
H.	  Collins,	  R.	  Holman	  and	  T.	  Vardanyan,	  
arXiv:1706.07805	  [hep-‐th].	  

Tereza Vardanyan

Carnegie Mellon University

Cheung, Creminelli, Fitzpatrick, Kaplan and Senatore,
“The E↵ective Field Theory of Inflation,”
JHEP 0803 (2008) 014
arXiv:0709.0293
JHEP 1711 (2017) 065

Piazza and Vernizzi,
“E↵ective Field Theory of Cosmological Perturbations,”
Class. Quant. Grav. 30 (2013) 214007
arXiv:1307.4350.

Dispersion relation E = csk

Tereza	  Vardanyan	  
	  

Università	  di	  Bologna	  



Motivations 

•  It has been long know that certain quantum field theories in an expanding 
background that involve massless minimally coupled scalar fields, e.g. a simple 
scalar theory with a quartic interaction or scalar electrodynamics, have infrared 
divergences in the loop-corrections to their Green's functions.  

 
•  Infrared divergences that we encounter in theories that are set in the expanding 

background signal the breakdown of the perturbation theory past a certain point in 
time.  

 
•  Starobinsky (Starobinsky, et al) had argued that the dynamics of the long-

wavelength modes can be described by the classical stochastic field, whose 
probability distribution satisfies a Fokker-Planck type equation. He showed that 
this equation has a late-time static solution, that can be used to calculate 
correlation functions in the late-time limit. 



Motivations 

•  Despite the compelling simplicity of the stochastic picture, it would appear to be 
very difficult to see how it could emerge by following the full quantum evolution 
of the theory.  A recent approach (Burgess, et al) to this problem has been to 
consider the quantum evolution of the theory from a different perspective by 
working in the Schrödinger picture. Stochastic picture was derived  for a non-
interacting Gaussian theory. 

•  In our work we use the Schrödinger picture to  derive the stochastic picture for a 
genuinely interacting field theory.  In particular, we consider here a massless 
scalar field with a quartic interaction in de Sitter space, and solve for the full time 
dependence of its density matrix perturbatively in the self-coupling of the field.  
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We are only interested in the behavior of the long-wavelength part of the field 

can even explore, in principle, the degree to which the standard static-limit solution of the
stochastic picture is an attractor solution. Such applications of our approach, together with
a few others, are mentioned at the end of this article.

2 The stochastic description of a quantum theory

In a theory of a massless, interacting scalar field, �(t, ~x), the simplest quantities that we
could calculate are the n-point functions where all the fields are evaluated at exactly the
same space-time point and at some suitably late time,

h�n
(t, ~x)i ⌘ lim

t!1
h⌦(t)|�n

(t, ~x)|⌦(t)i. (2.1)

|⌦(t)i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances. Because we have chosen a de Sitter invariant state
and because we are assuming too that we are working in spatial coordinates where the
background is invariant under spatial translations, h�n

(t, ~x)i cannot depend on the position
~x.

Here we are not really interested in the n-point functions of the full theory, which
contain information about all scales, but only in the n-point functions of the effective
theory of the long wavelength fluctuations of the field, h�n

L(t, ~x)i. What we mean by a long
or a short wavelength is one whose physical momentum is small or large compared with
the Hubble scale, H, associated with the curvature of the de Sitter background. Or, more
precisely, we shall use a slightly stricter definition, setting the threshold between ‘long’ and
‘short’ to be well outside the horizon, which can be done by introducing a small parameter
" ⌧ 1.

long wavelength (L): k < "aH

short wavelength (S): k > "aH,

a(t) is the scale factor associated with the expanding space-time. This definition is more
appropriate because, with the extremely rapid expansion during inflation, the physical
fluctuations corresponding to the scalar fluctuations of inflation which are needed to explain
the primordial fluctuations in the early universe would have been stretched far outside the
horizon by the end of the inflationary era. Moreover, if H is meant to be the true cutoff
of our effective theory, we should not be including momenta all the way up to this scale.3

Of course, in an expanding background the threshold for our effective theory also becomes
time-dependent. If we divide our scalar field �(t, ~x) into two parts,
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(t) appears in the first or the second integral depends on the value

of "a(t)H at that moment. So ‘long’ and ‘short’ do not have an absolute physical meaning
3In a similar sense one would not use Fermi’s theory of � decay all the way up to the electroweak scale.
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long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
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kphys = k/a(t) ⌧ H

⇣(t, ~x) =

Z

d3~k
h

ei
~k·~x⇣k(t) a~k + e�i~k·~x⇣⇤k(t) a

†
~k

i

, (6.23)

h0|⇣(t, ~x)⇣(t, ~y)|0i =
Z
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~k·(~x�~y) 2⇡

2
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can even explore, in principle, the degree to which the standard static-limit solution of the
stochastic picture is an attractor solution. Such applications of our approach, together with
a few others, are mentioned at the end of this article.

2 The stochastic description of a quantum theory

In a theory of a massless, interacting scalar field, �(t, ~x), the simplest quantities that we
could calculate are the n-point functions where all the fields are evaluated at exactly the
same space-time point and at some suitably late time,

h�n
(t, ~x)i ⌘ lim

t!1
h⌦(t)|�n

(t, ~x)|⌦(t)i. (2.1)

|⌦(t)i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances. Because we have chosen a de Sitter invariant state
and because we are assuming too that we are working in spatial coordinates where the
background is invariant under spatial translations, h�n

(t, ~x)i cannot depend on the position
~x.

Here we are not really interested in the n-point functions of the full theory, which
contain information about all scales, but only in the n-point functions of the effective
theory of the long wavelength fluctuations of the field, h�n

L(t, ~x)i. What we mean by a long
or a short wavelength is one whose physical momentum is small or large compared with
the Hubble scale, H, associated with the curvature of the de Sitter background. Or, more
precisely, we shall use a slightly stricter definition, setting the threshold between ‘long’ and
‘short’ to be well outside the horizon, which can be done by introducing a small parameter
" ⌧ 1.

long wavelength (L): k < "aH

short wavelength (S): k > "aH,

a(t) is the scale factor associated with the expanding space-time. This definition is more
appropriate because, with the extremely rapid expansion during inflation, the physical
fluctuations corresponding to the scalar fluctuations of inflation which are needed to explain
the primordial fluctuations in the early universe would have been stretched far outside the
horizon by the end of the inflationary era. Moreover, if H is meant to be the true cutoff
of our effective theory, we should not be including momenta all the way up to this scale.3

Of course, in an expanding background the threshold for our effective theory also becomes
time-dependent. If we divide our scalar field �(t, ~x) into two parts,

�(t, ~x) = �L(t, ~x) + �S(t, ~x) =

Z

k<"aH

d3~k

(2⇡)3
ei
~k·~x

�~k
(t) +

Z

k>"aH

d3~k

(2⇡)3
ei
~k·~x

�~k
(t),

whether a particular �~k
(t) appears in the first or the second integral depends on the value

of "a(t)H at that moment. So ‘long’ and ‘short’ do not have an absolute physical meaning
3In a similar sense one would not use Fermi’s theory of � decay all the way up to the electroweak scale.
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Suppose	  we	  knew	  all	  of	  	  

in de Sitter space, but change over time. A practical consequence — and one that will later
prove to be important in our calculation — is that this additional time dependence will
mean that derivatives can also act on the limits of integrals once we have restricted to just
the long-wavelength momenta.

We could then introduce a classical variable ', together with a probability distribution
function p(t,'), such that together they reproduce all the information contained in the
functions h�n

L(t, ~x)i. The weighted average of a power of this variable is defined by the
following integral,

h'ni(t) ⌘
Z 1

�1
d''np(t,').

Notice that while ' itself is just a variable without any time dependence, the average h'ni(t)
inherits its time dependence from p(t,'). We can then choose the weighting function
p(t,') so that the expectation values of this classical variable ' exactly match with the
corresponding n-point functions of our effective theory of long wavelength fluctuations,

h'ni(t) = h�n
L(t, ~x)i, (2.2)

once, of course, we have formulated a suitable meaning for h�n
L(t, ~x)i derived from our

original theory.
The stochastic theory of inflation [1, 2] argues that the probability function for this

classical variable should satisfy a Fokker-Planck equation of the form

@p

@t
= N

@2p

@'2
+D

@

@'

✓

@V

@'
p(t,')

◆

. (2.3)

The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
V (') is a function of the stochastic variable, which is assumed to have the same functional
form as the corresponding potential of the quantum theory; that is, one obtains V (�) by
simply replacing the quantum field �(t, ~x) with the stochastic variable ' in the original
quantum potential,

V (�(t, ~x))
�(t,~x)!'������! V (').

The fact that p(t,') is a solution to the Fokker-Planck equation can then be used to
generate a recursion relation4 amongst the various averages h'ni. One starts by taking its
time derivative,

@

@t
h'ni =

Z 1

�1
d''n @p

@t
=

Z 1

�1
d''n

⇢

N
@2p

@'2
+D

@

@'

✓

@V

@'
p(t,')

◆�

, (2.4)

and integrates by parts as needed — twice for the first term and once for the second term
— to produce

@

@t
h'ni = n(n� 1)Nh'n�2i � nD

⌧

'n�1@V

@'

�

. (2.5)

For a quartic potential, V (') = 1
4!�'

4, this recursion relation has the form

@

@t
h'ni = n(n� 1)Nh'n�2i � nD

�

6

h'n+2i. (2.6)

4This recursion relation was found already in [12].
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long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
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Assumption about the potential V:	  	  
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For the massless theory with quartic interaction	  

long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

The dynamics of the long-wavelength part of the field can be described by the coarse-grained
version of the density matrix

P⌦[�L] =

Z

S
D�~p P [�L,�S ].

The expectation values of the products of fields can be found as follows

h�n
L(t, ~x)i =

Z

D�L �L · · ·�LP⌦[�L].

Note: in the Schrödinger picture fields are time-independent, so P [�] and P⌦[�L] are time-
dependent.
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in de Sitter space, but change over time. A practical consequence — and one that will later
prove to be important in our calculation — is that this additional time dependence will
mean that derivatives can also act on the limits of integrals once we have restricted to just
the long-wavelength momenta.
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and integrates by parts as needed — twice for the first term and once for the second term
— to produce
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For a quartic potential, V (') = 1
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4, this recursion relation has the form
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Any solution to the Fokker-Planck 
equation approaches time-independent 
(static) solution at the late-time limit.  	  

6 Applications and further refinements of the stochastic picture

We see that the leading form of the quantum version of the Fokker-Planck equation for the
effective theory of the long wavelength fluctuations exactly generates the standard Fokker-
Planck equation for the stochastic theory. However, now that we can completely follow
the derivation between these two pictures, we can — as in any effective theory —refine the
basic picture further by evaluating the higher order ‘corrections’ that should appear on the
stochastic side by deriving their analogues directly on the quantum side. For example, we
can see that the standard noise and drift,

N(�) =
H3

8⇡2
+O(�) and D(�) =

1

3H
+O(�),

are in fact only the first contributions in a perturbative expansion. What are the forms of
the higher order contributions? Are they also free of late-time divergences? Do other terms
appear in the Fokker-Planck equation? These last would be the analogues of the higher
order operators that appear in the effective Lagrangians in the more familiar applications
of effective field theories.

With a means of directly connecting the quantum and stochastic descriptions of the
theory, we can — at least in principle — explore the behaviour in the late-time limit more
fully. In the static limit of the stochastic theory, the probability function assumes a simple
form at leading order in the coupling, e.g. p(') / e�

�D
24N '4 for the quartic theory. However,

as we mentioned in the introduction, the usual interaction-picture treatments, while consis-
tent with the expectations of the stochastic picture, have late-time divergences that make
the approach to this simple, constant, limit difficult to see. In the Schrödinger picture, we
have an alternative framework for investigating the behaviour of the quantum theory in
this limit. In particular it would be interesting to learn the explicit time-dependence as the
probability function approaches its static limit [16].

The technique that we have developed here can also be applied to study the leading
behaviour of the stochastic theories associated with other light or massless fields: multiple
interacting scalar fields, gauge fields, or the actual scalar and tensor fluctuations of infla-
tionary theories. It should be equally instructive to investigate the probability distribution
function, p(t,'(~x)), that is associated with a classical stochastic field. Such fields are used
to describe the long wavelength parts of the n-point functions of quantum fields that are
evaluated at different spatial positions; these are needed to treat the power spectrum and
the non-Gaussianities predicted by inflation.
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long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
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The static solution for the theory with quartic interaction	  

The static solution can be used to determine                                   at the 
late-time limit	  

functions h�n
L(t, ~x)i. The weighted average of a power of this variable is defined by the

following integral,

h'ni(t) ⌘
Z 1

�1
d''np(t,').

Notice that while ' itself is just a variable without any time dependence, the average h'ni(t)
inherits its time dependence from p(t,'). We can then choose the weighting function
p(t,') so that the expectation values of this classical variable ' exactly match with the
corresponding n-point functions of our effective theory of long wavelength fluctuations,

h'ni(t) = h�n
L(t, ~x)i, (2.2)

once, of course, we have formulated a suitable meaning for h�n
L(t, ~x)i derived from our

original theory.
The stochastic theory of inflation [? ? ] argues that the probability function for this

classical variable should satisfy a Fokker-Planck equation of the form

@p

@t
= N

@2p

@'2
+D
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✓

@V

@'
p(t,')

◆

. (2.3)

The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
V (') is a function of the stochastic variable, which is assumed to have the same functional
form as the corresponding potential of the quantum theory; that is, one obtains V (�) by
simply replacing the quantum field �(t, ~x) with the stochastic variable ' in the original
quantum potential,

V (�(t, ~x))
�(t,~x)!'������! V (').

The fact that p(t,') is a solution to the Fokker-Planck equation can then be used to
generate a recursion relation4 amongst the various averages h'ni. One starts by taking its
time derivative,

@

@t
h'ni =

Z 1

�1
d''n @p

@t
=

Z 1

�1
d''n

⇢

N
@2p

@'2
+D

@

@'

✓

@V

@'
p(t,')

◆�

, (2.4)

and integrates by parts as needed — twice for the first term and once for the second term
— to produce

@

@t
h'ni = n(n� 1)Nh'n�2i � nD

⌧

'n�1@V

@'

�

. (2.5)

For a quartic potential, V (') = 1
4!�'

4, this recursion relation has the form

@

@t
h'ni = n(n� 1)Nh'n�2i � nD

�

6

h'n+2i. (2.6)

So knowing N and D, together with the time-dependence of h'2i, is sufficient for calculating
all the non-vanishing averages, h'ni.

What is the origin of this stochastic description of the theory from the perspective of
the quantum theory? The parallels between the stochastic and the quantum versions of the

4This recursion relation was found already in [? ].
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Classical Fokker-Planck equation 

field basis in coarse-grained position space) becomes the Fokker-Planck equation of stochastic

inflation [3]. For the present purposes what is important is that its solutions can reliably

capture the late-time behaviour of extra-Hubble modes precisely because it can be derived as

the leading approximation to a master equation analysis (which, after all, is designed precisely

for this purpose).

There is also a bonus. Because the neglect of HAB means the system is basically free the

off-diagonal components, ⟨ϕ|ρA|ϕ̃⟩, do what they must for ρA to remain a pure state. This

is no longer true once one works to quadratic order in HAB, however, and [10] argues that

these instead get driven to zero with time (with the ‘pointer’ basis very generally chosen as

the field basis by the extra-Hubble squeezing of states). For a broad class of systems the

dimensional estimate given in [10] indicates that this decohering of long-wavelength modes

happens quickly enough that 50-60 e-foldings are likely ample for its completion.

2.2 Evidence for stochastic resummation

So much for generalities. If a stochastic formulation captures the late-time limit of the master

equation for fluctuations in inflationary cosmology, how does this help in practice with the

IR secular effects encountered [2] when making precise inflationary predictions?

In the stochastic picture correlation functions are computed using the probability dis-

tribution, P (ϕ, t), whose time evolution is predicted using the appropriate Fokker-Planck

equation. If late-time solutions of this equation are to capture the results of slowly accumu-

lating IR secular effects, then it should be true that the rate of change of correlators predicted

from the Fokker-Planck equation agree with the evolution found for these correlators using

standard techniques of quantum field theory on curved space, at least for the IR singular

part.

Ref. [19] tests this proposal in some detail for the specific case4 of a massless spectator

scalar field in de Sitter, self-interacting through a potential V = 1
4! λφ

4. They do so by

isolating the IR singular, time-dependent part of scalar-field correlators on de Sitter space

and computing their rate of change with time. Following [3] they argue the IR fields behave

like stochastic variables and show that their evolution is governed by a probability density,

P (ϕ, t), that satisfies the appropriate Fokker-Planck equation:5

∂tP =
H3

8π2

(

∂2P

∂ϕ2

)

+
1

3H

∂

∂ϕ

(

∂V

∂ϕ
P

)

, (2.9)

with V (ϕ) = 1
4! λϕ

4. Since the evolution equation for the IR part of the field agrees over a

long time period with the Fokker-Planck equation, it shows that the late-time implications

of the IR secular evolution can be obtainable from the Fokker-Planck equation’s late-time

(i.e. static) solutions. For instance, on the stochastic side the predicted evolution for ⟨φ2n⟩

4 Ref. [19] also explores examples involving scalars self-interacting through derivative couplings.
5We argue for corrections to this equation in later sections.
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Quantum description in the Schrödinger picture 

long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

The dynamics of the long-wavelength part of the field can be described by the coarse

Acknowledgments

Tereza Vardanyan is grateful for the support of the Department of Energy (DE-FG03-91-
ER40682). We should also like to thank Cliff Burgess for valuable discussions.

References

[1] A. A. Starobinsky, “Stochastic de Sitter (inflationary) Stage In The Early Universe,” Lect.
Notes Phys. 246 (1986) 107.

[2] A. A. Starobinsky and J. Yokoyama, “Equilibrium state of a selfinteracting scalar field in the
De Sitter background,” Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016].

[3] L. H. Ford, “Quantum Instability of de Sitter Space-time,” Phys. Rev. D 31 (1985) 710.

[4] L. H. Ford and A. Vilenkin, “Global Symmetry Breaking in Two-dimensional Flat Space-time
and in De Sitter Space-time,” Phys. Rev. D 33 (1986) 2833.

[5] I. Antoniadis, J. Iliopoulos, and T. N. Tomaras, “Quantum Instability of De Sitter Space,”
Phys. Rev. Lett. 56 (1986) 1319.

[6] C. P. Burgess, L. Leblond, R. Holman and S. Shandera, “Super-Hubble de Sitter
Fluctuations and the Dynamical RG,” JCAP 1003 (2010) 033 [arXiv:0912.1608 [hep-th]].

[7] D. Seery,‘ ‘Infrared effects in inflationary correlation functions,” Class. Quant. Grav. 27
(2010) 124005 [arXiv:1005.1649 [astro-ph.CO]].

[8] T. Prokopec, N. C. Tsamis, and R. P. Woodard, “Stochastic Inflationary Scalar
Electrodynamics,” Annals Phys. 323 (2008) 1324 [arXiv:0707.0847 [gr-qc]].

– 28 –

long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

The dynamics of the long-wavelength part of the field can be described by the coarse-grained
version of the density matrix

P⌦[�L] =

Z

S
D�~p P [�L,�S ].
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

The dynamics of the long-wavelength part of the field can be described by the coarse-grained
version of the density matrix

P⌦[�L] =

Z

S
D�~p P [�L,�S ].

The expectation values of the products of fields can be found as follows

h�n
L(t, ~x)i =

Z

D�L �L · · ·�LP⌦[�L].

Note: in the Schrödinger picture fields are time-independent, so P [�] and P⌦[�L] are time-
dependent.
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The first term on the left hand side in the equation (1)
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The second term on the left hand side in the equation (1)
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So the path leading from the quantum theory to its stochastic description now becomes
clear:

i. We must first solve for the wave-functional and the corresponding density matrix of
our full theory, which includes both the long and short wavelength parts of the field.
For this purpose, the Schrödinger picture is the best suited, as we shall see.

ii. Once we have determined the density matrix for the state that we have chosen, P [�] =

P [�L,�S ], which here will be the Bunch-Davies state, we project onto the effective
theory of the long wavelength part of the field. The most straightforward thing to
do is simply to integrate out the short wavelength fluctuations directly and define the
density matrix for the effective theory to be

P⌦[�L] =

Z

S
D�~p P [�L,�S ].

iii. The time dependence of P⌦[�L] — or rather that of the various functions within it —
follows straightforwardly from the time dependence of the functions that appear in the
density matrix of the full theory, P [�]. Their time dependence, in turn, follows from
the Schrödinger equation for the wave-functional of the state.

iv. Knowing this time dependence of P⌦[�L] then allows us to compute its time derivative
explicitly. The resulting equation is a functional Fokker-Planck equation with precisely
the form that we claimed that it should have. This functional Fokker-Planck equation
for the effective theory could equally be regarded as the coarse-grained version of the
Liouville equation derived from the full density matrix P [�].

We illustrate these steps by applying them to a familiar example. So we turn next to the
case of a scalar field theory with a quartic interaction.

3 A quartic interaction

This method for deriving the stochastic description of a quantum theory is best shown
through a particular example. For this purpose we choose the theory of a real scalar field
in a de Sitter background with a quartic self-interaction, V (�) =

1
4!��

4. Provided that the
coupling is sufficiently small, this theory can be solved perturbatively in �. We shall also
include a mass for the field for the time being, although we shall ultimately set it to zero.
The action for the theory is written as

S[�] =

Z

dtL[�] =

Z

d4x
p�g

n

1
2g

µ⌫@µ�@⌫�� 1
2m

2
�

2 � 1
24��

4
o

. (3.1)

The metric gµ⌫ for the de Sitter background can be expressed in a spatially flat form, as we
had assumed earlier, either in terms of a ‘cosmological’ time coordinate t 2 (�1,1) or a
‘conformal’ one ⌘ 2 (�1, 0),

ds2 = dt2 � a2(t) �ij dx
idxj = a2(⌘)

⇥

d⌘2 � �ij dx
idxj

⇤

. (3.2)

– 8 –

We shall later use whichever of these two times best suits our need at the particular moment.
These time coordinates are related to each other through the condition dt = a(⌘) d⌘, and
the scale factor a expressed in these two coordinate systems has the form

a(t) = eHt or a(⌘) = � 1

H⌘
. (3.3)

Whereas the final result cannot depend on which picture we have chosen, the interaction
picture is not the best suited for drawing the parallels between the stochastic and quantum
Fokker-Planck equations. Instead we study the evolution of the theory from a Schrödinger
perspective. The time dependence of the state, described in terms of a wave-functional
 [�], is found by solving the Schrödinger equation,

i
@ 

@t
= H , (3.4)

where H[⇡(~x),�(~x)] is the Hamiltonian written in terms of the time-independent Schrödinger-
picture field �(~x) and its conjugate momentum ⇡(~x). In the space-time coordinates that
we have chosen, the Lagrangian for our theory is given by
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, (3.5)

and the corresponding canonical momenta are

⇧(t, ~x) =
�L
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= a3 ˙�(t, ~x).

If we perform the usual Legendre transformation, we are led to the Hamiltonian,
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. (3.6)

It is must easier to describe the truncation of the full theory to its long wavelength parts
in terms of the momenta of the fields rather than in terms of their positions. So, after
performing the Fourier transformation of the Schrödinger picture fields,

�~k =

Z

d3~x e�i~k·~x�(~x),

the Hamiltonian assumes the form
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. (3.7)

At this stage, it is not possible to find the exact form of the wave-functional in this
interacting theory, so we must be content with constructing  [�] perturbatively in powers
of the coupling �. One starts by expressing the wave-functional in the form

 [�] = Ne�a3 �[�], (3.8)
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We shall later use whichever of these two times best suits our need at the particular moment.
These time coordinates are related to each other through the condition dt = a(⌘) d⌘, and
the scale factor a expressed in these two coordinate systems has the form

a(t) = eHt or a(⌘) = � 1

H⌘
. (3.3)

Whereas the final result cannot depend on which picture we have chosen, the interaction
picture is not the best suited for drawing the parallels between the stochastic and quantum
Fokker-Planck equations. Instead we study the evolution of the theory from a Schrödinger
perspective. The time dependence of the state, described in terms of a wave-functional
 [�], is found by solving the Schrödinger equation,
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= H , (3.4)

where H[⇡(~x),�(~x)] is the Hamiltonian written in terms of the time-independent Schrödinger-
picture field �(~x) and its conjugate momentum ⇡(~x). In the space-time coordinates that
we have chosen, the Lagrangian for our theory is given by
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and the corresponding canonical momenta are
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It is must easier to describe the truncation of the full theory to its long wavelength parts
in terms of the momenta of the fields rather than in terms of their positions. So, after
performing the Fourier transformation of the Schrödinger picture fields,
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the Hamiltonian assumes the form
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At this stage, it is not possible to find the exact form of the wave-functional in this
interacting theory, so we must be content with constructing  [�] perturbatively in powers
of the coupling �. One starts by expressing the wave-functional in the form

 [�] = Ne�a3 �[�], (3.8)
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where �[�] is a series expanded in powers of the scalar field, �~k,
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and N is the normalisation, fixed by the condition,
Z

D�~k [�] 
⇤
[�] = 1. (3.10)

The task of solving the Schrödinger equation now becomes the problem of determining the
detailed form of the functions �n(t;~k1, . . . ,~kn). The fact that the background is invariant
under spatial translations in these coordinates has again allowed us to extract a momentum-
conserving �-function. Furthermore, by a simple relabeling of the momenta over which we
are integrating, we can show that these functions are completely symmetric under any
permutation of their arguments,

�n(t;~k1, . . . ,~ki, . . . ,~kj , . . . ,~kn) = �n(t;~k1, . . . ,~kj , . . . ,~ki, . . . ,~kn).

When m2 � 0, the vacuum state of the theory should have the same � $ �� symmetry as
the potential. This symmetry means that all the odd-order functions vanish,

�n(t;~k1, . . . ,~kn) = 0 for n 2 odd.

To compute the nonvanishing functions, �n(t;~k1, . . . ,~kn) with n 2 even, we need to find
the appropriate equations of motion. This is done by expanding each side of the Schrödinger
equation in powers of �~k and matching the terms that share the same numbers of fields. This
process produces a set of coupled differential equations for the functions �n(t;~k1, . . . ,~kn).
For example, the left side of the Schrödinger equation is evaluated straightforwardly enough,

i
@ 

@t
= i

⇢

˙N

N
�a3

1
X

n=2

1

n!

Z

d3k1
(2⇡)3

· · · d
3kn

(2⇡)3
(2⇡)3�3(~k1+· · ·+~kn)



@�n
@t

+3

ȧ
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but the right side contains a more complicated tower of terms. These are generated when
the functional derivatives in the Hamiltonian act on the wave-functional,
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The task of solving the Schrödinger equation now becomes the problem of determining the
detailed form of the functions �n(t;~k1, . . . ,~kn). The fact that the background is invariant
under spatial translations in these coordinates has again allowed us to extract a momentum-
conserving �-function. Furthermore, by a simple relabeling of the momenta over which we
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ȧ

a
�n

�

�~k1 · · ·�~kn
�

 ,

but the right side contains a more complicated tower of terms. These are generated when
the functional derivatives in the Hamiltonian act on the wave-functional,

H =

⇢

Z

d3k1
(2⇡)3

d3k2
(2⇡)3

(2⇡)3�3(~k1 + ~k2)

⇢

1

2

a3
✓

m2
+

k21
a2

◆

�~k1�~k2

�

+

Z

d3k1
(2⇡)3

d3k2
(2⇡)3

d3k3
(2⇡)3

d3k4
(2⇡)3

(2⇡)3�3(~k1 + ~k2 + ~k3 + ~k4)

⇢

1

24

a3��~k1�~k2�~k3�~k4

�

+

1
X

n=0

1

n!

Z

d3k1
(2⇡)3

· · · d
3kn

(2⇡)3
(2⇡)3�3(~k1 + · · ·+ ~kn)

⇥


1

2

Z

d3k

(2⇡)3
�n+2(t;~k1, . . . ,~kn,~k,�~k)

�

�~k1 · · ·�~kn

+

1
X

n=0

1
X

n0=0

1

n!

1

n0
!

Z

d3k1
(2⇡)3

· · · d
3kn

(2⇡)3
d3k01
(2⇡)3

· · · d
3k0n0

(2⇡)3
(2⇡)3�3(~k1 + · · ·+ ~kn +

~k01 + · · ·+ ~k0n0)



�a3

2

�n+1(t;~k1, . . . ,~kn,�
X

~ki)�n0+1(t;~k
0
1, . . . ,

~k0n0 ,�
X

~k0i)

�

�~k1 · · ·�~kn�~k01 · · ·�~k0n0

�

 .

– 10 –

We shall later use whichever of these two times best suits our need at the particular moment.
These time coordinates are related to each other through the condition dt = a(⌘) d⌘, and
the scale factor a expressed in these two coordinate systems has the form

a(t) = eHt or a(⌘) = � 1

H⌘
. (3.3)

Whereas the final result cannot depend on which picture we have chosen, the interaction
picture is not the best suited for drawing the parallels between the stochastic and quantum
Fokker-Planck equations. Instead we study the evolution of the theory from a Schrödinger
perspective. The time dependence of the state, described in terms of a wave-functional
 [�], is found by solving the Schrödinger equation,

i
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@t
= H , (3.4)

where H[⇡(~x),�(~x)] is the Hamiltonian written in terms of the time-independent Schrödinger-
picture field �(~x) and its conjugate momentum ⇡(~x). In the space-time coordinates that
we have chosen, the Lagrangian for our theory is given by

L[�] =
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d3~x
n

1
2a

3
˙
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2 � 1
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ij@i�@j�� 1
2a

3m2
�
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24a

3��4
o

, (3.5)

and the corresponding canonical momenta are

⇧(t, ~x) =
�L

� ˙�(t, ~x)
= a3 ˙�(t, ~x).

If we perform the usual Legendre transformation, we are led to the Hamiltonian,
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. (3.6)

It is must easier to describe the truncation of the full theory to its long wavelength parts
in terms of the momenta of the fields rather than in terms of their positions. So, after
performing the Fourier transformation of the Schrödinger picture fields,

�~k =

Z

d3~x e�i~k·~x�(~x),

the Hamiltonian assumes the form

H =
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. (3.7)

At this stage, it is not possible to find the exact form of the wave-functional in this
interacting theory, so we must be content with constructing  [�] perturbatively in powers
of the coupling �. One starts by expressing the wave-functional in the form

 [�] = Ne�a3 �[�], (3.8)
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D�~k [�] 
⇤
[�] = 1. (3.10)

– 9 –

Symmetry	  under	  permutaQons	  of	  momenta	  

Vacuum	  state	  should	  have	  the	  same	  symmetry	  as	  the	  potenQal	  



But by collecting and matching the various functions according to the shared factors of
�~k1 · · ·�~kn that accompany them for a given n, we find a differential equation for each
of the �n’s. The function �2(t;~k,�~k) accompanying the quadratic part of �[�] obviously
depends only on a single momentum. Since this function occurs ubiquitously throughout
the following calculations, it is advantageous to change our notation slightly and write it a
little more succinctly as

↵k(t) ⌘ �2(t;~k,�~k). (3.11)

The Schrödinger equation then implies the following relations derived from the zeroth,
quadratic, and quartic order terms in the fields,

˙N

N
= � i

2

(2⇡)3�3(~0)

Z
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(2⇡)3
↵p(t)
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,
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ȧ

a
�4(t;~k1,~k2,~k3,~k4) = i�� i

⇥

↵k1 + ↵k2 + ↵k3 + ↵k4
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�4(t,~k1,~k2,~k3,~k4)

+

i

2

1

a3

Z

d3~p

(2⇡)3
�6(t;~k1,~k2,~k3,~k4, ~p,�~p), (3.12)

and so on for yet higher orders of n. The infinite factor (2⇡)3�3(~0) that appears in the
equation for the time dependence of the normalisation, and in several of the equations that
will occur later, is the volume of a spatial hypersurface in de Sitter space. These volume
factors always accompany contributions to the normalisation.

It is important to remember that the form of these equations is determined entirely
by the dynamical theory that we are considering, that is, by the Hamiltonian of a quartic
theory. Because each of these equations is first-order, there is an additional freedom asso-
ciated with the choice of the constants of integration9 appearing in the particular solution
for the �n’s. The collective choice for all of these constants translates into the choice of a
particular state  [�] in this picture.

4 Perturbation theory and the vacuum state

The usual stochastic treatment of inflation always implicitly assumes that the theory is in
the Bunch-Davies state. It is therefore important to introduce appropriate conditions on the
functions �n at very short wavelengths in order to put the field in the correct state. After
we have done so, we can follow the evolution to large wavelengths and see the simplifications
that permit a stochastic description of the theory. We construct the Bunch-Davies solution
of the Schrödinger equation here by solving the associated functions �n perturbatively to
a given order in �. Fortunately, all that is needed to derive the part of the quantum
Fokker-Planck equation that produces the standard stochastic Fokker-Planck equation is
to compute these solutions to linear order in �. In fact, the zeroth order solution — what

9These are constants in time. In general they could depend on momenta for particular choices of the
state.

– 11 –

But by collecting and matching the various functions according to the shared factors of
�~k1 · · ·�~kn that accompany them for a given n, we find a differential equation for each
of the �n’s. The function �2(t;~k,�~k) accompanying the quadratic part of �[�] obviously
depends only on a single momentum. Since this function occurs ubiquitously throughout
the following calculations, it is advantageous to change our notation slightly and write it a
little more succinctly as

↵k(t) ⌘ �2(t;~k,�~k). (3.11)

The Schrödinger equation then implies the following relations derived from the zeroth,
quadratic, and quartic order terms in the fields,

˙N

N
= � i

2

(2⇡)3�3(~0)

Z

d3~p

(2⇡)3
↵p(t)

@↵k

@t
+ 3

ȧ
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and so on for yet higher orders of n. The infinite factor (2⇡)3�3(~0) that appears in the
equation for the time dependence of the normalisation, and in several of the equations that
will occur later, is the volume of a spatial hypersurface in de Sitter space. These volume
factors always accompany contributions to the normalisation.

It is important to remember that the form of these equations is determined entirely
by the dynamical theory that we are considering, that is, by the Hamiltonian of a quartic
theory. Because each of these equations is first-order, there is an additional freedom asso-
ciated with the choice of the constants of integration9 appearing in the particular solution
for the �n’s. The collective choice for all of these constants translates into the choice of a
particular state  [�] in this picture.

4 Perturbation theory and the vacuum state

The usual stochastic treatment of inflation always implicitly assumes that the theory is in
the Bunch-Davies state. It is therefore important to introduce appropriate conditions on the
functions �n at very short wavelengths in order to put the field in the correct state. After
we have done so, we can follow the evolution to large wavelengths and see the simplifications
that permit a stochastic description of the theory. We construct the Bunch-Davies solution
of the Schrödinger equation here by solving the associated functions �n perturbatively to
a given order in �. Fortunately, all that is needed to derive the part of the quantum
Fokker-Planck equation that produces the standard stochastic Fokker-Planck equation is
to compute these solutions to linear order in �. In fact, the zeroth order solution — what

9These are constants in time. In general they could depend on momenta for particular choices of the
state.
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But by collecting and matching the various functions according to the shared factors of
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ȧ

a
↵k = i

⇢

m2
+

k2

a2
� ↵2

k +
1

2

1

a3

Z

d3~p

(2⇡)3
�4(t;~k,�~k, ~p,�~p)

�

,

@�4
@t

+ 3

ȧ
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6 Applications and further refinements of the stochastic picture

We see that the leading form of the quantum version of the Fokker-Planck equation for the
effective theory of the long wavelength fluctuations exactly generates the standard Fokker-
Planck equation for the stochastic theory. However, now that we can completely follow
the derivation between these two pictures, we can — as in any effective theory —refine the
basic picture further by evaluating the higher order ‘corrections’ that should appear on the
stochastic side by deriving their analogues directly on the quantum side. For example, we
can see that the standard noise and drift,

N(�) =
H3

8⇡2
+O(�) and D(�) =

1

3H
+O(�),

are in fact only the first contributions in a perturbative expansion. What are the forms of
the higher order contributions? Are they also free of late-time divergences? Do other terms
appear in the Fokker-Planck equation? These last would be the analogues of the higher
order operators that appear in the effective Lagrangians in the more familiar applications
of effective field theories.

With a means of directly connecting the quantum and stochastic descriptions of the
theory, we can — at least in principle — explore the behaviour in the late-time limit more
fully. In the static limit of the stochastic theory, the probability function assumes a simple
form at leading order in the coupling, e.g. p(') / e�

�D
24N '4 for the quartic theory. However,

as we mentioned in the introduction, the usual interaction-picture treatments, while consis-
tent with the expectations of the stochastic picture, have late-time divergences that make
the approach to this simple, constant, limit difficult to see. In the Schrödinger picture, we
have an alternative framework for investigating the behaviour of the quantum theory in
this limit. In particular it would be interesting to learn the explicit time-dependence as the
probability function approaches its static limit [16].

The technique that we have developed here can also be applied to study the leading
behaviour of the stochastic theories associated with other light or massless fields: multiple
interacting scalar fields, gauge fields, or the actual scalar and tensor fluctuations of infla-
tionary theories. It should be equally instructive to investigate the probability distribution
function, p(t,'(~x)), that is associated with a classical stochastic field. Such fields are used
to describe the long wavelength parts of the n-point functions of quantum fields that are
evaluated at different spatial positions; these are needed to treat the power spectrum and
the non-Gaussianities predicted by inflation.
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We shall later use whichever of these two times best suits our need at the particular moment.
These time coordinates are related to each other through the condition dt = a(⌘) d⌘, and
the scale factor a expressed in these two coordinate systems has the form

a(t) = eHt or a(⌘) = � 1

H⌘
. (3.3)

Whereas the final result cannot depend on which picture we have chosen, the interaction
picture is not the best suited for drawing the parallels between the stochastic and quantum
Fokker-Planck equations. Instead we study the evolution of the theory from a Schrödinger
perspective. The time dependence of the state, described in terms of a wave-functional
 [�], is found by solving the Schrödinger equation,

i
@ 

@t
= H , (3.4)

where H[⇡(~x),�(~x)] is the Hamiltonian written in terms of the time-independent Schrödinger-
picture field �(~x) and its conjugate momentum ⇡(~x). In the space-time coordinates that
we have chosen, the Lagrangian for our theory is given by

L[�] =

Z

d3~x
n

1
2a

3
˙

�

2 � 1
2a�

ij@i�@j�� 1
2a

3m2
�

2 � 1
24a

3��4
o

, (3.5)

and the corresponding canonical momenta are

⇧(t, ~x) =
�L

� ˙�(t, ~x)
= a3 ˙�(t, ~x).

If we perform the usual Legendre transformation, we are led to the Hamiltonian,
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It is must easier to describe the truncation of the full theory to its long wavelength parts
in terms of the momenta of the fields rather than in terms of their positions. So, after
performing the Fourier transformation of the Schrödinger picture fields,

�~k =

Z

d3~x e�i~k·~x�(~x),

the Hamiltonian assumes the form
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At this stage, it is not possible to find the exact form of the wave-functional in this
interacting theory, so we must be content with constructing  [�] perturbatively in powers
of the coupling �. One starts by expressing the wave-functional in the form

 [�] = Ne�a3 �[�], (3.8)
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Schrödinger equation 

Matching	  terms	  with	  two	  fields	  

Matching	  terms	  with	  no	  fields	  

Matching	  terms	  with	  four	  fields	  



would exist in the purely quadratic theory — is already enough to find the stochastic noise.
By evaluating the order � parts of the solution as well, we shall obtain the correct drift
term. The advantage of this approach is that it is possible to generalise beyond the standard
Fokker-Planck equation by simply working to higher orders in �.

Let us begin by expanding each of the functions in the wave-functional as a power series
in �,
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1
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n=0
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(n)
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and so on. The order in � is indicated by the corresponding superscript,

↵
(n)
k ,�

(n)
4 ,�

(n)
6 , . . . / �n. (4.2)

The higher order functions �n only begin their power series at correspondingly higher order
in �. Because the trivial, Gaussian version of the theory already exists in the absence of
any interactions, the leading term in the expansion of ↵k(t) starts at zeroth order. Exactly
the same reasoning, tells us that �4 and all of the higher order functions must vanish as
� ! 0. In the quartic theory that we are analysing, �4 itself starts with a linear term in the
coupling �, as is seen directly from its equation of motion. But the equation for �6, which
we have not written explicitly here, is quadratic in �4, so the series expansion for �6 only
begins with the �2 order term. The problem of solving the Schrödinger equation to linear
order in � then reduces to the problem of solving just three functions: the zeroth and first
order pieces of ↵k(t), which we rename as ↵̄k(t) ⌘ ↵

(0)
k (t) and �k(t) ⌘ ↵

(1)
k (t) to avoid an

excessive use of superscripts, and the leading part of �4,

↵k(t) = ↵̄k(t) + �k(t) +O(�2
)

�4(t;~k1,~k2,~k3,~k4) = �

(1)
4 (t;~k1,~k2,~k3,~k4) +O(�2

). (4.3)

The starting point is the purely Gaussian, noninteracting, theory, which is summarised
by the function ↵̄k(t). Even when ↵k(t) has been shorn of its order � and higher parts, the
differential equation for ↵̄k(t) is still nonlinear; so it is convenient to replace it with another
function, uk(t) defined through

↵̄k(t) = �i
u̇k(t)

uk(t)
. (4.4)

The nonlinear, first-order equation for ↵̄k(t) then becomes a linear, second-order equation
for uk(t),
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uk = 0. (4.5)
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ȧ

a
u̇k +

✓

m2
+

k2

a2

◆

uk = 0. (4.5)

– 12 –

Perturbation theory   

Each	  funcQon	  in	  the	  wave-‐funcQonal	  can	  be	  expanded	  in	  the	  powers	  of	  λ	


QuadraQc	  part	  starts	  at	  zero-‐th	  order	  in	  λ	  	  	  

QuarQc	  part	  starts	  at	  first	  order	  in	  λ	  	  	  
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The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,

uk(⌘) =
H
p
⇡

2

⌘3/2H(2)
⌫ (k⌘) where ⌫2 =

9

4

� m2

H2
, (4.6)

and where H
(2)
⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
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6 Applications and further refinements of the stochastic picture

We see that the leading form of the quantum version of the Fokker-Planck equation for the
effective theory of the long wavelength fluctuations exactly generates the standard Fokker-
Planck equation for the stochastic theory. However, now that we can completely follow
the derivation between these two pictures, we can — as in any effective theory —refine the
basic picture further by evaluating the higher order ‘corrections’ that should appear on the
stochastic side by deriving their analogues directly on the quantum side. For example, we
can see that the standard noise and drift,

N(�) =
H3

8⇡2
+O(�) and D(�) =

1

3H
+O(�),

are in fact only the first contributions in a perturbative expansion. What are the forms of
the higher order contributions? Are they also free of late-time divergences? Do other terms
appear in the Fokker-Planck equation? These last would be the analogues of the higher
order operators that appear in the effective Lagrangians in the more familiar applications
of effective field theories.

With a means of directly connecting the quantum and stochastic descriptions of the
theory, we can — at least in principle — explore the behaviour in the late-time limit more
fully. In the static limit of the stochastic theory, the probability function assumes a simple
form at leading order in the coupling, e.g. p(') / e�
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24N '4 for the quartic theory. However,

as we mentioned in the introduction, the usual interaction-picture treatments, while consis-
tent with the expectations of the stochastic picture, have late-time divergences that make
the approach to this simple, constant, limit difficult to see. In the Schrödinger picture, we
have an alternative framework for investigating the behaviour of the quantum theory in
this limit. In particular it would be interesting to learn the explicit time-dependence as the
probability function approaches its static limit [16].

The technique that we have developed here can also be applied to study the leading
behaviour of the stochastic theories associated with other light or massless fields: multiple
interacting scalar fields, gauge fields, or the actual scalar and tensor fluctuations of infla-
tionary theories. It should be equally instructive to investigate the probability distribution
function, p(t,'(~x)), that is associated with a classical stochastic field. Such fields are used
to describe the long wavelength parts of the n-point functions of quantum fields that are
evaluated at different spatial positions; these are needed to treat the power spectrum and
the non-Gaussianities predicted by inflation.
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The higher order functions �n only begin their power series at correspondingly higher order
in �. Because the trivial, Gaussian version of the theory already exists in the absence of
any interactions, the leading term in the expansion of ↵k(t) starts at zeroth order. Exactly
the same reasoning, tells us that �4 and all of the higher order functions must vanish as
� ! 0. In the quartic theory that we are analysing, �4 itself starts with a linear term in the
coupling �, as is seen directly from its equation of motion. But the equation for �6, which
we have not written explicitly here, is quadratic in �4, so the series expansion for �6 only
begins with the �2 order term. The problem of solving the Schrödinger equation to linear
order in � then reduces to the problem of solving just three functions: the zeroth and first
order pieces of ↵k(t), which we rename as ↵̄k(t) ⌘ ↵
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The starting point is the purely Gaussian, noninteracting, theory, which is summarised
by the function ↵̄k(t). Even when ↵k(t) has been shorn of its order � and higher parts, the
differential equation for ↵̄k(t) is still nonlinear; so it is convenient to replace it with another
function, uk(t) defined through

↵̄k(t) = �i
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. (4.4)

The nonlinear, first-order equation for ↵̄k(t) then becomes a linear, second-order equation
for uk(t),
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The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,
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and where H
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⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
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The higher order functions �n only begin their power series at correspondingly higher order
in �. Because the trivial, Gaussian version of the theory already exists in the absence of
any interactions, the leading term in the expansion of ↵k(t) starts at zeroth order. Exactly
the same reasoning, tells us that �4 and all of the higher order functions must vanish as
� ! 0. In the quartic theory that we are analysing, �4 itself starts with a linear term in the
coupling �, as is seen directly from its equation of motion. But the equation for �6, which
we have not written explicitly here, is quadratic in �4, so the series expansion for �6 only
begins with the �2 order term. The problem of solving the Schrödinger equation to linear
order in � then reduces to the problem of solving just three functions: the zeroth and first
order pieces of ↵k(t), which we rename as ↵̄k(t) ⌘ ↵
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The starting point is the purely Gaussian, noninteracting, theory, which is summarised
by the function ↵̄k(t). Even when ↵k(t) has been shorn of its order � and higher parts, the
differential equation for ↵̄k(t) is still nonlinear; so it is convenient to replace it with another
function, uk(t) defined through
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. (4.4)

The nonlinear, first-order equation for ↵̄k(t) then becomes a linear, second-order equation
for uk(t),
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The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,
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and where H
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⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
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ȧ

a
u̇
k

+
k2

a2
u
k

= 0. (10)

2



˙N

N
= � i

2

(2⇡)3�3(~0)

Z

d3~p

(2⇡)3
↵p(t)

@↵̄k

@t
+ 3

ȧ
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ȧ

a
↵̄k = i

⇢

k2

a2
� ↵̄2

k

�

,

@�4

@t
+ 3

ȧ
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and so on. The order in � is indicated by the corresponding superscript,
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The higher order functions �n only begin their power series at correspondingly higher order
in �. Because the trivial, Gaussian version of the theory already exists in the absence of
any interactions, the leading term in the expansion of ↵k(t) starts at zeroth order. Exactly
the same reasoning, tells us that �4 and all of the higher order functions must vanish as
� ! 0. In the quartic theory that we are analysing, �4 itself starts with a linear term in the
coupling �, as is seen directly from its equation of motion. But the equation for �6, which
we have not written explicitly here, is quadratic in �4, so the series expansion for �6 only
begins with the �2 order term. The problem of solving the Schrödinger equation to linear
order in � then reduces to the problem of solving just three functions: the zeroth and first
order pieces of ↵k(t), which we rename as ↵̄k(t) ⌘ ↵
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The starting point is the purely Gaussian, noninteracting, theory, which is summarised
by the function ↵̄k(t). Even when ↵k(t) has been shorn of its order � and higher parts, the
differential equation for ↵̄k(t) is still nonlinear; so it is convenient to replace it with another
function, uk(t) defined through

↵̄k(t) = �i
u̇k(t)

uk(t)
. (4.4)

The nonlinear, first-order equation for ↵̄k(t) then becomes a linear, second-order equation
for uk(t),
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The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,

uk(⌘) =
H
p
⇡

2

⌘3/2H(2)
⌫ (k⌘) where ⌫2 =

9

4

� m2

H2
, (4.6)

and where H
(2)
⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
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But by collecting and matching the various functions according to the shared factors of
�~k1 · · ·�~kn that accompany them for a given n, we find a differential equation for each
of the �n’s. The function �2(t;~k,�~k) accompanying the quadratic part of �[�] obviously
depends only on a single momentum. Since this function occurs ubiquitously throughout
the following calculations, it is advantageous to change our notation slightly and write it a
little more succinctly as

↵k(t) ⌘ �2(t;~k,�~k). (3.11)

The Schrödinger equation then implies the following relations derived from the zeroth,
quadratic, and quartic order terms in the fields,
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and so on for yet higher orders of n. The infinite factor (2⇡)3�3(~0) that appears in the
equation for the time dependence of the normalisation, and in several of the equations that
will occur later, is the volume of a spatial hypersurface in de Sitter space. These volume
factors always accompany contributions to the normalisation.

It is important to remember that the form of these equations is determined entirely
by the dynamical theory that we are considering, that is, by the Hamiltonian of a quartic
theory. Because each of these equations is first-order, there is an additional freedom asso-
ciated with the choice of the constants of integration9 appearing in the particular solution
for the �n’s. The collective choice for all of these constants translates into the choice of a
particular state  [�] in this picture.

4 Perturbation theory and the vacuum state

The usual stochastic treatment of inflation always implicitly assumes that the theory is in
the Bunch-Davies state. It is therefore important to introduce appropriate conditions on the
functions �n at very short wavelengths in order to put the field in the correct state. After
we have done so, we can follow the evolution to large wavelengths and see the simplifications
that permit a stochastic description of the theory. We construct the Bunch-Davies solution
of the Schrödinger equation here by solving the associated functions �n perturbatively to
a given order in �. Fortunately, all that is needed to derive the part of the quantum
Fokker-Planck equation that produces the standard stochastic Fokker-Planck equation is
to compute these solutions to linear order in �. In fact, the zeroth order solution — what

9These are constants in time. In general they could depend on momenta for particular choices of the
state.
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The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,

uk(⌘) =
H
p
⇡

2

⌘3/2H(2)
⌫ (k⌘) where ⌫2 =

9

4

� m2

H2
, (4.6)

and where H
(2)
⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
Minkowski space at scales k � aH, or in the limit k⌘ ! �1. Note that this condition
fixes the single constant of integration that is needed to specify a particular solution for
↵̄k(t). The second condition, which was not necessary for ↵̄k(t) but which has been used
to normalise the function uk(t), is that we have required it to satisfy the condition,

a3
⇣

u⇤ku̇k � uku̇
⇤
k

⌘

= �i. (4.7)

In the more frequently used Heisenberg picture for a free scalar field theory, this condition
naturally emerges as the consequence of the equal-time commutation relation between the
field and its conjugate momentum. But in the Schrödinger picture, the overall normalisation
always cancels within the ratio ↵̄k(t) = �iu̇k(t)/uk(t). Nonetheless, since the function uk(t)

assumes a more recognisable form when we do impose this condition, we have chosen to use
it here. Taking the massless limit, the function uk(t) reduces to

uk(⌘) =
iHp
2k3/2

�

1 + ik⌘
�

e�ik⌘. (4.8)

If we then proceed to take the k⌘ ! �1 limit too, we verify that the product a(⌘)uk(⌘)

assumes the form of a Minkowski space vacuum mode for a massless theory,

lim

k⌘!�1
a(⌘)uk(⌘) =

e�ik⌘

p
2k

.

From the perspective of a free, massless theory in Minkowski space, only the positive energies
appear in the exponent; the negative energy solutions, eik⌘, are absent from this limiting
form for a(⌘)uk(⌘).

Once we have found the leading part of the quadratic function ↵k(t), we next compute
the leading part of the function accompanying the quartic part of �[�]. The series expansion
for �6 only begins at quadratic order, so we shall not need to include this function when
solving for just the leading part of �(1)

4 . Without the �6 term, the linear part of the equation
for �4 in � reduces to a first-order inhomogeneous equation,

@�
(1)
4

@t
+

@

@t



ln

⇣

a3uk1uk2uk3uk4

⌘

�

�

(1)
4 = i�. (4.9)

Its general solution is

�

(1)
4 (⌘;~k1,~k2,~k3,~k4) =

c4 + i�

Z ⌘

⌘0

d⌘0a4(⌘0)uk1(⌘
0
)uk2(⌘

0
)uk3(⌘

0
)uk4(⌘

0
)

a3(⌘)uk1(⌘)uk2(⌘)uk3(⌘)uk4(⌘)
, (4.10)
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+ 3
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ȧ
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⇥

↵k1 + ↵k2 + ↵k3 + ↵k4

⇤

�4(t,~k1,~k2,~k3,~k4)

+

i

2

1

a3

Z

d3~p

(2⇡)3
�6(t;~k1,~k2,~k3,~k4, ~p,�~p), (6.2)

uk(t) =
vk(t)

a(t)
. (6.3)

d2vk
d⌘2

+ k2(1� 2

k2⌘2
)v = 0

vk(⌘) =

r

�k⌘⇡

2

⇣

C1H
(1)
3/2(�k⌘) + C2H

(2)
3/2(�k⌘)

⌘

H
(1)
3/2(�k⌘) = i

r

2

�k3⌘3⇡
(1 + ik⌘)e�ik⌘

H
(2)
3/2(�k⌘) = �i

r

2

�k3⌘3⇡
(1� ik⌘)eik⌘

kphys
H

=

k

aH
= �k⌘ � 1

vk(⌘) !
⇣

C1e
�ik⌘

+ C2e
ik⌘

⌘

↵̄k ! (k/a)

C1 = 0

uk(⌘) =
vk(⌘)

a(⌘)
/ �

1� ik⌘
�

eik⌘. (6.4)

�

(1)
4 (⌘;~k1,~k2,~k3,~k4) =

c4 + i�

Z ⌘

�1(1�i✏)
d⌘0a4(⌘0)uk1(⌘

0
)uk2(⌘

0
)uk3(⌘

0
)uk4(⌘

0
)

a3(⌘)uk1(⌘)uk2(⌘)uk3(⌘)uk4(⌘)
, (6.5)
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               Leading part of            

in �,

↵k(t) =

1
X

n=0

↵
(n)
k (t)

�4(t;~k1,~k2,~k3,~k4) =

1
X

n=1

�

(n)
4 (t;~k1,~k2,~k3,~k4)

�6(t;~k1,~k2,~k3,~k4,~k5,~k6) =

1
X

n=2

�

(n)
6 (t;~k1,~k2,~k3,~k4,~k5,~k6), (4.1)

and so on. The order in � is indicated by the corresponding superscript,

↵
(n)
k ,�

(n)
4 ,�

(n)
6 , . . . / �n. (4.2)

The higher order functions �n only begin their power series at correspondingly higher order
in �. Because the trivial, Gaussian version of the theory already exists in the absence of
any interactions, the leading term in the expansion of ↵k(t) starts at zeroth order. Exactly
the same reasoning, tells us that �4 and all of the higher order functions must vanish as
� ! 0. In the quartic theory that we are analysing, �4 itself starts with a linear term in the
coupling �, as is seen directly from its equation of motion. But the equation for �6, which
we have not written explicitly here, is quadratic in �4, so the series expansion for �6 only
begins with the �2 order term. The problem of solving the Schrödinger equation to linear
order in � then reduces to the problem of solving just three functions: the zeroth and first
order pieces of ↵k(t), which we rename as ↵̄k(t) ⌘ ↵

(0)
k (t) and �k(t) ⌘ ↵

(1)
k (t) to avoid an

excessive use of superscripts, and the leading part of �4,

↵k(t) = ↵̄k(t) + �k(t) +O(�2
)

�4(t;~k1,~k2,~k3,~k4) = �

(1)
4 (t;~k1,~k2,~k3,~k4) +O(�2

). (4.3)

The starting point is the purely Gaussian, noninteracting, theory, which is summarised
by the function ↵̄k(t). Even when ↵k(t) has been shorn of its order � and higher parts, the
differential equation for ↵̄k(t) is still nonlinear; so it is convenient to replace it with another
function, uk(t) defined through

↵̄k(t) = �i
u̇k(t)

uk(t)
. (4.4)

The nonlinear, first-order equation for ↵̄k(t) then becomes a linear, second-order equation
for uk(t),

ük + 3

ȧ

a
u̇k +

✓

m2
+

k2

a2

◆

uk = 0. (4.5)

The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,

uk(⌘) =
H
p
⇡

2

⌘3/2H(2)
⌫ (k⌘) where ⌫2 =

9

4

� m2

H2
, (4.6)

and where H
(2)
⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
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At	  first	  order	  in	  λ	  	  	  

The	  general	  soluQon	  	  	  

Recall	  that	  for	  very	  short	  modes	  

long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form

@p

@t
= N

@2p

@'2
+D

@

@'

✓

@V

@'
p(t,')

◆

.

The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

The dynamics of the long-wavelength part of the field can be described by the coarse-grained
version of the density matrix

P⌦[�L] =

Z

S
D�~p P [�L,�S ].

The expectation values of the products of fields can be found as follows

h�n
L(t, ~x)i =

Z

D�L �L · · ·�LP⌦[�L].

Note: in the Schrödinger picture fields are time-independent, so P [�] and P⌦[�L] are time-
dependent.

a(⌘)uki(⌘) / eiki⌘
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	  For	  modes	  longer	  than	  the	  Hubble	  scale	  

in the solution for �

(1)
4 (⌘;~k1,~k2,~k3,~k4). Being able unambiguously to perform the integral

that appears in the solution depends on being able to establish a suitable i✏ prescription for
the time-integration contour. As one proceeds ever deeper into the horizon by allowing the
initial time to reach further back, we should define this i✏ prescription so that the initial
contribution to the integral in the solution for �

(1)
4 vanishes as ⌘0 ! �1. Once this has

been done, if we consider times where the momenta are still well within the horizon at ⌘

— that is, �ki⌘ � 1 — the leading behaviour that results when performing the integral is

�

(1)
4 (⌘;~k1,~k2,~k3,~k4) ⇡ c4

a(⌘)
p
16k1k2k3k4

e�i(k1+k2+k3+k4)⌘
� a(⌘)�

k1 + k2 + k3 + k4
. (4.11)

We now realise that the i✏ prescription that has successfully suppressed the unwanted
contribution from the positive energy fluctuations as ⌘0 ! �1 would correspondingly lead
to an exponential growth of the first term as ki⌘ ! �1. By choosing c4 = 0, this problem
is resolved since the first term has been removed entirely, along with what would appear
to be negative energy oscillations from the perspective of an observer only able to measure
wavelengths much smaller than the size of the horizon. Thus, the leading part of the quartic
function for the Bunch-Davies state is

�

(1)
4 (⌘;~k1,~k2,~k3,~k4) =
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Z ⌘
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d⌘0a4(⌘0)uk1(⌘

0
)uk2(⌘

0
)uk3(⌘

0
)uk4(⌘

0
)

a3(⌘)uk1(⌘)uk2(⌘)uk3(⌘)uk4(⌘)
. (4.12)

Now that we have found the appropriate solution for our state, we can investigate how
it behaves in the opposite limit — it is the set of long wavelength fluctuations that are
relevant for the stochastic description of the theory. For a massless field, the integral is
once again simple enough to evaluate explicitly,

�

(1)
4 (⌘;~k1,~k2,~k3,~k4) =

i�

3H

1 + iK⌘ � 1

2

K2⌘2 +
3

2

�

k21 + k22 + k23 + k24
�

⌘2 � 3ik1k2k3k4⌘
3

K
(1 + ik1⌘)(1 + ik2⌘)(1 + ik3⌘)(1 + ik4⌘)

+

�

3H

�

k31 + k32 + k33 + k34
�

⌘3eiK⌘
Ei(1, iK⌘)

(1 + ik1⌘)(1 + ik2⌘)(1 + ik3⌘)(1 + ik4⌘)
. (4.13)

Here we have abbreviated K ⌘ k1+k2+k3+k4 and Ei(1, iK⌘) is the standard exponential
integral function. The advantage of analysing the theory in the Schrödinger picture is
becoming more apparent — this function, which is the one accompanying the quartic term
in �[�], is completely free from any divergent behaviour in the long wavelength limit where
ki⌘ ! 0. The exponential integral diverges logarithmically when its argument approaches
zero,

Ei(1, iK⌘) = �� + ln(iK⌘) + iK⌘ +O(K2⌘2),

but since this only happens when all four of the momenta simultaneously become small,
and since the exponential integral is multiplied by (k31 + k32 + k33 + k34)⌘

3, there are no long
wavelength divergences in �

(1)
4 .

Later, we shall see that the asymptotic behaviour of this function fixes the drift in the
quantum Fokker-Planck equation and — because they are precisely the same — the drift in
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˙N

N
= � i

2

(2⇡)3�3(~0)

Z

d3~p

(2⇡)3
↵p(t)

@↵̄k

@t
+ 3

ȧ

a
↵̄k = i

⇢

k2

a2
� ↵̄2

k

�

,

@�4

@t
+ 3

ȧ

a
�4(t;~k1,~k2,~k3,~k4) = i�� i

⇥

↵k1 + ↵k2 + ↵k3 + ↵k4

⇤

�4(t,~k1,~k2,~k3,~k4)

+

i

2

1

a3

Z

d3~p

(2⇡)3
�6(t;~k1,~k2,~k3,~k4, ~p,�~p), (6.2)

uk(t) =
vk(t)

a(t)
. (6.3)

d2vk
d⌘2

+ k2(1� 2

k2⌘2
)v = 0

vk(⌘) =

r

�k⌘⇡

2

⇣

C1H
(1)
3/2(�k⌘) + C2H

(2)
3/2(�k⌘)

⌘

H
(1)
3/2(�k⌘) = i

r

2

�k3⌘3⇡
(1 + ik⌘)e�ik⌘

H
(2)
3/2(�k⌘) = �i

r

2

�k3⌘3⇡
(1� ik⌘)eik⌘

kphys
H

=

k

aH
= �k⌘ � 1

vk(⌘) !
⇣

C1e
�ik⌘

+ C2e
ik⌘

⌘

↵̄k ! (k/a)

C1 = 0

uk(⌘) =
vk(⌘)

a(⌘)
/ �

1� ik⌘
�

eik⌘. (6.4)
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               Leading part of            

in �,

↵k(t) =

1
X

n=0

↵
(n)
k (t)

�4(t;~k1,~k2,~k3,~k4) =

1
X

n=1

�

(n)
4 (t;~k1,~k2,~k3,~k4)

�6(t;~k1,~k2,~k3,~k4,~k5,~k6) =

1
X

n=2

�

(n)
6 (t;~k1,~k2,~k3,~k4,~k5,~k6), (4.1)

and so on. The order in � is indicated by the corresponding superscript,

↵
(n)
k ,�

(n)
4 ,�

(n)
6 , . . . / �n. (4.2)

The higher order functions �n only begin their power series at correspondingly higher order
in �. Because the trivial, Gaussian version of the theory already exists in the absence of
any interactions, the leading term in the expansion of ↵k(t) starts at zeroth order. Exactly
the same reasoning, tells us that �4 and all of the higher order functions must vanish as
� ! 0. In the quartic theory that we are analysing, �4 itself starts with a linear term in the
coupling �, as is seen directly from its equation of motion. But the equation for �6, which
we have not written explicitly here, is quadratic in �4, so the series expansion for �6 only
begins with the �2 order term. The problem of solving the Schrödinger equation to linear
order in � then reduces to the problem of solving just three functions: the zeroth and first
order pieces of ↵k(t), which we rename as ↵̄k(t) ⌘ ↵

(0)
k (t) and �k(t) ⌘ ↵

(1)
k (t) to avoid an

excessive use of superscripts, and the leading part of �4,

↵k(t) = ↵̄k(t) + �k(t) +O(�2
)

�4(t;~k1,~k2,~k3,~k4) = �

(1)
4 (t;~k1,~k2,~k3,~k4) +O(�2

). (4.3)

The starting point is the purely Gaussian, noninteracting, theory, which is summarised
by the function ↵̄k(t). Even when ↵k(t) has been shorn of its order � and higher parts, the
differential equation for ↵̄k(t) is still nonlinear; so it is convenient to replace it with another
function, uk(t) defined through

↵̄k(t) = �i
u̇k(t)

uk(t)
. (4.4)

The nonlinear, first-order equation for ↵̄k(t) then becomes a linear, second-order equation
for uk(t),

ük + 3

ȧ

a
u̇k +

✓

m2
+

k2

a2

◆

uk = 0. (4.5)

The vacuum, or Bunch-Davies, solution to this equation has the standard form, which is
expressed more simply in terms of the conformal time coordinate ⌘,

uk(⌘) =
H
p
⇡

2

⌘3/2H(2)
⌫ (k⌘) where ⌫2 =

9

4

� m2

H2
, (4.6)

and where H
(2)
⌫ (k⌘) is a Hankel function. We have fixed this solution through two condi-

tions. One is the requirement that the solution should reproduce the vacuum solution in
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	  Plugging	  	  	  
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Density matrix 

theory emerge most directly when we treat the quantum theory in the Schrödinger picture.
In this picture, the evolution of the expectation value of an operator occurs entirely in the
state; operators,5 such as the products of n fields, �(~x), have no explicit time dependence.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen. In fact we need to treat two versions of the density matrix: that of the full theory,
which we denote by

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

as well as the density matrix for the effective theory that just includes the long wavelength
fluctuations, which will be denoted by P⌦[�L]. The evolution of P [�] for the full theory
is determined entirely by its Liouville equation. The evolution of P⌦[�L] is then derived
through its relation to P [�] together with our knowledge of how P [�] itself evolves.

A general, equal-time, expectation value for the product of n fields is given by

h�L(t, ~x1) · · ·�L(t, ~xn)i

=

Z

L

d3~k1
(2⇡)3

· · · d
3~kn

(2⇡)3
ei
~k1·~x1 · · · ei~kn·~xn

(2⇡)3�3(~k1 + · · ·+ ~kn) h�~k1
(t) · · ·�~kn

(t)i.

The notation that we shall adopt here is that an ‘L’ subscript in an integral indicates that
all of the momenta accompanying the integral sign are only those corresponding to physical
wavelengths that have been stretched well outside the horizon, k < "aH. The momentum
conserving �-function follows from the invariance of the background under spatial trans-
lations. When all of the fields are evaluated at the same spatial position, this �-function
causes the exponential factors to vanish,

h�n
L(t, ~x)i =

Z

L

d3~k1
(2⇡)3

· · · d
3~kn

(2⇡)3
(2⇡)3�3(~k1 + · · ·+ ~kn) h�~k1

(t) · · ·�~kn
(t)i. (2.7)

In the Schrödinger picture, the matrix elements are found by functionally integrating over
the relevant degrees of freedom, which in this case are the �~k’s whose momentum label ~k
corresponds to a long wavelength, weighted by the density matrix P⌦[�L] for the effective
theory,

h�~k1
(t) · · ·�~kn

(t)i =
Z

L
D�~k �~k1 · · ·�~knP⌦[�L]. (2.8)

The �~k’s appearing in this expression are the fields written in the Schrödinger picture.6

Since the time-dependence is entirely in the density matrix, �~k does not depend on the
time.

Now let us imagine for the moment that the density matrix P⌦[�L] itself satisfies a
functional Fokker-Planck equation of the form

@P⌦

@t
=

Z

L

d3~k

(2⇡)3

⇢

Nk
�2P⌦

��~k���~k

+D �

��~k



�V⌦

���~k

P⌦

��

. (2.9)

5We shall denote the fields in the Schrödinger picture with a lower case notation, �(~x), while the upper
case �(t, ~x) represents the field more generally, independent of a particular picture.

6Because of the limits on the integral, the label ~k is always in the region k < "aH in this expression. It
would be redundant — at least to the order to which we shall be working — and a little cumbersome to
write �L,~k. Therefore we shall not do so.
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Up	  to	  the	  linear	  order	  in	  λ	  	  

	  is	  associated	  with	  the	  non-‐interacQng	  part	  of	  the	  theory.	  It	  can	  be	  factorized	  into	  the	  
short	  and	  long	  parts.	  	  	  
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Z

L
D�~k P0[�L] = 1 (6.11)

Z

S
D�~k P0[�S ] = 1 (6.12)

– 26 –



is the dimensionless quantity. Since �(1)4 behaves well at long wavelengths, it cannot diverge
as k⌘0 ! 0 which in turn means that its integral cannot diverge faster than the 1/⌘03 factor
that we have already extracted. In fact, the leading 1/⌘03 scaling has the same power as
a mass term. For a massless theory, this term should be absent, as can be arranged —
depending on the regularization scheme being used — through a suitable choice for �m2.
Therefore, in a massless theory �k(⌘) should vanish as k⌘ ! 0.

5 The quantum Fokker-Planck equation

We are ready to use what we have learned to derive a quantum version of the Fokker-Planck
equation. To do so, we must solve for the evolution of the diagonal part of the density
matrix for the Bunch-Davies state, P [�] =  [�] ⇤

[�], and from it derive the evolution of
the density matrix for the coarsely grained version of the theory, P⌦[�L]. The latter is the
density matrix obtained by integrating out the short wavelength fluctuations,

P⌦[�L] ⌘
Z

S
D�~p P [�] =

Z

p�"aH
D�~p P [�]. (5.1)

The time derivative of P⌦[�L] will then produce the quantum version of the Fokker-Planck
equation that we are seeking. One subtlety that occurs in this effective theory, and which
does not usually happen in most standard effective field theories, is that in taking the time
derivative of P⌦[�L] we must also include the time dependence that occurs in the boundary,
"aH, dividing the long wavelength fluctuations that we must keep from the short wavelength
ones that we remove.

The important idea here is to match between the two theories. This step allows us
to express the functions inside the density matrix of the effective theory in terms of those
of the original theory. We can then use the Schrödinger equation of the full theory to
compute the time derivative of P⌦[�L] directly. In terms of the wave-functional  [�] for
the Bunch-Davies state, the diagonal part of its density matrix is

P [�] =  [�] ⇤
[�] = |N |2e�a3[�[�]+�⇤[�]]. (5.2)

The first step in the matching process is to define an analogous expansion for the density
matrix of the effective theory,

P⌦[�L] = |N⌦|2e�a3[�⌦[�L]+�⇤
⌦[�L]], (5.3)

where

�⌦[�L] =

1
X

n=2

1

n!

Z

L

d3k1
(2⇡)3
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IntegraQng	  out	  short	  modes	  from	  the	  above	  expression	  we	  arrive	  at	  the	  coarse	  
grained	  density	  matrix	  
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Evolution of the coarse-grained density matrix 
Hi^ng	  the	  coarse	  grained	  density	  matrix	  with	  the	  Qme-‐derivaQve	  we	  get	  	  itself evolves. When we do so, we obtain the following expression,
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This is essentially the Liouville equation for the effective theory. It is also the quantum
Fokker-Planck equation, as we shall now show. The first step is to translate some of these
terms into a second functional derivative of P⌦[�L] with the appropriate coefficient. For this
purpose, the following formula, written for an arbitrary momentum-dependent coefficient,
Fk, is very useful,
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When we choose the coefficient function Fk to reproduce the zeroth order structures in the
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The reason that we have written the quartic term in this slightly lengthier form becomes
clear when we express it in terms of the coarsely grained potential of the effective theory,

V⌦[�L] =
1

4!

�

Z

L

d3~k1
(2⇡)3

d3~k2
(2⇡)3

d3~k3
(2⇡)3

d3~k4
(2⇡)3

(2⇡)3�3(~k1 + ~k3 + ~k3 + ~k4)�~k1�~k2�~k3�~k4 . (5.23)

– 22 –

Evolution of the coarse-grained density matrix 

NoQce	  the	  presence	  of	  the	  surface	  term	  	  

long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen

P [�] = P [�L,�S ] =  [�] 
⇤
[�].

The dynamics of the long-wavelength part of the field can be described by the coarse-grained
version of the density matrix
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The expectation values of the products of fields can be found as follows
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Note: in the Schrödinger picture fields are time-independent, so P [�] and P⌦[�L] are time-
dependent.
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The reason that we have written the quartic term in this slightly lengthier form becomes
clear when we express it in terms of the coarsely grained potential of the effective theory,
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The reason that we have written the quartic term in this slightly lengthier form becomes
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Evolution of the coarse-grained density matrix 

Replacing	  with	  its	  long	  wavelength	  asymptoQc	  value	  

we	  arrive	  at	  	  



coarse-grained Liouville equation, and then gather together what remains, we find that
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So far we have not used our knowledge of the explicit behaviour of the functions ↵⌦,k

and �

(1)
4 . In this coarsely grained version of the Liouville equation, it is only the long

wavelength degrees of freedom that appear — all of the momenta are in the region well
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The reason that we have written the quartic term in this slightly lengthier form becomes
clear when we express it in terms of the coarsely grained potential of the effective theory,
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Matching between this general expression and what appears in the Liouville equation of
the effective theory, we conclude that Dk = 1/3H in our theory — the familiar result.

We have now arrived at the quantum version of the Fokker-Planck equation, evaluated
to linear order in the coupling,
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where the quantum — momentum dependent — noise term is
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In the limit where the wavelengths have all been stretched to be much larger than the
horizon, it is actually only the first of these terms that determines the leading form of the
noise. Recall that the quantum noise Nk and the stochastic noise N are related by
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The stochastic noise coefficient is then found to be
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In the long wavelength limit, " ⌧ 1, we recover the precisely standard noise term for the
stochastic Fokker-Planck equation,
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at leading nontrivial order.
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Coarsely grained potential  

Consider	  the	  following	  expression	  for	  arbitrary	  Dk	  	  
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Matching between this general expression and what appears in the Liouville equation of
the effective theory, we conclude that Dk = 1/3H in our theory — the familiar result.

We have now arrived at the quantum version of the Fokker-Planck equation, evaluated
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In the long wavelength limit, " ⌧ 1, we recover the precisely standard noise term for the
stochastic Fokker-Planck equation,
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Matching between this general expression and what appears in the Liouville equation of
the effective theory, we conclude that Dk = 1/3H in our theory — the familiar result.

We have now arrived at the quantum version of the Fokker-Planck equation, evaluated
to linear order in the coupling,
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where the quantum — momentum dependent — noise term is
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In the limit where the wavelengths have all been stretched to be much larger than the
horizon, it is actually only the first of these terms that determines the leading form of the
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In the long wavelength limit, " ⌧ 1, we recover the precisely standard noise term for the
stochastic Fokker-Planck equation,
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Quantum Fokker-Planck equation 
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Matching between this general expression and what appears in the Liouville equation of
the effective theory, we conclude that Dk = 1/3H in our theory — the familiar result.

We have now arrived at the quantum version of the Fokker-Planck equation, evaluated
to linear order in the coupling,
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where the quantum — momentum dependent — noise term is

Nk = �1

2

1

a3
1

↵⌦,k + ↵⇤
⌦,k



@

@t
⇥("aH � k)

�

+

1

2

i

a3
↵⌦,k � ↵⇤

⌦,k

↵⌦,k + ↵⇤
⌦,k

⇥("aH � k) + · · · . (5.27)

In the limit where the wavelengths have all been stretched to be much larger than the
horizon, it is actually only the first of these terms that determines the leading form of the
noise. Recall that the quantum noise Nk and the stochastic noise N are related by
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In the long wavelength limit, " ⌧ 1, we recover the precisely standard noise term for the
stochastic Fokker-Planck equation,
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Now let us imagine for the moment that the density matrix P⌦[�L] itself satisfies a
functional Fokker-Planck equation of the form
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The V⌦ in this expression is the potential for the long wavelength fluctuations of the fields.
For a quartic theory, this potential would be
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We can follow the same procedure that we used in the stochastic description of the theory
to generate an analogous recursion relation for the quantum effective theory. When we
differentiate h�n

L(t, ~x)i with respect to the time and use the appropriate quantum form of
the Fokker-Planck equation, we are led to the recursion relation7
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This time we have simply written the result for the particular case of a quartic interaction,
rather than for a general polynomial potential. Comparing the two recursion relations, we
realise that if the stochastic and the quantum descriptions of the n-point functions are to
agree, h'ni = h�n

L(t, ~x)i, the noise and the drift coefficients of the stochastic Fokker-Planck
equation are derived directly from the quantum ones by identifying
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So the path leading from the quantum theory to its stochastic description now becomes
clear:

i. We must first solve for the wave-functional and the corresponding density matrix of
our full theory, which includes both the long and short wavelength parts of the field.
For this purpose, the Schrödinger picture is the best suited, as we shall see.

ii. Once we have determined the density matrix for the state that we have chosen, P [�] =

P [�L,�S ], which here will be the Bunch-Davies state, we project onto the effective
7Had we allowed the drift term in the quantum version of the Fokker-Planck equation to depend on the

momentum as well, Dk, we should have arrived at the following quantum recursion relation instead,
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Recursion relations  

long wavelength (L): kphys = k/a(t) < "H

short wavelength (S): kphys = k/a(t) > "H,

The stochastic theory of inflation (Starobinsky:1986, Starobinsky:1994) argues that the
probability function for this classical variable should satisfy a Fokker-Planck equation of
the form
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The coefficients N and D are called the ‘noise’ and the ‘drift’ of this stochastic theory.
As t ! 1 p(', t) ! p('), @p/@t = 0

|⌦i denotes the state that we have chosen for our quantum field, which we shall take to be
the Bunch-Davies state — the de Sitter invariant state matching the standard Minkowski
space vacuum at very short distances.
The closest analogue of the probability function in the stochastic description is the density
matrix — or rather, its diagonal components — associated with the state that we have
chosen
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The dynamics of the long-wavelength part of the field can be described by the coarse-grained
version of the density matrix
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The	  noise	  at	  the	  leading	  order	  in	  λ	  

A general Fokker-Planck drift term would have the form
Z

L

d3~k

(2⇡)3
Dk

�

��~k



�V⌦

���~k

P⌦

�

=

1

2

�

Z

L

d3~k

(2⇡)3
�~k��~k

Z

L

d3~k0

(2⇡)3
Dk0P⌦

� 1

4!

a3�

Z

L

d3~k1
(2⇡)3

d3~k2
(2⇡)3

d3~k3
(2⇡)3

d3~k4
(2⇡)3

(2⇡)3 �3(~k1 + ~k2 + ~k3 + ~k4)�~k1�~k2�~k3�~k4

⇥
h

(↵̄k1 + ↵̄⇤
k1)Dk1 + (↵̄k2 + ↵̄⇤

k2)Dk2 + (↵̄k3 + ↵̄⇤
k3)Dk3 + (↵̄k4 + ↵̄⇤

k4)Dk4

i

P⌦

+ · · · . (5.25)

Matching between this general expression and what appears in the Liouville equation of
the effective theory, we conclude that Dk = 1/3H in our theory — the familiar result.

We have now arrived at the quantum version of the Fokker-Planck equation, evaluated
to linear order in the coupling,
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where the quantum — momentum dependent — noise term is
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In the limit where the wavelengths have all been stretched to be much larger than the
horizon, it is actually only the first of these terms that determines the leading form of the
noise. Recall that the quantum noise Nk and the stochastic noise N are related by
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Let us evaluate the stochastic noise at leading order in the coupling by replacing ↵⌦,k =

↵̄k + · · · and using the explicit form for ↵̄k in a massless theory,
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The stochastic noise coefficient is then found to be
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In the long wavelength limit, " ⌧ 1, we recover the precisely standard noise term for the
stochastic Fokker-Planck equation,
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at leading nontrivial order.
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In the long wavelength limit, " ⌧ 1, we recover the precisely standard noise term for the
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Conclusions and further applications 

•  We	  saw	  that	  the	  leading	  form	  of	  the	  quantum	  version	  of	  the	  
Fokker-‐Planck	  equaQon	  for	  the	  effecQve	  theory	  of	  the	  long	  
wavelength	  fluctuaQons	  exactly	  generates	  the	  standard	  
Fokker-‐Planck	  equaQon	  for	  the	  stochasQc	  theory.	  

•  Now	  that	  we	  can	  completely	  follow	  the	  derivaQon	  between	  
these	  two	  pictures,	  we	  can	  refine	  the	  basic	  picture	  further	  by	  
evaluaQng	  the	  higher	  order	  correcQons	  to	  noise	  and	  drib.	  

•  We	  can	  use	  our	  approach	  to	  treat	  real	  curvature	  
perturbaQons	  of	  the	  inflaQonary	  theories.	  	  



Thank you 


