
number density (n̄), as

Ve↵(k, µ) =


n̄Pg(k, µ)

1 + n̄Pg(k, µ)

�2
Vsurvey . (13)

In this paper, we present the expected cosmological im-
plications of the BAO measurements for a Euclid-like sur-
vey (for specifications of the Euclid survey, see, for exam-
ple, Ref. [38] and references therein). We assume an area
of 15 000 deg2, a redshift accuracy of �z/(1+ z) = 0.001,
and a redshift range 0.5  z  2.1.
We then take 15 redshift bins of width �z = 0.1

centered on zi. The set of parameters of interest
to obtain constraints on the dark sector is P =
{!b ⌘ h

2⌦b, !c, h, H(zi), DA(zi), G(zi), �(zi), P i
shot

}.
For a given redshift slice, the parameters H(zi),
DA(zi), G(zi), �(zi), and P

i
shot

are estimated simul-
taneously with !b, !c, and h and according to the
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later propagate them into the desired dark sector 
parameters for the interacting DE models.  

• The final set of parameters are
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assumed fiducial values of a set of cosmological
parameters for each considered model. The total
number of parameters is 5N + 3 for a BAO sur-
vey divided in N redshift bins. The derivatives
of the observables with respect to the model pa-
rameters in Eq. (12) are then calculated around
this best fit point, which values were extracted,
for each considered interacting DE model, from
the results of Ref. [17]. Finally, we must derive
the errors on H(z) and DA(z) to later propagate
them into the desired dark sector parameters for
the interacting DE models.

After marginalizing the Fisher matrix defined above
over G(zi), �(zi), and P

i
shot

, a sub-matrix is then calcu-
lated as follows,

F
DE

mn =
X

↵, �

@p↵

@qm
F

(sub)

↵�

@p�

@qn
, (14)

where p↵, p� 2 P \ {G(zi), �(zi), P i
shot

} and qm, qn 2 Q,
the latter being the final set of parameters defined as
Q = {!b, !c, h, wDE, ⇠2} for models 1 and 2 and Q =
{!b, !c, h, wDE, ⇠1} for model 3.

The constraints on the dark sector parameters are then
determined by how well the survey is able to estimate the
values of H(z) and DA(z).

B. Information from CMB

In the context of cosmological parameters forecast, we
use the CMB information as a second probe to test the
ability of future surveys to constrain a possible interac-
tion in the dark sector and possibly to distinguish be-
tween the di↵erent interacting models described previ-
ously and the ⇤CDM model. We use the modified CAMB
software package [47] to generate the numerical power
spectra (CTT

` , C
EE
` , C

TE
` ) for our cosmological models

with `  3000. We do not consider primordial B-modes
(i.e., we assume a vanishing primordial tensor power
spectrum) or CMB lensing in the analysis. The latter
is justified by the fact that the HALOFIT [52] non-linear
implementation present in CAMB has only been tested
against N-body simulations for ⇤CDM cosmologies and
the non-linear structure evolution starts to a↵ect the
lensing signal already at ` > 400 (see Ref. [53] for studies
of CMB lensing and of the non-linear regime in coupled
DE cosmologies). We then construct the Fisher matrix
for the CMB temperature anisotropy and polarization as
follows (see Ref. [54]),

Fij =
X

`

X

X,Y

@C
X
`

@pi
(Cov�1

` )XY
@C

Y
`

@pj
, (15)

where C
X
` represents the power in the `-th multipole,

and where X stands for TT (temperature), EE (E-mode
polarization), and TE (temperature and E-mode polar-
ization cross-correlation). The covariance matrix is given

by

[Cov`] =
2

(2` + 1)fsky

2

4
⌅TTTT
` ⌅TTEE

` ⌅TTTE
`

⌅TTEE
` ⌅EEEE

` ⌅EETE
`

⌅TTTE
` ⌅EETE

` ⌅TETE
`

3

5 ,

(16)
and the elements of the matrix are given in Appendix A.

TABLE II. Advanced ACT [39] specifications with fsky = 0.5.
The frequency of the detector, the beam resolution (✓beam),
and the map noise (�T ) are given in the three columns.

Frequency [GHz] ✓beam �T [µK-arcmin]
90 2.20 7.8
150 1.30 6.9
230 0.90 25

In the near future, CMB surveys will continue to
improve, especially ground-based instruments designed
to measure polarization. The Advanced Atacama Cos-
mology telescope (AdvACT) [39] is expected to obtain
precise measurements of the CMB small-scale polariza-
tion, enabling us to tackle a wide range of cosmologi-
cal physics. In particular, it will tighten the constraints
on the cosmological parameters of alternative models to
⇤CDM. The instrumental setup of AdvACT is outlined
in Table II. This is the information that we incorporate
in our Fisher matrix analysis to obtain the CMB forecast
(see Appendix A for details about how noise is handled).

IV. RESULTS AND DISCUSSION

Following the methodology described in the previous
section, we compute the Fisher matrices for the three in-
teracting DE models presented in Sec. II considering a
Euclid-like future BAO survey and an AdvACT-like fu-
ture CMB experiment. We also consider the combination
of BAO and CMB future measurements. Assuming that
the probes are uncorrelated, the Fisher matrices add as
follows [55]

F
total

ij = F
BAO

ij + F
CMB

ij . (17)

We first show the result for model 1 in Table III,
where the di↵erent columns represent the cosmological
parameter, its fiducial value, and the 68% confidence level
(C. L.) constraints that would result from AdvACT, Eu-
clid, and the combination of AdvACT and Euclid, re-
spectively. We notice that the marginalized error for
the DE EoS improves drastically for the combined anal-
ysis, being �(wDE) = 0.026 for Euclid, �(wDE) = 0.028
for AdvACT, and �(wDE) = 0.0044 for their combina-
tion: an improvement by a factor of ⇠ 6 when compared
with each individual probe. The constraint on the DM
density improves by a factor of ⇠ 3 for the combined
analysis (�(!c) = 0.00053), compared with Euclid alone
(�(!c) = 0.0017). A similar improvement occurs for the
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B. Information from CMB

In the context of cosmological parameters forecast, we
use the CMB information as a second probe to test the
ability of future surveys to constrain a possible interac-
tion in the dark sector and possibly to distinguish be-
tween the di↵erent interacting models described previ-
ously and the ⇤CDM model. We use the modified CAMB
software package [47] to generate the numerical power
spectra (CTT
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` ) for our cosmological models

with `  3000. We do not consider primordial B-modes
(i.e., we assume a vanishing primordial tensor power
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is justified by the fact that the HALOFIT [52] non-linear
implementation present in CAMB has only been tested
against N-body simulations for ⇤CDM cosmologies and
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follows (see Ref. [54]),

Fij =
X

`

X

X,Y

@C
X
`

@pi
(Cov�1

` )XY
@C

Y
`

@pj
, (15)

where C
X
` represents the power in the `-th multipole,

and where X stands for TT (temperature), EE (E-mode
polarization), and TE (temperature and E-mode polar-
ization cross-correlation). The covariance matrix is given

by

[Cov`] =
2

(2` + 1)fsky

2

4
⌅TTTT
` ⌅TTEE

` ⌅TTTE
`

⌅TTEE
` ⌅EEEE

` ⌅EETE
`

⌅TTTE
` ⌅EETE

` ⌅TETE
`

3

5 ,

(16)
and the elements of the matrix are given in Appendix A.

TABLE II. Advanced ACT [39] specifications with fsky = 0.5.
The frequency of the detector, the beam resolution (✓beam),
and the map noise (�T ) are given in the three columns.

Frequency [GHz] ✓beam �T [µK-arcmin]
90 2.20 7.8
150 1.30 6.9
230 0.90 25

In the near future, CMB surveys will continue to
improve, especially ground-based instruments designed
to measure polarization. The Advanced Atacama Cos-
mology telescope (AdvACT) [39] is expected to obtain
precise measurements of the CMB small-scale polariza-
tion, enabling us to tackle a wide range of cosmologi-
cal physics. In particular, it will tighten the constraints
on the cosmological parameters of alternative models to
⇤CDM. The instrumental setup of AdvACT is outlined
in Table II. This is the information that we incorporate
in our Fisher matrix analysis to obtain the CMB forecast
(see Appendix A for details about how noise is handled).

IV. RESULTS AND DISCUSSION

Following the methodology described in the previous
section, we compute the Fisher matrices for the three in-
teracting DE models presented in Sec. II considering a
Euclid-like future BAO survey and an AdvACT-like fu-
ture CMB experiment. We also consider the combination
of BAO and CMB future measurements. Assuming that
the probes are uncorrelated, the Fisher matrices add as
follows [55]
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We first show the result for model 1 in Table III,
where the di↵erent columns represent the cosmological
parameter, its fiducial value, and the 68% confidence level
(C. L.) constraints that would result from AdvACT, Eu-
clid, and the combination of AdvACT and Euclid, re-
spectively. We notice that the marginalized error for
the DE EoS improves drastically for the combined anal-
ysis, being �(wDE) = 0.026 for Euclid, �(wDE) = 0.028
for AdvACT, and �(wDE) = 0.0044 for their combina-
tion: an improvement by a factor of ⇠ 6 when compared
with each individual probe. The constraint on the DM
density improves by a factor of ⇠ 3 for the combined
analysis (�(!c) = 0.00053), compared with Euclid alone
(�(!c) = 0.0017). A similar improvement occurs for the
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this best fit point, which values were extracted,
for each considered interacting DE model, from
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{!b, !c, h, wDE, ⇠1} for model 3.

The constraints on the dark sector parameters are then
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to measure polarization. The Advanced Atacama Cos-
mology telescope (AdvACT) [39] is expected to obtain
precise measurements of the CMB small-scale polariza-
tion, enabling us to tackle a wide range of cosmologi-
cal physics. In particular, it will tighten the constraints
on the cosmological parameters of alternative models to
⇤CDM. The instrumental setup of AdvACT is outlined
in Table II. This is the information that we incorporate
in our Fisher matrix analysis to obtain the CMB forecast
(see Appendix A for details about how noise is handled).

IV. RESULTS AND DISCUSSION

Following the methodology described in the previous
section, we compute the Fisher matrices for the three in-
teracting DE models presented in Sec. II considering a
Euclid-like future BAO survey and an AdvACT-like fu-
ture CMB experiment. We also consider the combination
of BAO and CMB future measurements. Assuming that
the probes are uncorrelated, the Fisher matrices add as
follows [55]
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We first show the result for model 1 in Table III,
where the di↵erent columns represent the cosmological
parameter, its fiducial value, and the 68% confidence level
(C. L.) constraints that would result from AdvACT, Eu-
clid, and the combination of AdvACT and Euclid, re-
spectively. We notice that the marginalized error for
the DE EoS improves drastically for the combined anal-
ysis, being �(wDE) = 0.026 for Euclid, �(wDE) = 0.028
for AdvACT, and �(wDE) = 0.0044 for their combina-
tion: an improvement by a factor of ⇠ 6 when compared
with each individual probe. The constraint on the DM
density improves by a factor of ⇠ 3 for the combined
analysis (�(!c) = 0.00053), compared with Euclid alone
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the results of Ref. [17]. Finally, we must derive
the errors on H(z) and DA(z) to later propagate
them into the desired dark sector parameters for
the interacting DE models.

After marginalizing the Fisher matrix defined above
over G(zi), �(zi), and P

i
shot

, a sub-matrix is then calcu-
lated as follows,

F
DE

mn =
X

↵, �

@p↵

@qm
F

(sub)

↵�

@p�

@qn
, (14)

where p↵, p� 2 P \ {G(zi), �(zi), P i
shot

} and qm, qn 2 Q,
the latter being the final set of parameters defined as
Q = {!b, !c, h, wDE, ⇠2} for models 1 and 2 and Q =
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values of H(z) and DA(z).
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In the context of cosmological parameters forecast, we
use the CMB information as a second probe to test the
ability of future surveys to constrain a possible interac-
tion in the dark sector and possibly to distinguish be-
tween the di↵erent interacting models described previ-
ously and the ⇤CDM model. We use the modified CAMB
software package [47] to generate the numerical power
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` ) for our cosmological models
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(i.e., we assume a vanishing primordial tensor power
spectrum) or CMB lensing in the analysis. The latter
is justified by the fact that the HALOFIT [52] non-linear
implementation present in CAMB has only been tested
against N-body simulations for ⇤CDM cosmologies and
the non-linear structure evolution starts to a↵ect the
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In the near future, CMB surveys will continue to
improve, especially ground-based instruments designed
to measure polarization. The Advanced Atacama Cos-
mology telescope (AdvACT) [39] is expected to obtain
precise measurements of the CMB small-scale polariza-
tion, enabling us to tackle a wide range of cosmologi-
cal physics. In particular, it will tighten the constraints
on the cosmological parameters of alternative models to
⇤CDM. The instrumental setup of AdvACT is outlined
in Table II. This is the information that we incorporate
in our Fisher matrix analysis to obtain the CMB forecast
(see Appendix A for details about how noise is handled).

IV. RESULTS AND DISCUSSION

Following the methodology described in the previous
section, we compute the Fisher matrices for the three in-
teracting DE models presented in Sec. II considering a
Euclid-like future BAO survey and an AdvACT-like fu-
ture CMB experiment. We also consider the combination
of BAO and CMB future measurements. Assuming that
the probes are uncorrelated, the Fisher matrices add as
follows [55]
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We first show the result for model 1 in Table III,
where the di↵erent columns represent the cosmological
parameter, its fiducial value, and the 68% confidence level
(C. L.) constraints that would result from AdvACT, Eu-
clid, and the combination of AdvACT and Euclid, re-
spectively. We notice that the marginalized error for
the DE EoS improves drastically for the combined anal-
ysis, being �(wDE) = 0.026 for Euclid, �(wDE) = 0.028
for AdvACT, and �(wDE) = 0.0044 for their combina-
tion: an improvement by a factor of ⇠ 6 when compared
with each individual probe. The constraint on the DM
density improves by a factor of ⇠ 3 for the combined
analysis (�(!c) = 0.00053), compared with Euclid alone
(�(!c) = 0.0017). A similar improvement occurs for the
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Combined forecast

• Future generation of astronomical ground- and space-based 
experiments as well as future CMB experiments will be able to 
precisely perform consistency tests of the ΛCDM model and 
significantly improve constraints on alternative scenarios, including 
the interacting DE models.  

• We aim to test the ability of the BAO information obtained from an 
updated Euclid-like experiment  and the primary CMB fluctuations 
from a possible future experiment like AdvACT  to constrain the 
phenomenological interacting DE models described here and 
determine how their combination can help break the degeneracies 
between the different cosmological parameters.  
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values of H(z) and DA(z).

B. Information from CMB
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use the CMB information as a second probe to test the
ability of future surveys to constrain a possible interac-
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software package [47] to generate the numerical power
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(i.e., we assume a vanishing primordial tensor power
spectrum) or CMB lensing in the analysis. The latter
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implementation present in CAMB has only been tested
against N-body simulations for ⇤CDM cosmologies and
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In the near future, CMB surveys will continue to
improve, especially ground-based instruments designed
to measure polarization. The Advanced Atacama Cos-
mology telescope (AdvACT) [39] is expected to obtain
precise measurements of the CMB small-scale polariza-
tion, enabling us to tackle a wide range of cosmologi-
cal physics. In particular, it will tighten the constraints
on the cosmological parameters of alternative models to
⇤CDM. The instrumental setup of AdvACT is outlined
in Table II. This is the information that we incorporate
in our Fisher matrix analysis to obtain the CMB forecast
(see Appendix A for details about how noise is handled).

IV. RESULTS AND DISCUSSION

Following the methodology described in the previous
section, we compute the Fisher matrices for the three in-
teracting DE models presented in Sec. II considering a
Euclid-like future BAO survey and an AdvACT-like fu-
ture CMB experiment. We also consider the combination
of BAO and CMB future measurements. Assuming that
the probes are uncorrelated, the Fisher matrices add as
follows [55]
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We first show the result for model 1 in Table III,
where the di↵erent columns represent the cosmological
parameter, its fiducial value, and the 68% confidence level
(C. L.) constraints that would result from AdvACT, Eu-
clid, and the combination of AdvACT and Euclid, re-
spectively. We notice that the marginalized error for
the DE EoS improves drastically for the combined anal-
ysis, being �(wDE) = 0.026 for Euclid, �(wDE) = 0.028
for AdvACT, and �(wDE) = 0.0044 for their combina-
tion: an improvement by a factor of ⇠ 6 when compared
with each individual probe. The constraint on the DM
density improves by a factor of ⇠ 3 for the combined
analysis (�(!c) = 0.00053), compared with Euclid alone
(�(!c) = 0.0017). A similar improvement occurs for the
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FIG. 5. Fisher forecast contours for model 1 with CMB and BAO information using AdvACT (red curves) and Euclid (blue
curves) experimental setups, respectively. The dashed curves represent 68% C. L. and the solid curves represent 99.9% C. L.
The combined contours are shown by the green filled ellipses. Similarly, the darker ellipses represent 68% C. L. and the fainter
ones represent 99.9% C. L. See Table III for numerical values.

FIG. 6. Correlation matrix computed according to Eq. (18) for AdvACT (left), Euclid (center), and their combination (right)
for model 1. The color in each cell indicates the correlation between two model parameters, ranging from 0 (completely
independent) to ±1 (completely (anti-)correlated).

TABLE III. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 1. The forecasted errors are
given assuming data from Advanced ACT (CMB) and Eu-
clid (BAO) alone, and the last column gives the combined
forecast. Recall that we define !b ⌘ h

2⌦b, !c ⌘ h
2⌦c, and

h = H0/(100 km/s/Mpc).

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02224 3.86e-05 0.00028 3.69e-05
!c 0.08725 0.017 0.0017 0.00053
h 0.6845 0.0079 0.0055 0.0014

wDE -0.9434 0.028 0.026 0.0044
⇠2 -0.0929 0.045 0.0037 0.0019

coupling constant, where we find �(⇠2) = 0.0037 for Eu-
clid alone and �(⇠2) = 0.0019 for AdvACT + Euclid.
Such a stringent constraint would exclude the null in-

teraction corresponding to wCDM with high confidence
given that the contours from global fits would be cen-
tered on values close to the fiducial values used in this
analysis.

Present constraints on !c, wDE, and ⇠2 for a
combination of probes (Planck+BAO+SNIa+H0; see
Ref. [17]) are found to be !c = 0.0792+0.0348

�0.0166, wDE =

�0.9191+0.0222
�0.0839, and ⇠2 = �0.1107+0.085

�0.0506. The fact that
our forecast suggests that future surveys will greatly
improve these constraints can be seen from the confi-
dence regions of cosmological parameters related to the
dark sector. In Fig. 5, we plot the marginalized con-
fidence ellipses at 1 � and 3 � for the combinations of
!c, ⇠2, and wDE for AdvACT (red), Euclid (blue), and
AdvACT + Euclid (green) for model 1. The constraints
on the cosmological parameters are a↵ected by the de-
generacies present among them. In order to assess these
degeneracies and to see how introducing new observations
like BAO from Euclid can a↵ect them, we introduce the
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�0.0506. The fact that
our forecast suggests that future surveys will greatly
improve these constraints can be seen from the confi-
dence regions of cosmological parameters related to the
dark sector. In Fig. 5, we plot the marginalized con-
fidence ellipses at 1 � and 3 � for the combinations of
!c, ⇠2, and wDE for AdvACT (red), Euclid (blue), and
AdvACT + Euclid (green) for model 1. The constraints
on the cosmological parameters are a↵ected by the de-
generacies present among them. In order to assess these
degeneracies and to see how introducing new observations
like BAO from Euclid can a↵ect them, we introduce the



• Present constraints are found to be  

• We notice that the marginalized error for the dark 
sector parameters would be drastically improved for 
such combined forecast, being σ(ωc) = 0.00053, σ(wDE) 
= 0.0044 and σ(ξ2) = 0.0019  

• Let’s introduce the correlation matrix, which measures 
the correlation between two parameters 

                                          where 

ω c = 0.0792−0.0166
+0.0348 ω DE = −0.9191−0.0839

+0.0222 ξ2 = −0.1107−0.0506
+0.085
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correlation matrix ⇢ij , which measures the correlation
between two parameters pi and pj . It is given by

⇢ij =
Covijp

CoviiCovjj
, (18)

where Cov ⌘ F�1, and F is either the CMB, BAO,
or total Fisher matrix. The correlation coe�cient for
i 6= j ranges from 0 (the two parameters are com-
pletely independent) to ±1 (the parameters are com-
pletely (anti-)correlated). The correlation matrix is de-
picted in Fig. 6 for model 1 where white, dark magenta,
and dark green are equivalent to ⇢ij = 0, �1, and 1,
respectively.

For model 1, when only CMB information is pro-
vided, the dark sector parameters and !c are very
(anti-)correlated as pointed in Sec. II, which can be seen
by visual inspection of Fig. 5. We can see that the cor-
relation between wDE and ⇠2 is & 0.8 (in absolute value)
and it is very large (⇡ 1) between !c and ⇠2 as well (see
Fig. 6). These degeneracies are considerably weakened
when BAO information is added. For instance, the cor-
relations between !c and ⇠2 and between !c and wDE are
reduced to ⇡ �0.026 and ⇡ �0.059, respectively, for the
combined forecast (AdvACT + Euclid). The correlation
between wDE and ⇠2 changes sign in comparison with
CMB alone, and the level of degeneracy between these
parameters is only mildly alleviated. This happens since
the degeneracy is present between the three parameters
wDE, ⇠2 and !c, and BAO only helps constraining one
of them, leaving some dependency among the other two
(or combinations of such parameters). In summary, these
results show that BAO has the power to break some de-
generacies as we can see by the tighter constraints and
the milder correlations encountered, although there re-
mains some dependencies among parameters.

TABLE IV. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 2. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02229 3.85e-05 0.00022 3.76e-05
!c 0.1314 0.015 0.0030 0.0010
h 0.6876 0.075 0.0068 0.0019

wDE -1.087 0.19 0.033 0.0053
⇠2 0.03798 0.055 0.0055 0.0031

Similar results are found for model 2 as it can be seen
in Table IV and Figs. 7 and 8. The combined forecast
leads to stringent constraints on !c, wDE, and ⇠2, the
latter being �(⇠2) = 0.00310. It was claimed by Ref. [18]
that an energy flow from DE to DM (⇠2 > 0), result-
ing in a non-zero coupling between the two dark compo-
nents where DE decays into DM, is in better agreement
with present cosmological data. A vanishing interaction
is also excluded by Ref. [17] with ⇠2 = 0.02047+0.00565

�0.00667

TABLE V. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 3. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02232 3.83e-05 0.00021 3.59e-05
!c 0.121 0.0027 0.0022 0.0014
h 0.6793 0.018 0.0055 0.0041

wDE -1.06 0.043 0.027 0.021
⇠1 0.0007127 0.00083 0.00400 0.00046

(the errors are given at 68% C. L.). The future combina-
tion of AdvACT and Euclid-like surveys would be able
to improve this constraint by a factor of ⇠ 2, hence one
could potentially distinguish the interacting DE model
from wCDM (and equivalently from ⇤CDM) by more
than 3 � (and possibly even more than 5�). Of course, a
proper statistical analysis would have to be done in or-
der to really assess which model is preferred by the data.
From the correlation matrix (Fig. 8), we can see, like in
the previous case for model 1, that all the correlations
become milder for the combined analysis, and this hap-
pens for all the degenerate parameters wDE, ⇠2, and !c

almost equally. This might be the case since, as phantom
DE can mimic changes in !c, BAO can only break the
degeneracy between a combination of these parameters
(not all of them) as was the case for model 1.

Confidence ellipses are shown in Fig. 9 for
model 3, where we see in the middle and right-
hand plots (as well as in Table V) that CMB plays
an important role in constraining ⇠1, revealing
that the interaction between DE and DM is al-
ready well constrained by CMB data before the
inclusion of information about H(z) evolution. We
can also see that for CMB alone in Fig. 10 (see the
left-hand plot), the correlations are milder than
for models 1 and 2. This agrees with the fact
that for model 3, wDE and ⇠1 are not degenerate
at present times. In this case though, it appears
that BAO does not help a lot to break remaining
degeneracies. Indeed, all three combinations of
parameters indicate a large correlation (|⇢| & 0.89)
when combining CMB and BAO probes.

The significance of the constraint on ⇠1 is al-
ready low at the current observational stage:
Ref. [17] found ⇠1 = 0.0007127+0.000256

�0.000633 (68%
C. L.) when considering a combination of probes
(Planck, SNIa, BAO, and H0 data). Our fore-
cast indicates that AdvACT + Euclid would yield
�(⇠1) = 0.00046 (see Table V), which would not
improve the current best constraint much. How-
ever, one must be careful in doing this compari-
son because the current best constraint includes
information from many other probes such as local
measurements of the Hubble constant today and
supernova data, which were not included in the
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correlation matrix ⇢ij , which measures the correlation
between two parameters pi and pj . It is given by

⇢ij =
Covijp

CoviiCovjj
, (18)

where Cov ⌘ F�1, and F is either the CMB, BAO,
or total Fisher matrix. The correlation coe�cient for
i 6= j ranges from 0 (the two parameters are com-
pletely independent) to ±1 (the parameters are com-
pletely (anti-)correlated). The correlation matrix is de-
picted in Fig. 6 for model 1 where white, dark magenta,
and dark green are equivalent to ⇢ij = 0, �1, and 1,
respectively.

For model 1, when only CMB information is pro-
vided, the dark sector parameters and !c are very
(anti-)correlated as pointed in Sec. II, which can be seen
by visual inspection of Fig. 5. We can see that the cor-
relation between wDE and ⇠2 is & 0.8 (in absolute value)
and it is very large (⇡ 1) between !c and ⇠2 as well (see
Fig. 6). These degeneracies are considerably weakened
when BAO information is added. For instance, the cor-
relations between !c and ⇠2 and between !c and wDE are
reduced to ⇡ �0.026 and ⇡ �0.059, respectively, for the
combined forecast (AdvACT + Euclid). The correlation
between wDE and ⇠2 changes sign in comparison with
CMB alone, and the level of degeneracy between these
parameters is only mildly alleviated. This happens since
the degeneracy is present between the three parameters
wDE, ⇠2 and !c, and BAO only helps constraining one
of them, leaving some dependency among the other two
(or combinations of such parameters). In summary, these
results show that BAO has the power to break some de-
generacies as we can see by the tighter constraints and
the milder correlations encountered, although there re-
mains some dependencies among parameters.

TABLE IV. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 2. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02229 3.85e-05 0.00022 3.76e-05
!c 0.1314 0.015 0.0030 0.0010
h 0.6876 0.075 0.0068 0.0019

wDE -1.087 0.19 0.033 0.0053
⇠2 0.03798 0.055 0.0055 0.0031

Similar results are found for model 2 as it can be seen
in Table IV and Figs. 7 and 8. The combined forecast
leads to stringent constraints on !c, wDE, and ⇠2, the
latter being �(⇠2) = 0.00310. It was claimed by Ref. [18]
that an energy flow from DE to DM (⇠2 > 0), result-
ing in a non-zero coupling between the two dark compo-
nents where DE decays into DM, is in better agreement
with present cosmological data. A vanishing interaction
is also excluded by Ref. [17] with ⇠2 = 0.02047+0.00565

�0.00667

TABLE V. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 3. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02232 3.83e-05 0.00021 3.59e-05
!c 0.121 0.0027 0.0022 0.0014
h 0.6793 0.018 0.0055 0.0041

wDE -1.06 0.043 0.027 0.021
⇠1 0.0007127 0.00083 0.00400 0.00046

(the errors are given at 68% C. L.). The future combina-
tion of AdvACT and Euclid-like surveys would be able
to improve this constraint by a factor of ⇠ 2, hence one
could potentially distinguish the interacting DE model
from wCDM (and equivalently from ⇤CDM) by more
than 3 � (and possibly even more than 5�). Of course, a
proper statistical analysis would have to be done in or-
der to really assess which model is preferred by the data.
From the correlation matrix (Fig. 8), we can see, like in
the previous case for model 1, that all the correlations
become milder for the combined analysis, and this hap-
pens for all the degenerate parameters wDE, ⇠2, and !c

almost equally. This might be the case since, as phantom
DE can mimic changes in !c, BAO can only break the
degeneracy between a combination of these parameters
(not all of them) as was the case for model 1.

Confidence ellipses are shown in Fig. 9 for
model 3, where we see in the middle and right-
hand plots (as well as in Table V) that CMB plays
an important role in constraining ⇠1, revealing
that the interaction between DE and DM is al-
ready well constrained by CMB data before the
inclusion of information about H(z) evolution. We
can also see that for CMB alone in Fig. 10 (see the
left-hand plot), the correlations are milder than
for models 1 and 2. This agrees with the fact
that for model 3, wDE and ⇠1 are not degenerate
at present times. In this case though, it appears
that BAO does not help a lot to break remaining
degeneracies. Indeed, all three combinations of
parameters indicate a large correlation (|⇢| & 0.89)
when combining CMB and BAO probes.

The significance of the constraint on ⇠1 is al-
ready low at the current observational stage:
Ref. [17] found ⇠1 = 0.0007127+0.000256

�0.000633 (68%
C. L.) when considering a combination of probes
(Planck, SNIa, BAO, and H0 data). Our fore-
cast indicates that AdvACT + Euclid would yield
�(⇠1) = 0.00046 (see Table V), which would not
improve the current best constraint much. How-
ever, one must be careful in doing this compari-
son because the current best constraint includes
information from many other probes such as local
measurements of the Hubble constant today and
supernova data, which were not included in the



• For CMB information alone, we can see that the correlation 
between wDE and ξ2  is 0.8 (in absolute value) and it is very 
large (≈ 1) between ωc and ξ2  . 

• These degeneracies are considerably weakened when BAO 
information is added.  

• The correlations between ωc and ξ2  and between ωc and wDE are 
reduced to ≈ −0.026 and ≈ −0.059, respectively, for the 
combined forecast (AdvACT + Euclid). 
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FIG. 5. Fisher forecast contours for model 1 with CMB and BAO information using AdvACT (red curves) and Euclid (blue
curves) experimental setups, respectively. The dashed curves represent 68% C. L. and the solid curves represent 99.9% C. L.
The combined contours are shown by the green filled ellipses. Similarly, the darker ellipses represent 68% C. L. and the fainter
ones represent 99.9% C. L. See Table III for numerical values.
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FIG. 6. Correlation matrix computed according to Eq. (18) for AdvACT (left), Euclid (center), and their combination (right)
for model 1. The color in each cell indicates the correlation between two model parameters, ranging from 0 (completely
independent) to ±1 (completely (anti-)correlated).

TABLE III. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 1. The forecasted errors are
given assuming data from Advanced ACT (CMB) and Eu-
clid (BAO) alone, and the last column gives the combined
forecast. Recall that we define !b ⌘ h

2⌦b, !c ⌘ h
2⌦c, and

h = H0/(100 km/s/Mpc).

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02224 3.86e-05 0.00028 3.69e-05
!c 0.08725 0.017 0.0017 0.00053
h 0.6845 0.0079 0.0055 0.0014

wDE -0.9434 0.028 0.026 0.0044
⇠2 -0.0929 0.045 0.0037 0.0019

coupling constant, where we find �(⇠2) = 0.0037 for Eu-
clid alone and �(⇠2) = 0.0019 for AdvACT + Euclid.
Such a stringent constraint would exclude the null in-

teraction corresponding to wCDM with high confidence
given that the contours from global fits would be cen-
tered on values close to the fiducial values used in this
analysis.

Present constraints on !c, wDE, and ⇠2 for a
combination of probes (Planck+BAO+SNIa+H0; see
Ref. [17]) are found to be !c = 0.0792+0.0348

�0.0166, wDE =

�0.9191+0.0222
�0.0839, and ⇠2 = �0.1107+0.085

�0.0506. The fact that
our forecast suggests that future surveys will greatly
improve these constraints can be seen from the confi-
dence regions of cosmological parameters related to the
dark sector. In Fig. 5, we plot the marginalized con-
fidence ellipses at 1 � and 3 � for the combinations of
!c, ⇠2, and wDE for AdvACT (red), Euclid (blue), and
AdvACT + Euclid (green) for model 1. The constraints
on the cosmological parameters are a↵ected by the de-
generacies present among them. In order to assess these
degeneracies and to see how introducing new observations
like BAO from Euclid can a↵ect them, we introduce the
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correlation matrix ⇢ij , which measures the correlation
between two parameters pi and pj . It is given by

⇢ij =
Covijp

CoviiCovjj
, (18)

where Cov ⌘ F�1, and F is either the CMB, BAO,
or total Fisher matrix. The correlation coe�cient for
i 6= j ranges from 0 (the two parameters are com-
pletely independent) to ±1 (the parameters are com-
pletely (anti-)correlated). The correlation matrix is de-
picted in Fig. 6 for model 1 where white, dark magenta,
and dark green are equivalent to ⇢ij = 0, �1, and 1,
respectively.

For model 1, when only CMB information is pro-
vided, the dark sector parameters and !c are very
(anti-)correlated as pointed in Sec. II, which can be seen
by visual inspection of Fig. 5. We can see that the cor-
relation between wDE and ⇠2 is & 0.8 (in absolute value)
and it is very large (⇡ 1) between !c and ⇠2 as well (see
Fig. 6). These degeneracies are considerably weakened
when BAO information is added. For instance, the cor-
relations between !c and ⇠2 and between !c and wDE are
reduced to ⇡ �0.026 and ⇡ �0.059, respectively, for the
combined forecast (AdvACT + Euclid). The correlation
between wDE and ⇠2 changes sign in comparison with
CMB alone, and the level of degeneracy between these
parameters is only mildly alleviated. This happens since
the degeneracy is present between the three parameters
wDE, ⇠2 and !c, and BAO only helps constraining one
of them, leaving some dependency among the other two
(or combinations of such parameters). In summary, these
results show that BAO has the power to break some de-
generacies as we can see by the tighter constraints and
the milder correlations encountered, although there re-
mains some dependencies among parameters.

TABLE IV. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 2. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02229 3.85e-05 0.00022 3.76e-05
!c 0.1314 0.015 0.0030 0.0010
h 0.6876 0.075 0.0068 0.0019

wDE -1.087 0.19 0.033 0.0053
⇠2 0.03798 0.055 0.0055 0.0031

Similar results are found for model 2 as it can be seen
in Table IV and Figs. 7 and 8. The combined forecast
leads to stringent constraints on !c, wDE, and ⇠2, the
latter being �(⇠2) = 0.00310. It was claimed by Ref. [18]
that an energy flow from DE to DM (⇠2 > 0), result-
ing in a non-zero coupling between the two dark compo-
nents where DE decays into DM, is in better agreement
with present cosmological data. A vanishing interaction
is also excluded by Ref. [17] with ⇠2 = 0.02047+0.00565

�0.00667

TABLE V. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 3. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02232 3.83e-05 0.00021 3.59e-05
!c 0.121 0.0027 0.0022 0.0014
h 0.6793 0.018 0.0055 0.0041

wDE -1.06 0.043 0.027 0.021
⇠1 0.0007127 0.00083 0.00400 0.00046

(the errors are given at 68% C. L.). The future combina-
tion of AdvACT and Euclid-like surveys would be able
to improve this constraint by a factor of ⇠ 2, hence one
could potentially distinguish the interacting DE model
from wCDM (and equivalently from ⇤CDM) by more
than 3 � (and possibly even more than 5�). Of course, a
proper statistical analysis would have to be done in or-
der to really assess which model is preferred by the data.
From the correlation matrix (Fig. 8), we can see, like in
the previous case for model 1, that all the correlations
become milder for the combined analysis, and this hap-
pens for all the degenerate parameters wDE, ⇠2, and !c

almost equally. This might be the case since, as phantom
DE can mimic changes in !c, BAO can only break the
degeneracy between a combination of these parameters
(not all of them) as was the case for model 1.

Confidence ellipses are shown in Fig. 9 for
model 3, where we see in the middle and right-
hand plots (as well as in Table V) that CMB plays
an important role in constraining ⇠1, revealing
that the interaction between DE and DM is al-
ready well constrained by CMB data before the
inclusion of information about H(z) evolution. We
can also see that for CMB alone in Fig. 10 (see the
left-hand plot), the correlations are milder than
for models 1 and 2. This agrees with the fact
that for model 3, wDE and ⇠1 are not degenerate
at present times. In this case though, it appears
that BAO does not help a lot to break remaining
degeneracies. Indeed, all three combinations of
parameters indicate a large correlation (|⇢| & 0.89)
when combining CMB and BAO probes.

The significance of the constraint on ⇠1 is al-
ready low at the current observational stage:
Ref. [17] found ⇠1 = 0.0007127+0.000256

�0.000633 (68%
C. L.) when considering a combination of probes
(Planck, SNIa, BAO, and H0 data). Our fore-
cast indicates that AdvACT + Euclid would yield
�(⇠1) = 0.00046 (see Table V), which would not
improve the current best constraint much. How-
ever, one must be careful in doing this compari-
son because the current best constraint includes
information from many other probes such as local
measurements of the Hubble constant today and
supernova data, which were not included in the
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FIG. 7. Fisher forecast contours for model 2. The convention used to denote the various cases is described in Fig. 5. See also
Table IV for numerical values.

FIG. 8. Correlation matrix computed according to Eq. (18) for AdvACT (left), Euclid (center), and their combination (right)
for model 2. The color in each cell indicates the correlation between two model parameters, ranging from 0 (completely
independent) to ±1 (completely (anti-)correlated).

forecast done here. For the model 3, it thus ap-
pears that a combination of other probes would
still be needed in order to tighten the present
limits.

V. SUMMARY AND CONCLUSIONS

We focused our study on phenomenological interacting
DE models and investigated the impact of two probes
on the parameter constraints of such models, specifically
the primary CMB temperature and polarization spec-
trum and the BAO information from a redshift range of
0.5  z  2.1. The advantages of combining di↵erent ob-
servational probes in constraining cosmological parame-
ters are well known, and its implication to interacting DE
models has been widely addressed. Our motivation was
to test the ability of future experiments to constraint such
alternative scenarios and distinguish them from models
in which there is no interaction in the dark sector.

For models 1 and 2 where the interaction is pro-

portional to the DE energy density, stringent con-
straints were found in the dark sector parameters for
the combined probes, especially for the coupling con-
stant. Specifically, with the choice of fiducial values ⇠2 =
�0.0929 (model 1) and ⇠2 = 0.03798 (model 2), we pre-
dicted 1-� marginalized errors of at best �(⇠2) = 0.0019
(model 1) and �(⇠2) = 0.00310 (model 2). Thus, the
combination of future CMB and BAO experiments, such
as presented here, would probably be able to exclude
the null interaction (corresponding to the wCDM model)
with a confidence level much greater than 3 �, although it
is important to stress again that a proper statistical anal-
ysis will have to be done in order to really assess which
model is preferred by the data. We also showed that
the interacting DE models 1 and 2 are a↵ected by de-
generacies, which limits the constraining power of CMB
information alone, but that they can be broken by the ad-
dition of Euclid-like BAO measurements, thus tightening
the constraints on the dark sector cosmological parame-
ters and enabling a deeper discussion of these interacting
DE scenarios.



• The combined forecast leads to stringent constraints on ωc , wDE , 
and ξ2 , the latter being σ(ξ2) = 0.00310.  

• Present constraints                           are improved by a factor of 
∼ 2 

• All the correlations become milder for the combined analysis, 
and this happens for all the degenerate parameters wDE, ξ2, and ωc 

almost equally. 

ξ2 = 0.02047−0.00667
+0.00565
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FIG. 7. Fisher forecast contours for model 2. The convention used to denote the various cases is described in Fig. 5. See also
Table IV for numerical values.
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FIG. 8. Correlation matrix computed according to Eq. (18) for AdvACT (left), Euclid (center), and their combination (right)
for model 2. The color in each cell indicates the correlation between two model parameters, ranging from 0 (completely
independent) to ±1 (completely (anti-)correlated).

forecast done here. For the model 3, it thus ap-
pears that a combination of other probes would
still be needed in order to tighten the present
limits.

V. SUMMARY AND CONCLUSIONS

We focused our study on phenomenological interacting
DE models and investigated the impact of two probes
on the parameter constraints of such models, specifically
the primary CMB temperature and polarization spec-
trum and the BAO information from a redshift range of
0.5  z  2.1. The advantages of combining di↵erent ob-
servational probes in constraining cosmological parame-
ters are well known, and its implication to interacting DE
models has been widely addressed. Our motivation was
to test the ability of future experiments to constraint such
alternative scenarios and distinguish them from models
in which there is no interaction in the dark sector.

For models 1 and 2 where the interaction is pro-

portional to the DE energy density, stringent con-
straints were found in the dark sector parameters for
the combined probes, especially for the coupling con-
stant. Specifically, with the choice of fiducial values ⇠2 =
�0.0929 (model 1) and ⇠2 = 0.03798 (model 2), we pre-
dicted 1-� marginalized errors of at best �(⇠2) = 0.0019
(model 1) and �(⇠2) = 0.00310 (model 2). Thus, the
combination of future CMB and BAO experiments, such
as presented here, would probably be able to exclude
the null interaction (corresponding to the wCDM model)
with a confidence level much greater than 3 �, although it
is important to stress again that a proper statistical anal-
ysis will have to be done in order to really assess which
model is preferred by the data. We also showed that
the interacting DE models 1 and 2 are a↵ected by de-
generacies, which limits the constraining power of CMB
information alone, but that they can be broken by the ad-
dition of Euclid-like BAO measurements, thus tightening
the constraints on the dark sector cosmological parame-
ters and enabling a deeper discussion of these interacting
DE scenarios.
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correlation matrix ⇢ij , which measures the correlation
between two parameters pi and pj . It is given by

⇢ij =
Covijp

CoviiCovjj
, (18)

where Cov ⌘ F�1, and F is either the CMB, BAO,
or total Fisher matrix. The correlation coe�cient for
i 6= j ranges from 0 (the two parameters are com-
pletely independent) to ±1 (the parameters are com-
pletely (anti-)correlated). The correlation matrix is de-
picted in Fig. 6 for model 1 where white, dark magenta,
and dark green are equivalent to ⇢ij = 0, �1, and 1,
respectively.

For model 1, when only CMB information is pro-
vided, the dark sector parameters and !c are very
(anti-)correlated as pointed in Sec. II, which can be seen
by visual inspection of Fig. 5. We can see that the cor-
relation between wDE and ⇠2 is & 0.8 (in absolute value)
and it is very large (⇡ 1) between !c and ⇠2 as well (see
Fig. 6). These degeneracies are considerably weakened
when BAO information is added. For instance, the cor-
relations between !c and ⇠2 and between !c and wDE are
reduced to ⇡ �0.026 and ⇡ �0.059, respectively, for the
combined forecast (AdvACT + Euclid). The correlation
between wDE and ⇠2 changes sign in comparison with
CMB alone, and the level of degeneracy between these
parameters is only mildly alleviated. This happens since
the degeneracy is present between the three parameters
wDE, ⇠2 and !c, and BAO only helps constraining one
of them, leaving some dependency among the other two
(or combinations of such parameters). In summary, these
results show that BAO has the power to break some de-
generacies as we can see by the tighter constraints and
the milder correlations encountered, although there re-
mains some dependencies among parameters.

TABLE IV. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 2. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02229 3.85e-05 0.00022 3.76e-05
!c 0.1314 0.015 0.0030 0.0010
h 0.6876 0.075 0.0068 0.0019

wDE -1.087 0.19 0.033 0.0053
⇠2 0.03798 0.055 0.0055 0.0031

Similar results are found for model 2 as it can be seen
in Table IV and Figs. 7 and 8. The combined forecast
leads to stringent constraints on !c, wDE, and ⇠2, the
latter being �(⇠2) = 0.00310. It was claimed by Ref. [18]
that an energy flow from DE to DM (⇠2 > 0), result-
ing in a non-zero coupling between the two dark compo-
nents where DE decays into DM, is in better agreement
with present cosmological data. A vanishing interaction
is also excluded by Ref. [17] with ⇠2 = 0.02047+0.00565

�0.00667

TABLE V. Marginalized errors (68% C. L.) for the DE and
DM parameters for model 3. See the caption of Table III for
more details.

Parameter Fiducial AdvACT Euclid AdvACT + Euclid
value (CMB) (BAO)

!b 0.02232 3.83e-05 0.00021 3.59e-05
!c 0.121 0.0027 0.0022 0.0014
h 0.6793 0.018 0.0055 0.0041

wDE -1.06 0.043 0.027 0.021
⇠1 0.0007127 0.00083 0.00400 0.00046

(the errors are given at 68% C. L.). The future combina-
tion of AdvACT and Euclid-like surveys would be able
to improve this constraint by a factor of ⇠ 2, hence one
could potentially distinguish the interacting DE model
from wCDM (and equivalently from ⇤CDM) by more
than 3 � (and possibly even more than 5�). Of course, a
proper statistical analysis would have to be done in or-
der to really assess which model is preferred by the data.
From the correlation matrix (Fig. 8), we can see, like in
the previous case for model 1, that all the correlations
become milder for the combined analysis, and this hap-
pens for all the degenerate parameters wDE, ⇠2, and !c

almost equally. This might be the case since, as phantom
DE can mimic changes in !c, BAO can only break the
degeneracy between a combination of these parameters
(not all of them) as was the case for model 1.

Confidence ellipses are shown in Fig. 9 for
model 3, where we see in the middle and right-
hand plots (as well as in Table V) that CMB plays
an important role in constraining ⇠1, revealing
that the interaction between DE and DM is al-
ready well constrained by CMB data before the
inclusion of information about H(z) evolution. We
can also see that for CMB alone in Fig. 10 (see the
left-hand plot), the correlations are milder than
for models 1 and 2. This agrees with the fact
that for model 3, wDE and ⇠1 are not degenerate
at present times. In this case though, it appears
that BAO does not help a lot to break remaining
degeneracies. Indeed, all three combinations of
parameters indicate a large correlation (|⇢| & 0.89)
when combining CMB and BAO probes.

The significance of the constraint on ⇠1 is al-
ready low at the current observational stage:
Ref. [17] found ⇠1 = 0.0007127+0.000256

�0.000633 (68%
C. L.) when considering a combination of probes
(Planck, SNIa, BAO, and H0 data). Our fore-
cast indicates that AdvACT + Euclid would yield
�(⇠1) = 0.00046 (see Table V), which would not
improve the current best constraint much. How-
ever, one must be careful in doing this compari-
son because the current best constraint includes
information from many other probes such as local
measurements of the Hubble constant today and
supernova data, which were not included in the
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FIG. 9. Fisher forecast contours for model 3. The convention used to denote the various cases is described in Fig. 5. See also
Table V for numerical values.

FIG. 10. Correlation matrix computed according to Eq. (18) for AdvACT (left), Euclid (center), and their combination (right)
for model 3. The color in each cell indicates the correlation between two model parameters, ranging from 0 (completely
independent) to ±1 (completely (anti-)correlated).

We found that the constraint on the coupling constant
for model 3 (where interaction is proportional to the DM
energy density) is not improved as much by the combi-
nation of future CMB and BAO experiments compared
with its constraint derived by present datasets. It thus
appears that extra information is still necessary for prob-
ing this model, and one could consider introducing the
CMB lensing power spectra (possibly including higher or-
der corrections [56]) and/or the convergence power spec-
trum from weak cosmic shear. We leave this investigation
for future work.

We end by mentioning that future investigations of in-
teracting DE could also benefit from yet more cosmo-
logical probes such as the redshift dependence of the
Alcock-Paczyński e↵ect [57], cosmic chronometers (see,
e.g., Refs. [24, 58] and references therein), 21 cm cos-
mology (see, e.g., Refs. [59, 60] and references therein),
gravitational waves [31, 34], and more. These examples
of probes may be able to remove even more degeneracies
and improve the constraints to another level and shall be
considered in future work.
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ing this model, and one could consider introducing the
CMB lensing power spectra (possibly including higher or-
der corrections [56]) and/or the convergence power spec-
trum from weak cosmic shear. We leave this investigation
for future work.

We end by mentioning that future investigations of in-
teracting DE could also benefit from yet more cosmo-
logical probes such as the redshift dependence of the
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e.g., Refs. [24, 58] and references therein), 21 cm cos-
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Conclusions

• For models 1 and 2  

• Since the interaction is proportional to the DE energy density, stringent 
constraints were found in the dark sector parameters for the 
combined probes, especially for the coupling constant. 

• The combination of future CMB and BAO experiments, such as 
presented here, would probably be able to exclude the null interaction  

• Degeneracies, which limits the constraining power of CMB information 
alone, can be broken by the addition of Euclid-like BAO 
measurements  



• For model 3 

• The interaction, proportional to the DM energy 
density, is not improved as much by the 
combination of future CMB and BAO experiments 
compared with its constraint derived by present 
datasets. 

• Extra information is still necessary for probing this 
model, and one could consider introducing the 
CMB lensing power spectra (possibly including 
higher order corrections) and/or the convergence 
power spectrum from weak cosmic shear  


