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@ Massive gravitons in curved space
@ Cosmology

@ Black holes



Massive fields in curved space

Spin 0. One has in Minkowski space
N 0,0, = M?¢
To pass to curved space one replaces
N = 8, O =V
which gives
gV, vV, o = Mo
Similarly for spins 1/2 (Dirac), 1 (Proca), 3/2 (Rarita-Schwinger).

The procedure fails for the massive spin 2.



Massive spin 2 in flat space

Fierz-Pauli equations

E. = 0°9,hs, +3°0,hy, — Ohy, —0,0,h
+ 0w (Th = 3%0%hag) + M?(hy, — Ah1,,) =0

which imply 4 vector constraints
C, = O"E,, = M?(9"hy,, — N, h) =0,
and also
Cs = (9"0" + M*n")Ep,
M?(1 — \)Bh+ M*(1 — 4\ h =0

which becomes constraint if A = 1,

Cs = —3M?h=0.



Fierz-Pauli: =1

(D + Mz)hlw = 0,
8“/1“1, 0,
h = 0,

= 10 — 5 = 5 propagating DoF. For A # 1 there are 6 DoF.
Passing to curved space via 1, — gu, and 9, — V, yields

EAU'V = Vavuhau + VUvVho'# - Dhulj - V,uvl/h
+  gu(Oh—VVPh,s) + M?(h., — hgu) = 0.

This implies the 5 constraints

C, = V*E,, = M*(V*h,, — V,h) =0,
Cs = (V'VY + M?g")E,, = —3M*h =0

ONLY in Einstein spaces, if R, = Agu..
For R, # Agu. there are 5+1 DoF = ghost is present.



Linear theory from the nonlinear one



Ghost-free massive gravity

Let g, and f,, be the physical and reference metrics and
VeV =8""Fov, Y =8usV% =%
The equations are /dRGT, 2010/

E,uu = G,uz/(g) + o 8w + [7)1([7] 8uv — 'Y,uz/)
+ Bl (W v = vd) + Bs vl v =0.



Ghost-free massive gravity

Let g, and f,, be the physical and reference metrics and
Y% = 8" f ou, Vv = BuoV s V] = %-
The equations are /dRGT, 2010/

E,uu = G;w(g) + 5o g + 61(['7] Euv — ’Ym/)
+ Bl (v —v2) + B3 1l v = 0.

Perturbing g, — g + 08, yields E,,, — E,,, + 0E,,, with

5E;w = 6Guu + ﬂO 5gHV + 51([5’7] Euv + [’7] 5gMV - 57/“’) +..

where  §4/47, + 41677, = 08" F o, & |0y + 0y =08 'f.

Solution for §+ in terms of dg is very complicated
/Deffayet et al./




Ghost-free massive gravity in tetrad formalism

Introducing two tetrads e?, and ¢, such that

Buv = nabeauebw f,uy = 773b¢au¢bw
one has
Vo =% Yab=TNacYb = Vba
and the equations
E., = G+ /30 Nab + /31([7] Nab — Vab)
+ Bl (M —728) + B3 hlvas = 0.
The idea is to linearize with respect to tetrad perturbations

b
I

a a a . a __ ya
e?, — e’ +de?, with de’, = X%e

and then project to e, and express everything in terms of

X = nave’,0e”, = 0w = X + Xou




Equations in the generic case

Enw=0u+M, =0
with the kinetic term
1 1
A, = EVUVM(XUV + Xoo) + EV”VV(XW + X,w)
1
— ED(X’W + Xou) =V, VX
g (ux — VOVA X + Raﬂxaﬁ)
— RZXC,,, — R Xou
and the mass term
M“y = M (’VUMXJV — 8w ’Yaﬁ Xab’)
+ B {7475 Xag — (V)% Xav + Yy Yo X7

Y% Xaw + (7P)as X = [1]7ap X*?) g}
+ Bslyl (Xuo (V)% = X1 D)



Equations for v,

Background equations

Guu + Bo guv + Bl([’y] 8uv — ’Yuu)
+B2 I ([ Yt = Yad) + B3 171 Y =0

can be viewed as cubic algebraic equations for 7,,. For any g,
the solution is

oo 3
(&) = 33 buk(Ba) R” (RN)

n=0 k=0

There are special values of 84 for which the sum is finite.

How many propagating DoF are there ?



There are 16 equations
Epw =D + My =0
for 16 components of X,,,. The imply the following 11 conditions:
Apyy=0 = My, =0 = 6 algebraic constraints

C, =V"E,, =0 = 4 vector constraints

¢ = Vul(re) + 2

E<, +52’YIWE;W
h/| ol — - -4«
o] (A R G Rl GO Gl
1 o 1 00 i
X Eop — §g0tﬁ(Ea' ~g® E™)) | =0 = scalar constraint

The number of DoF is 16 —6 —4 —1 =5.



Two special models



Models | and 1l

Background equations

G;w + BO Buv + 61(['7] Euv — ’Ym/)
+B2 I (Y Yt = Yad) + B3 1Y =0

are non-linear in 7,,. There are two exceptional cases:
Model I: 8, = 83 =0,

G,uu + Bo g + 61([7] v — 'Yuu)a

which can be resolved with respect to 7,,;
Model II: p1 = 5>, =0,

G,ul/ + o Buv + 33 |’7| '7;1/1 =0,

which can be resolved with respect to |'y|'y;l}



Equations for the two special models

Enw=0u+M, =0
with the kinetic term
1 1
Ay = EVUVH(XU,, + Xuo) + §VUVV(XUM + Xuo)

1
— §D(X’w + Xou) =V, Vo X

+ g (X = VOV X + R X5
— RZXW - R Xou
and the mass term

model .~ My, = YuaX — guv ’Ya,BXa’B7

R
Yy = Ruy + (M2 - 6> Buv M2 = _50/3

model Il: ~ M, = =X, “var + XY,

R
Y = R;W - <M2 + 2> Buv M2 = —fo.



1

| = 2/X"MEW,F—gd“xz/L,ﬁ—gd“x

(order of indices !) with L = L) + L(o) where
1 1
Loy= = 3 VX"Vl + £ VOXI Vo,
1 3 1
+ VAV Xy - SV AVOX

with X, = X, + X, and X = XY, One has in model |
1

Loy= — 5 XM R Xoy
b= DX - X?)
and in model Il
Loy= - %X‘“’RUMX(W — %X“”RUZ,XW

1oy pa , 1 R
= XM XaR, 4 XRyuy X1 4 2 (M2 +

XX = X?)



Constraints



Algebraic constraints

Ew =0 + My, =0

are 16 equations for 16 components of X,,,. One has A, = A,
hence one should have
M) =0

which yields 6 algebraic conditions

Model I:  %uaX$ = %aXS,
Model II: Xua’)/az/ = Xya’)’au

which reduce the number of independent components of X, to 10.



Differential constraints, model |

with
Vv = R + </\/l2 - ’;) 8w
one obtains the four vector constraints
Cr=(y ' 'VIE, = VX7 —VPX +1° =0
with
70 = (7 XV = Vivas) + Ve X |

There is also a scalar constraint

v 1
Cs = (Vp(’Y_l)p VH+ 5 g“”) E.w
= 3mPx - temx I° =
- _5 - 5 g + Vp == 0

= the number of DoF is 10 — 5 = 5.



Differential constraints, model Il

With R
Yur = Rup — <M2 + 2> 8uv
one has
CP = yPYVHE,, = PPV, X5 =0

with ¥Pvebf = 'yp”'y"‘ﬁ — 'ypfgfy”o‘ and

Cs = V,C°
1 00 B B o 1 00

This does not contain the second time derivative = constraint.




Einstein space background



Einstein spaces, massless limit

Rw=Ngw = YuwxXguw = Xuw=Xy,
everything reduces to the standard Higuchi equations
Ay + M (X — Xguw) =0
where the Higuchi mass
L MZ=A/3+M, I: Mi=A+ M2
Massless limit:
Mu=0 = Xuo—=>Xuw+Vy&) = 10-2x4=2 DOF

Partially massless limit:

2\
Mf =

A
3 = Xuw = Xuw+(VuVo+5g,)2 = 10-4-2=4 DOF

3

None of these limits exists for R, # Agu..



Short summary

@ Six algebraic conditions and five differential constraints
CP =0 and Cs5 = 0 reduce the number of independent
components of X, from 16 to 5. This matches the number
of polarizations of massive particles of spin 2.

@ When restricted to Einstein spaces, the theory reproduces the
standard description of massive gravitons.

@ Unless in Einstein spaces, no massless (or partially massless)
limit. For any value of the FP mass M the number of DoF on
generic background is 5.



Cosmological background



FLRW cosmology

Line element
gudxidx” = —dt? + a*(t)dx?

where a(t) fulfills the Einstein equations

.2 . .2

a P i a p
3 - = —5 = P, 2 — —_— = —— = —D.
a2 M3 P P M3, P

Here Mp; is the Planck mass and p, p are the energy density and
pressure of the background matter.



Fourier decomposition

X (t,%) = 2°(£) > X (t, k)e™
k

where the Fourier amplitude splits into the sum of the tensor,
vector, and scalar harmonics,

X (t, k) = X2 + XD 4 X9

The spatial part of the background Ricci tensor R, ~ d; hence
Xik = Xki

= X, has only 13 independent components. Assuming the spatial
momentum k to be directed along the third axis, k = (0,0, k), the
harmonics are



Tensor, vector, scalar harmonics

00 0 0 o wf wt o0

X(2): 0 D+ D_ 0 ,X(l): WJE 0 0 I.kV_;_ :

w10 Do —Dy 0f T w- 0 0 ikV_
00 0 0 0 ikvy ikV_ 0

©_| 0 S 0
X 0o 0 S 0 ’
kS 0 0 SZ—k%S

where Dy, Vi, S, Wi, ST are 13 functions of time. The
equations split into three independent groups — one for the tensor
modes X,S,zj), one for vector modes X,S,P, and one for scalar modes

X9



Tensor sector

The effective action is

loy = / (KDZ — UD3) a%dt

with
K=1  U=Mj5x+k/a
where
1
I My = M2+§P, mi = Mg,
II: M% = M>—p, mi=M>+p

my reduces to the Higuchi mass in the Einstein space limit.



Vector sector

4 auxiliary amplitudes are expressed in terms of two V1

L P2m? Vi ~_ P?[mj—€ Vi
=T omk +P2(md —€/2) T F T mi 4+ P2(md —¢/2)

(with € = p + p) and the effective action
Iy = / (KVZ — UV3)a’dt

with

kzmﬁ
miy + (k2/a%)(m — €/2)
= MiK

K —
U

In Einstein spaces one has my = My (Higuchi mass), vector
modes do not propagate if Mg = 0 (massless limit). Otherwise
my # const. = they always propagate.




Scalar sector

oy = / (KS? — US?) a°dt

where the kinetic term

3k*mi(m? — 2H?)

= (mf; — 2H?)[9mf; + 6(k*/a?)(2mf; — )] + 4(k*/a*)(m; — €)

and the potential (¢ being the sound speed)

UK — M% as k—0
UK — ?(Kk?*/a%) as k — oo

There is only one DoF in the scalar sector (!!!)

In Einstein spaces one has myg = My and the scalar mode does not
propagate if My = 0 (massless limit) or if M3 = 2H? (PM limit).
In the generic case one has my # const. and it always propagates.




No ghost conditions

lim K >0
k—o0
with
K(Z) — ].,
K _ kzmﬁ
W w4 (2/22)(m? — €/2)
7 3k*mfy(m3 — 2H?)
Ko)

(2, — 2H2)[Omd; + 6(k2/a2) (2, — )] + 4(k4/a*) (m, — o)



No tachyon conditions

cc>0
with
@ = L
M2

2 eff 2
¢ 1 = (mH - 6/2)a

1) m?
C(20) _ (m3 — e)[mfy + (2H? — 4AM?%; — e)m? + 4H2M§ﬁ].

3mf(2H2 — m?)



Stability of the system

o Everything is stable if the background density is small,
p < M2I\/IF2,1.
o Model Il is stable during inflation.
o Model | is stable during inflation if the Hubble rate is not very
high, H < M.
o Both models are always stable after inflation if M > 1013 GeV.
@ Both models are stable now if M > 1073 eV.

@ Assuming that X}, couples only to gravity and hence massive
gravitons do not have other decay channels, it follows that
they could be a part of Dark Matter (DM) at present.



Backreaction



Self-coupled system

1

=3 / (M3IR + X" E,) /—g d*x.

Varying this with respect to the X,,, and g, yields

MI%I Gm/ = Tw,

E.n = 0.

The only solution in the homogeneous and isotropic sector is de
Sitter with A = —3M?2 > 0, hence for M? < 0.

=> Massive gravitons in our model cannot mimic dark energy.



Black hole hair via superradiance



Superradiance

@ Incident waves with w < my are amplified by a spinning
black hole /Zel’dovich 1971/, /Starobinsky 1972/,
/Bardeen, Press, Teukolsky 1972/

o If the field has a mass u then its modes with |w| < p cannot
escape to infinity and will stay close to the black hole. Such
modes will be amplified but also absorbed by the black hole.
/Damour, Deruelle, Ruffini 1976/.

o It follows that massive hair should grow spontaneously on
black holes



Black hole hair via superradiance

o First confirmation of this scenario — scalar Kerr clouds =
stationary spinning black holes with massive complex scalar
field /Herdeiro, Radu, 2014/.

@ Next — spinning black holes with massive complex vector field
/Herdeiro, Radu, Runarsson 2016/.

@ First confirmation of the spontaneous growth phenomenon —
growth of massive complex vector field
/East, Pretorius 2017/.




Black hole hair via superradiance

As the supperadiance rate increases with spin, the vector massive
hair grows faster than the scalar one — easier to simulate.

o However, the tensor hair should grow still faster. This suggest
there should be spinning black holes with complex massive
graviton hair. Complexification — replacing

X"FE,, — )_(”“EW + X”“EW
in the action

1
| = 2/ (M3IR + X""E,,) /—g d*x.



Summary of results

("]

The consistent theory of massive gravitons in arbitrary
spacetimes presented in the form simple enough for practical
applications.

The theory is described by a non-symmetric rank-2 tensor
whose equations of motion imply six algebraic and five
differential constraints reducing the number of independent
components to five.

The theory reproduces the standard description of massive
gravitons in Einstein spaces.

In generic spacetimes it does not show the massless limit and
always propagates five degrees of freedom, even for the
vanishing mass parameter.

The explicit solution for a homogeneous and isotropic
cosmological background shows that the gravitons are stable,
hence they may be a part of Dark Matter.

An interesting open issue — possible existence of stationary
black holes with massive graviton hair.



