Accreting supermassive BH

Annalisa Celotti

SISSA

Overview

- > AGN; what are they
- > The power source
- >Accretion: the "standard" model
- >Accretion: high and low accretion rates
- > The SED: radio quiet radio loud
- > The X-ray spectrum radio quiet
- Relativistic beaming
- > The X-ray spectrum radio-loud

Overview

Black hole accreting systems:

Active Galactic Nuclei

Black Hole Binary Systems/ Microquasars

Gamma-Ray Bursts

□ AGN: what are they?

□ The `paradigm': black hole

accretion

jets

+ torus, line emitting gas,

AGN: what are they?

Large luminosity from small volume

efficiency $\varepsilon = E/Mc^2$

 ε_{chem} = 1 eV / 10 m_p ~ ~ 10⁻¹⁰

$$\varepsilon_{nucl} = 8 \text{ MeV/nucleon} \sim 8 \times 10^{-3}$$

 $\varepsilon_{grav} = G \text{ M /R m}_{p} c^{2} \sim 6 \times 10^{-2}$ Schwarzchild
0.3-0.4 max Kerr

Black holes (2)

> Most (all?) galaxies host a supermassive BH

Energy = potential energy of gas in the BH gravitational field

How is it converted into radiation?

Loss of angular momentum \rightarrow loss of energy

- \rightarrow dissipation heats gas
- \rightarrow radiation

due to 'viscosity' (MRI)

Reference (o.m.) values of physical parameters:

$$L \sim L_{Edd} = (4p \ Gm_p \ c \ / \ \sigma_T \) \ M \sim 1.5 \times 10^{46} \ M_8 \ erg \ s^{-1}$$

$$R \sim R_s = (2 \ G/c^2) \ M \sim 1.5 \times 10^{13} \ M_8 \ cm$$

$$M_8 = 10^8 \ M_{sun}$$

$$t \sim R_s / c^2 \sim 500 \ M_8 \ s$$

$$M \sim L_{Edd} / c^2 \sim 10^{25} \ gr \ s^{-1} \sim 0.2 \ M_8 \ yr^{-1}$$

$$T_E \sim (L_{Edd} / \pi \ \sigma \ R_s)^{1/4} \ \sim 5 \times 10^5 \ M_8^{1/4} \ K$$

$$T_{vir} \sim G \ m_p M \ / \ R_s \sim 5 \times 10^{12} \ K$$

$$B_E = 8\pi \ (L_{Edd} / 4\pi \ R_s^2 \ c)^{1/2} \sim 4 \times 10^4 \ M_8^{-1/2} \ G$$

Accretion (3)

Energy, momentum, mass conservation (vertically integrated)

Accretion (4)

Accretion (5)

→ Ion supported torii Radiative inefficient accretion flows

 \rightarrow Radiation trapping

Radiation supported torii

Early accretion phase ?

X-ray emission (1)

X-ray emission (1)

Exponential cutoff ~ 40-300 keV Emission line ~6.4-6.7 keV Hump peak ~ 30 keV $\rightarrow \alpha_x \sim 0.9$ -1

Fabian & Miniutti 2005

X-ray emission (2)

Spectrum = superposition of Compton scattering spectra

Different spectra depending on τ_{T} and T

Hot corona? Where does the energy come from?

X-ray emission (3)

Reflection: coronal photons impinging on cold disk

Strongest line = High abundance x Fluorescent yield

→ Ka Iron line - energy depends on ionization state

X-ray Emission (3)

Fe K α line is often broad

X-ray emission (4)

Estimate of BH spin

Fabian & Miniutti 2005

Relativistic beaming with photons (1)

Lorentz transformations: v along x

 $x' = \Gamma (x - vt)$ $x = \Gamma (x' + vt')$ y' = yy = y'z' = zz = z' $t' = \Gamma (t - v x/c^2)$ $t = \Gamma (t' + v x'/c^2)$

for $\Delta t = 0 \rightarrow \Delta x = \Delta x' / \Gamma$ contraction of length for $\Delta x' = 0 \rightarrow \Delta t = \Gamma \Delta t'$ time dilation I.e. from rulers and clocks to photographs and frequencies Or : from elementary particles to extended objects

 Δt_e = emission time in lab frame $\Delta t_e'$ = emission time in comov. frame $\Delta t_e = \Delta t_e' \Gamma$

 $CD = c\Delta t_e - c\Delta t_e \beta \cos\theta \rightarrow$ $\Delta t_A = \Delta t_e (1 - \beta \cos\theta)$ $\rightarrow \Delta t_A = \Delta t_e' \Gamma(1 - \beta \cos\theta)$

High β and small $\theta \rightarrow$ Doppler "wins" over special relativity

Relativity with photons (3)

$$I(v) [erg s^{-2} cm^{-2} Hz^{-1} sr^{-1}]$$

$$I(v) = dN hv / dt dv d\Omega dA =$$

$$= dN' (hv' \delta) / (dt'/\delta) / (dv' \delta) (d\Omega'/\delta^{2}) dA'$$

$$= I'(n') \delta^{3}$$

$$v = \delta v'$$
aberration

Relativistic motion β =0.995 Γ =10

$$\int \mathbf{I}(\mathbf{v}) \, d\mathbf{v} = \delta^4 \int \mathbf{I}'(\mathbf{v}') \, d\mathbf{v}'$$

Relativity with photons (5)

 $t_{obs} = t \delta^{-1}$ $R_{obs} = R \delta$ $v_{obs} = v \delta$ $I_{obs}(v_{obs}) = I(v) \delta^3$ $T_{b.obs}(v_{obs}) = T_b(v) \delta$ $\mu_{obs}(v_{obs}) = \mu(v) \delta^{-1}$ absorption coefficient $j_{obs}(v_{obs}) = j(v) \delta^2$ emissivity $F_{obs}(v_{obs}) = \int I_{obs}(v_{obs}) d\Omega = \delta^{2+\alpha} \int dV_{obs} j(v) / d_{L^2}$

Emission Radio-loud AGN (1)

Emission Radio-loud AGN (3)

Jets on all scales

Compact - flat α_r Extended - up to Mpc - steep α_r ~0.8

Continuous (?) flows Different particle ageing

Emission Radio-loud AGN (4)

Emission Radio-loud AGN (5)

No Γ factor in β_{app} Correct ???

 $\frac{\text{NOTE}}{\text{pattern vs bulk speed}}$

$$\Delta \dagger_{\mathsf{obs}} = \Delta \dagger - \beta \Delta \dagger \cos \theta$$

$$\beta_{app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}$$

$$\beta \sim 1 - 1/2\gamma^{2} \quad \cos \theta \sim 1 - \theta^{2}/2$$
$$\beta_{app} \sim 2\theta/(\theta^{2} + \gamma^{-2})$$
$$\theta << 1/\gamma \qquad \beta_{app} \rightarrow 2\gamma^{2}\theta$$
$$1/\gamma < \theta < 1 \qquad \beta_{app} \sim 2/\theta$$

 $v \leq c$: relativistic motion θ small 27

Emission Radio-loud AGN (6)

Where is the jet?

Current dynamic range > 1000

 $L_j/L_{cj} \sim [(1+\beta \cos \theta)/(1-\beta \cos \theta)]^{(2+\alpha)}$

Consistent with relativistic motion

An elegant explanation...

- Superluminal motion
- $\cdot T_{b} > 10^{12} \text{ K} \text{IDV}$
- •Excess Compton flux (v_t , F_t , θ): SSC >> observed
- •Pair opacity $\tau_{\gamma\gamma}$ >>1
- •Efficiency limit ΔL_x vs Δt
- Jet one-sidedness in double sources
- Very curved jets
- Laing-Garrington effect
- •Efficiency energy transport
- Unification
- Core and lobe dominated sources

GRB ~ 300

Jet "scales"

 $R_s \sim 3 \ 10^{14} \ M_8 \ cm$

Jets: what are they?

$$\begin{cases} t_{adiab}(\gamma) < t_{ife} \\ t_{rad}(\gamma) < t_{life} \\ & \end{cases}$$

total energetics

- → Jets: morphological definition = elongated flows
 - physically = energy and momentum carriers from active nucleus to ISM ICM

Emission: lobes

Power-law spectrum \rightarrow non thermal process

+

High linear polarization

synchrotron emission: e⁺⁻, B

Timescales

$$B_{eq} \sim \mu G \text{ in extended structures}$$

$$v_{1GHz} = 1.2 \times 10^{6} B_{eq} \gamma^{2} \rightarrow \gamma \sim 10^{4}$$

$$t_{cool} \sim 2.4 \times 10^{9} \gamma_{4}^{-1} B_{\mu G}^{-2} \text{ yr}$$

$$\Rightarrow Spectral ageing \\ t_{cool}(\gamma_{b}) \sim B^{-3/2} v_{b}^{1/2}$$

$$t_{life} = t_{dyn} = D/v$$

$$V_{b} Log v$$

> X-ray emission in hot spots: $t_{cool} << t_{life} \rightarrow$ in situ reacceleration

> Incomplete cooling
$$\rightarrow L_j >> L_r$$

Emission Radio-loud AGN (7)

1 - Broadband SED: radio-TeV - 20 decades non thermal equilibrium two broad peaks [in vF(v)]

2- Highly polarized radio (several 10%) and optical emission 4

Simplest model: same e⁻ produce both peaks

35

Emission & dissipation

External Compton

Simplest model: same e⁻ produce both peaks

Unification Type 1 and Type 2

In rough agreement with N_{H}

X-ray background

Sum Sey 1 and Sey 2

Jet energetics

Ghisellini 2015

THE END