
Olivier Godet

What X-rays could tell us about 
Gamma-ray burst & magnetar physics? 

Lecture given by 
Matteo Bacchetti

You just saw a GRB located at 7.5 Gly 
with your naked eyes !!!
(Racusin+08)

http://adsabs.harvard.edu/abs/2008Natur.455..183R
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A transient and energetic Universe

Giant flares

Credits: Swift

All these transients objects involve compact objects (formation or evolution)

Huge release of energy (mostly at high 
energy: X-rays & γ-rays)
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Aims of this lecture
● Present the main observing properties of GRBs and magnetars from 
an X-ray point of view  (link to other wavelengths or messengers) 

● Give the basis of the theoretical framework to understand these 
objects 

● Discuss how X-rays (spectroscopy & timing) could help us unveiling 
the physical mechanisms at work in these objects

● Discuss why we should care studying these objects     links with other 
fields of astrophysics and fundamental physics 

● Discuss possible connections GRB – magnetar      
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A short tale about GRB / magnetar discovery
● Once upon a time (in the 60's), 

Vela satellites 
(Velar means 'to watch' in Spanish)

● The Soviet Union did the same (just in case) ... 
 and found the same results.
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A short tale about GRB / SGR discovery

● Nothing coming from Earth was found, but this enabled the discovery 
of 2 new astrophysical phenomena (Gamma-ray bursts and Soft-Gamma Repeaters)

● Even if at the time scientists did not know yet!

 Klebesadel et al. 1973

First published GRB lightcurve

http://articles.adsabs.harvard.edu/full/1973ApJ...182L..85K
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Energetics
● Both types of events are really energetic.

● GRB luminosity with measured distances = 1050-54 erg/s
 → Making them the most violent phenomena in the Universe 

● Let's take the March 1979 giant SGR flare (Mazets et al. 1979) located in LMC. 

● Its Gamma-ray luminosity reached 4 x 1044 erg/s
 → Making this event the most powerful one ever detected since GRB 

distances were still unknown at the time.  
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Outlines

1. Properties of GRBs

2. Theoretical framework

3. GRB progenitors

4. Why should we care about GRBs? 

5. Soft Gamma-ray Repeaters 

6. How do magnetars work ? 

7. Why should we care about magnetars?

8. Connection GRB – magnetar? 
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PART I

Gamma-ray bursts
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Properties of GRBs
• GRBs appear randomly over the sky 
and in time as ... 

Paciesas et al. 1999
CGRO/BATSE
9 yrs of observation

Prompt emission

Afterglow emission
in X-rays

Swift data (Mangano+06)

optical AG phase

Kann et al. 2010

● Brief X-/Gamma-ray flashes (prompt emission) followed by multi-wavelength 
afterglow emission over timescales from a few min to a few weeks (even years 
in radio)

AG flux decreases 
rapidly with time.



10

Vème Ecole de Physique des Astroparticules – Physique de l'Univers en rayons X 9

Properties of GRBs
Source distance 

• GRBs are located at cosmological distances (from z = 0.033 to z = 8.2, maybe 9.4)
Jakobsson et al. 2006

GRB 090423, z = 8.2

 GRB 090423 with z =8.2 (Tanvir et al. 2009)
 GRB 080913 with z=6.7 
 GRB 050904 with z=6.3 (Haislip et al. 2006)

 z = 8.2  i.e. ~ 625 million years after the Big 
Bang  & light travel ~ 13 Giga years!

 z = 0.033 i.e. light travel ~ 440 Million years 

http://www.nature.com/nature/journal/v461/n7268/full/nature08459.html
http://www.nature.com/nature/journal/v440/n7081/full/nature04552.html
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Properties of GRBs
Duration 

• From CGRO/BATSE, bimodal distribution    
hints for 2 populations         different progenitors?

short long

Zhang et al. 2007

• Measured duration sometimes biased by 
instrumental effects (energy range and sensitivity)

GRB 060614 would have been detected 
as a short GRB by BATSE (low E thresh. ~ 30 keV)

GRB 060614 – Long GRB detectec by 
Swift/BAT (low E thresh. ~ 15 keV)

Ultra-long GRB (few hours)
(Levan+15)

http://arxiv.org/abs/astro-ph/0612238
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Properties of GRBs
Energetics 

• Cosmological distances 
Huge isotropic energy with Eiso = 1048-1055 erg over a few hundreds of seconds at most!

              

Tsar H-bomb
E = 50 Mt TNT ~ 2.1 1024 erg

Sun 
L ~ 4 1033 erg/s 

E ~ 6 1050 erg over 5 Gyrs

Supernovae
E ~ 1051 erg

Milky Way
L ~ 1044 erg/s 

40W electric bulb
E ~ 1.3 1016 erg 
over 1 year

1 km asteroid impact
E ~ 1.3 1028 erg

Nuclear plant
P mean ~ 1 GW
E ~ 3 1023  erg 
over 1 year

1 erg = 10-7 J 
1 eV = 1.6 10-12 erg
1017 erg ~ 2.4 tonnes TNT 
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Properties of GRBs
Gamma-ray variability

Question: What type of object could then be the central source in GRBs?
Answer: a compact object (neutron star or black hole)

● Structured and highly variable over 
timescales down to 1 ms.

● Assuming δt ~ 0.1 s, then the size of 
the system is δd ~ c × δt ~ 3x109cm !! 
(Sun Diameter = 1.392x1011 cm). 

BATSE GRB lightcurves

Question: What mechanism involving compact objects could release large amount 
of energy? 
Answer: Accretion  However, the outflow must be collimated 

to avoid energy budget crisis



14

Vème Ecole de Physique des Astroparticules – Physique de l'Univers en rayons X 13

Properties of GRBs
● Spectra described by a Band function (3 
parameters) – Band et al. 1993 

τ γγ∝
NσT
R2

with N=
E iso
<hν>

Non thermal spectra

• Compacity problem (Cavallo & Rees 1978):
High density of Gamma-rays produces lots of e-/e+

pairs. The pair opacity is then given by:

● Assuming <hν>=1MeV, Eiso  = 1053  erg and R ~ 3 109

cm,   τγγ ~ 4.6 x 1015 >>1
GRB spectra should be thermal !

● Circumvened if Gamma-ray emission produced in an ultra-relativistic outflow 
(material becomes transparent) with Γ > 100

Detection of GeV photons with Fermi implies Γ > 500  (Abdo et al. 2009).

● Long GRB with Epeak < 50 keV are called X-ray flashes. 
● In average, short GRBs harder than long ones 

Epeak

http://articles.adsabs.harvard.edu/full/1978MNRAS.183..359C
http://www.sciencemag.org/content/323/5922/1688.full
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Properties of GRBs
Relativistic outflows

Γ = Lorentz factor
v = outflow velocity
t = observer time

Equal emission 
time surface

light cone

• Relativistic Doppler boosting (i.e. enhancement of the emission flux & increase in photon 
energy) – maximum along the observer’s line of sight   Beamed emission→

• Assuming a shell of matter expanding at relativistic speeds & spherically emitting in its 
rest-frame some radiation, for a distant observer the emission will no longer be spherical 
but elongated towards the direction of propagation of the shell.

● The light emission coming from  θ 
< 1/Γ is dominant.

●If outflow seen sideways, emission 
less intense and softer
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Properties of GRBs
High lattitude emission

O'Brien+06

Observer

At t = t0 , emission from 
the core (θ < 1/Γ) stops

● Fast decline t -α during transition prompt – AG

End of the prompt emission  

● ~60% of the afterglows

● α ~ 3 – 6 (e.g. Tagliaferri et al. 2005, Nature)
● Possible interpretation: high latitude emission
(Kumar & Panaitescu 2000)

   Model predicts α = 2 + β with β, X-ray spectral index

● Importance of the zero time associated to the last 
emitting shell (cf. Liang+06)

http://adsabs.harvard.edu/abs/2006ApJ...647.1213O
http://arxiv.org/abs/astro-ph/0506355
http://adsabs.harvard.edu/abs/2000ApJ...541L..51K
http://adsabs.harvard.edu/abs/2006ApJ...646..351L
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Properties of GRBs
High lattitude emission 

● Fast decline t -α during transition prompt – AG

End of the prompt emission  

● ~60% of the afterglows

● α ~ 3 – 6 (e.g. Tagliaferri et al. 2005, Nature)
● Possible interpretation: high latitude emission
(Kumar & Panaitescu 2000)

   Model predicts α = 2 + β with β, X-ray spectral index

● Importance of the zero time associated to the last 
emitting shell (cf. Liang+06)

O'Brien+06

Observer
Photons emitted at the same time in the 
source rest frame for θ > 1/Γ will reach 
the observer with a certain delay.

http://arxiv.org/abs/astro-ph/0506355
http://adsabs.harvard.edu/abs/2000ApJ...541L..51K
http://adsabs.harvard.edu/abs/2006ApJ...646..351L
http://adsabs.harvard.edu/abs/2006ApJ...647.1213O
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Theoretical framework
Internal/external non collisional shock model (e.g. Meszaros & Rees 1993)

OPAQUE FIREBALL
(large γ-γ opacity)
Conversion of internal energy to 
kinematics energy    acceleration phase 
up to coasting radius above which Γ = cst  

1

(Piran, Nature, 2003)

● Central source ejects shells of matter with inhomogenous Γ-distribution

http://articles.adsabs.harvard.edu/full/1993ApJ...405..278M


19

Vème Ecole de Physique des Astroparticules – Physique de l'Univers en rayons X 17

Theoretical framework
Internal/external non collisional shock model (e.g. Meszaros & Rees 1993)

TRANSPARENT FIREBALL
(photospheric emission)
A modified black-body

2

R ~ 1012 cm

● Central source ejects shells of matter with inhomogenous Γ-distribution

(Piran, Nature, 2003)

http://articles.adsabs.harvard.edu/full/1993ApJ...405..278M


20

Vème Ecole de Physique des Astroparticules – Physique de l'Univers en rayons X 17

Theoretical framework
Internal/external non collisional shock model (e.g. Meszaros & Rees 1993)

3 INTERNAL SHOCKS
(Gamma-rays are emitted 
by accelerated electrons)
Prompt emission

Radiation mechanism still 
unknown

Gamma-rays

● Central source ejects shells of matter with inhomogenous Γ-distribution

R ~ 1013-14 cm

(Piran, Nature, 2003)

http://articles.adsabs.harvard.edu/full/1993ApJ...405..278M
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Theoretical framework
Internal/external non collisional shock model (e.g. Meszaros & Rees 1993)

Gamma-rays

From X-rays to radio

R ~ 1015-16 cm

● Central source ejects shells of matter with inhomogenous Γ-distribution

(Piran, Nature, 2003)

4 EXTERNAL SHOCKS
(forward shock waves propagate 
in ISM accelerating electrons that 

produce synchroton multi-
wavelength radiation)
Afterglow emission

http://articles.adsabs.harvard.edu/full/1993ApJ...405..278M
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Theoretical framework
Internal/external non collisional shock model (e.g. Meszaros & Rees 1993)

Gamma-rays

From X-rays to radio

D
en

si
ty

Relativistic outflow

Reverse shock

External 
forward 
shock

Circum GRB medium

R ~ 1015-16 cm

● Central source ejects shells of matter with inhomogenous Γ-distribution

(Piran, Nature, 2003)

http://articles.adsabs.harvard.edu/full/1993ApJ...405..278M
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Theoretical framework
Internal/external non collisional shock model (e.g. Meszaros & Rees 1993)

Gamma-rays

From X-rays to radio

D
en

si
ty

Relativistic outflow

Reverse shock

External 
forward 
shock

Circum GRB medium

● AG emission dominated by forward shock

● Outflows deccelerate when sweeping through the circum GRB environment (Γ decreases) 
– transverse spread of the jet

● Building up of magnetic fields into shocks

R ~ 1015-16 cm

● Central source ejects shells of matter with inhomogenous Γ-distribution

(Piran, Nature, 2003)

http://articles.adsabs.harvard.edu/full/1993ApJ...405..278M
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Restart of the central engine?
● End of the prompt emission = stop of any activity from the central source
● X-ray flares present (at early and late times) in  > 50% of the GRBs (long & short) 
detected by Swift
● Similar spectral properties to those of the Gamma-ray peaks 

● External origin? 
Energetic issues argues 

against an origin due to 
external shocks (e.g. Zhang+06)

● All evidence points towards an origin internal to the 
jets (internal shocks, magnetic reconnection?)
• Problem: this implies an extended activity of the 
central engine or a restart of the central engine up to 
several days in some cases (e.g. King et al. 2005; 
Proga & Zhang 2006). 

(e.g. Falcone et al. 2007; Chincarini et al. 2010)

http://arxiv.org/abs/astro-ph/0508126
http://articles.adsabs.harvard.edu/full/2006MNRAS.370L..61P
http://arxiv.org/abs/0706.1564
http://adsabs.harvard.edu/abs/2010MNRAS.406.2113C
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Jet breaks

• The jet break being a hydrodynamical effect, it should be an achromatic break.
• The observation of jet breaks enables us to derive the jet opening angle.

Question: What will happen when the blastwave will start decelerating?

If jets seen sideways, increase in the emitting surface visible by the observer        
 rebrightening before flux decreases 

Time

Γ < 1/θ0

Break

Deceleration
Γ > 1/θ0

Early times
Γ ~cst >> 1/θ0

(e.g. Rhoads 1999, 
Sari, Piran, Halpern 99)

http://adsabs.harvard.edu/abs/1999ApJ...525..737R
http://adsabs.harvard.edu/abs/1999ApJ...519L..17S
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Corrected energetics & GRB rate
● In the pre-Swift era, some jet breaks were observed, but mostly in optical. 
● Only a few were observed in several energy bands. 

● From the observed jet breaks, the jet opening angle was estimated. 

Frail et al. 2001

● Observed rate ~ 1 per day with BATSE over 9 yrs – but probably more due to beaming

● Rate for long GRBs ~ 100-1000 events / Gpc3 / yr ~ 1-10% of rate of Ib/c SNe 

Isotropic energy

θJet corrected energy

http://adsabs.harvard.edu/abs/2001ApJ...562L..55F
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GRB progenitors
•  Lower Redshifts

✔ < z >   =  0.4     short
✔ < z >   =  2.8     long

• Weaker Afterglows 
✔ < FX short > = 7x10-10 erg cm-2 s-1   
✔ < FX long> = 3x10-9 erg cm-2 s-1  

• Less Jet Collimation?
✔ θ ~ 15˚   (wide spread)     short
✔ θ ~  5˚    (wide spread)     long

• Less Total Energy
✔ Erad ~ 1049  ergs     short
✔ Erad ~ 1051  ergs     long

• Hosts: non star-forming (e.g. elliptical) 
& star-forming galaxies

• GRBs located in the outskirts of SF 
galaxies or far from SF regions

• SF galaxies with SF rate less than for 
long GRB hosts  

• Hosts: dwarf, spiral & irregular star-
forming galaxies

• GRB positions associated with 
brightest parts of the host galaxy 
(assumed to be star-forming regions)

long GRB
XRT

Chandra

GRB 050724 - Swift
elliptical host

GRB 990123 - SAX
SF dwarf host

Short GRBs

Long GRBs
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GRB progenitors
Grosabel et al. (2006)

● 2 main formation paths : merger of NS-NS or collapsar
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GRB progenitors
Collapsar (e.g. MacFadyen & Woosley 1999) ● Compact massive star (Wolf-Rayet C,N,O star)

 
● Stars with high angular momentum and low 
metallicity

●  Catastrophic formation  of a BH coupled with an 
accretion disk

●  Energy emitted through  polar regions – jets 
(funnel and lateral collimation from ram pressure 
in the envelop) – launch mechanism unknown

● Envelop of the star collimates jet

●  Jet breakout from the stellar envelop after a 
tens of seconds.

●  Conversion of internal energy after breakout to 
kinetic energy (large Lorentz factors)

●  strong winds from accretion disk energizes the 
material from the star envelop (hypernovae)

http://adsabs.harvard.edu/abs/1999ApJ...524..262M
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GRB progenitors
Collapsar

● Association GRB/XRF with very bright Type Ib/c SNe (hypernovae)  

➢ GRB980425 & SN1998bw: first association between an underluminous GRB 
(Eiso ~ 1048 erg) and a SN Ib/c (Galama et al. 1998, Nature)

Credits: ESO

ESO184-G82 

Matheson, GCN 2120

SN2003dh

➢ GRB 030329: First connections between 

long classical GRBs & SNe Ib/c 

(HETE-2; Stanek et al. 2003) 

http://arxiv.org/abs/astro-ph/9806175
http://iopscience.iop.org/1538-4357/591/1/L17/fulltext/17299.text.html
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GRB progenitors
Collapsar

SNe Ic

SN 2006aj

3 GRB SNe

Energy injection by 
the central engine

● Their spectra in general show that the ejected matter moves ten times faster 
than that observed in normal SNe Ib/c  
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GRB progenitors
Shock breakout ●Super-long GRB  T90  ~35 minutes associated 

with SN 2006aj SN Ib/c
●  BAT, XRT, UVOT observed simultaneously
●  z = 0.033  (145 Mpc)  closest GRB→
●  Eiso = few x 1049 erg   -  underluminous
• Thermal component in XRT data     Shock break-
out seen for first time (from X-ray to UV/opt.)

•  Rstar ~ 4 x 1011 cm (consistent with Wolf Rayet stars)

Campana et al., Pian et al., Soderberg et al. (2006)  

Campana et al. (2006)  

Time since trigger
Chevalier 2008

http://arxiv.org/abs/astro-ph/0603279
http://arxiv.org/abs/astro-ph/0603530
http://arxiv.org/abs/astro-ph/0604389
http://arxiv.org/abs/astro-ph/0603279
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GRB progenitors
(e.g. Eichler et al. 1989; Narayan et al. 1992)Merger of NS-NS (NS-BH)

● Binary formation 
●  Binary of massive stars evolved in 2 NS
●  Dynamical capture (e.g. within globular 

clusters)

● When formed NSs receive a dynomical kick 
(a few 100 km/s)        Ejection from their 
birthplace
(ISM with small density   weaker AG →

emission)   

● Timescale of the merger ~ ms

● No or very weak SNe (kilonovae) expected

● Less collimation is also expected.
• Energy reservoir smaller

● Alternative progenitor BH-BH merger
● Direct GW detection by aLIGO (Abbott+16)
Merger of 2 massive stellar mass BHs (>20 MSun)

● Possible electromagnetic prompt counterpart 
by Fermi? (Connaughton+16)

● Accretion from residual matter onto the newly 
formed 62 MSun BH (Loeb16) or charged BHs 
(more speculative!!)

http://www.nature.com/nature/journal/v340/n6229/abs/340126a0.html
http://articles.adsabs.harvard.edu/full/1992ApJ...395L..83N
http://adsabs.harvard.edu/abs/2016PhRvL.116f1102A
http://adsabs.harvard.edu/abs/2016arXiv160203920C
http://adsabs.harvard.edu/abs/2016ApJ...819L..21L
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GRB progenitors
Merger of NS-NS (NS-BH)
• First detection of a kilonova associated with a short GRB in 2013 

(GRB130603B - Tanvir et al. 2013)

• Following the merger of 2 NS, neutron rich matter can be ejected.  

• Ejected material undergoes rapid neutron capture (r-process), creating heavy elements 
from merger of original nuclei with the available neutrons. 

• When those elements undergo radioactive decay, light emitted in the optical and near-IR 
bands. The energy emitted can reach 103 times that coming from a nova.

Metzger & Berger 2012

http://www.nature.com/nature/journal/vnfv/ncurrent/full/nature12505.html
http://adsabs.harvard.edu/abs/2012ApJ...746...48M
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AG standard emission model

N
e−
∝E− p

(non-thermal distribution)

● Acceleration mechanism 
still unknown

Panaitescu & Kumar (2001) (see also Sari, Piran & Narayan 1998)

• Model predictions depend on the nature of the circum-burst environment  
Possibility to probe the close environment of GRB by modeling the AG emission and 

micro-physics (εe & εB = shock equipartition parameters for e- et magnetic fields)

• Powerlaw segments & spectral breaks evolving with time
 

• 3 specific frequencies depending on time : 
• νm = synchrotron freq.   maximum emission →
• νc = cooling freq.   electrons above → νc could cool efficiently by emitting photons
• νa = self-absorption freq.   synchroton photons get absorbed by emitting medium →

http://adsabs.harvard.edu/abs/2001ApJ...560L..49P
http://adsabs.harvard.edu/abs/1998ApJ...497L..17S
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AG standard emission model

• From the data, a constant ISM model seems to be favoured in most cases.

• From Swift data, p is sometimes less than 1.5 (e.g. Willingale et al. 2007).

• For comparison, p = 2.1-2.2 for Fermi acceleration

• Particle acceleration mechanism still unknown 

Zhang et al. 2006

● ISM model (Sari+98), 
 n = cst & νc ~ t -1/2

● Wind mode 
(Chevalier & Li 2000)
n ~ r -a avec a > 2 & νc ~ t1/2

http://adsabs.harvard.edu/abs/2007ApJ...662.1093W
http://adsabs.harvard.edu/abs/2006ApJ...642..354Z
http://adsabs.harvard.edu/abs/1998ApJ...497L..17S
http://adsabs.harvard.edu/abs/2000ApJ...536..195C


37

Vème Ecole de Physique des Astroparticules – Physique de l'Univers en rayons X 31

What should we care about GRBs?
● Long GRBs associated with death of massive stars and amongst the furthest 
objects visible in the Universe

➢ Constraints on the stellar formation rate at high redshift (z > 6)
➢ Constraints on the pop. III stars   

● GRBs are very bright and far away. 
➢ Study the evolution of foreground structures / 

Warm Hot Intergalactic Medium (e.g. Branchini+09)
 → evolution of hot and diffuse component of baryons along 

    the line of sight
         High resolution spectroscopy (species, temperature, 
         dynamics, ionization state, column density) with 
         Athena for instance

 → constraints on the epoch of reionization of neutral gas

➢ Study of GRB environment / gas in host galaxy 
➢ Estimate content of metal in high-z galaxies

Cosmic web

http://adsabs.harvard.edu/abs/2009ApJ...697..328B
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What should we care about GRBs?

● Are GRBs possible sites of ultra high energy cosmic rays? (e.g. Baerwald+14  / 
Icecube+16)

● Constraints on modified gravity theories (violation of Lorentz invariance ;
Abdo et al. 2009a / Adbo et al. 2009b)

● Short GRBs involved mergers of compact objects
➢ GW detectors sensitive enough to make direct detections (Abbott+16)

 → constraints on the progenitor stars, the NS EOS, the newly formed object (nature, mass, 
spin) 

http://arxiv.org/abs/1601.06484
http://adsabs.harvard.edu/abs/2009Sci...323.1688A
file:///home/og19/suse_2013-05/Enseignement_FAC/ECOLE_PNHE_2016/Adbo et al. 2009, Nature
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Additional references

● References accessible via the NASA/ADS web interface 
●  http://adsabs.harvard.edu/abstract_service.html

● Gehrels & Meszaros (2012) 
● Zhang, B. 2007
● Godet, O & Mochkowitz, R. 2011

http://adsabs.harvard.edu/abstract_service.html
http://arxiv.org/abs/1208.6522
http://arxiv.org/abs/astro-ph/0701520
http://arxiv.org/abs/1205.6357
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PART II

Magnetars
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SGR Giant flare on 5th March 1979
● Let's consider the giant SGR flare on 5th March 1979
(Terrell+80, Helfand & Long 79)

● Detected by all missions with onboard Gamma-ray detectors 

Lightcurve of the March 1979 event from Venera 12 (Mazets+79)

Short 0.2 s hard spike

Long pulsating soft tail
P ~ 8 s

Question: what all of this tell you about the possible progenitor? 

Very short rise

Answer: a rotating NS
● 14.5 h later another (fainter) 1,5 burst was detected. More short bursts were 
detected up to 1983 from the source      So, they repeat!  ≠  from GRBs    

http://adsabs.harvard.edu/abs/1980Natur.285..383T
http://adsabs.harvard.edu/abs/1979Natur.282..589H
http://adsabs.harvard.edu/abs/1979Natur.282..587M
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Nature of SGRs

ROSAT X-ray image of the SNR N49 
in the LMC (e.g. Marsden+96)

Position derived 
from 7 instruments

X-ray counterpart ● Position of the giant SGR flare coincident with 
the supernova remnant N49  in the LMC 

● Isotropic peak luminosity ~ 4 1044 erg/s !

● Total released energy ~ 5 1044 erg/s 

● SNR age ~ 5000 yrs         young object
 

● SNRs older than a few 104 yrs no longer visible 

● X-ray counterpart off center        NS is moving very fast (~1000 km/s) – Natal 
kick  likely isolated NS  →

http://adsabs.harvard.edu/full/1996ApJ...470..513M
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Properties of SGRs
● Other SGRs were found and are still found by high energy missions like Swift. 

Credits : NASA
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Properties of SGRs

Credits : NASA

2004 Dec. 27
SGR 1806 – 20
Lpeak ~ a few 1047 erg/s
(Palmer+05 / Hurley+05)

Lpeak > 8 1044 erg/s
(Hurley+99 / Kouveliotou+98) 

Giant flares
Short flares

Intermediate flares

Most frequent
Duration ~ 0.1s
Lpeak ~ 1041 erg/s
Thermal spectral in 
hard X-rays or soft
Gamma-rays

Duration ~ 1 – 40s
Lpeak ~ 1041-43 erg/s
Thermal spectral in hard X-rays

http://adsabs.harvard.edu/abs/2005Natur.434.1107P
http://adsabs.harvard.edu/abs/2005Natur.434.1098H
http://adsabs.harvard.edu/abs/1999Natur.397...41H
http://adsabs.harvard.edu/abs/1999ApJ...510L.115K
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Properties of SGRs
● Emission from short bursts/flares < 100 keV

Aptekar+01

Plot from K. Hurley

SGR 1900+14

http://adsabs.harvard.edu/abs/2001ApJS..137..227A
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Properties of SGRs
● When in quiescence, SGRs appear as moderately bright X-ray sources  LX~1034–36

erg/s 

● NS pulsations could be found when the sources are in quiescence and the spin-
down (Pdot) of the NSs could be measured as well.  

Kouveliotou+98

6.8 yrs

Pdot ~ 10-10 s/s

P ~ 7.5 s

Using 2-10 keV data from SGR 1806-20

http://adsabs.harvard.edu/abs/1998Natur.393..235K
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Properties of SGRs
● Spindown irregular 

● Not related to bursting events

 → Accretion unlikely to power
bursts

SGR 1900+14
Woods+02

Giant flare

average derivative 
frequency

Phase coherent 
timing solution

http://adsabs.harvard.edu/abs/2002ApJ...576..381W
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Properties of SGRs
● 15 discovered to date mostly in our Galaxy (11 confirmed & 4 candidates – see
Olausen & Kaspi14 or http://www.physics.mcgill.ca/~pulsar/magnetar/main.html)

● Discovered mostly in hard X-rays

● Low rotators with periods P = 5-9 s 

● Large spin down periods Pdot ~ 10-12 – 10-10 s/s

● When not in outburst, bright X-ray sources LX~1034–36 erg/s   

● Isolated NSs

● A few associated with SNR

http://adsabs.harvard.edu/abs/2014ApJS..212....6O
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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NS magnetic dipole emission model
● Pulsars are rotation-powered NSs

●  NS rotational energy is tapped 
and converted to radiation 

 → NS spin-down 

● Rotational energy loss 
        Edot = I Ω Ωdot

I = moment of inertia
Ω = 2π / P
Ωdot = dΩ/dt

● Characteristic age T = 0,5 P/Pdot
 → NSs are young  (T < 105 yrs)

● Magnetic field strength at the poles  Bp ~ √(P Pdot)
 → Magnetic field are huge !! Bp ~ 1014 – 1015 G

● Quiescent X-ray luminosity cannot be powered by rotation (LX >> Edot)
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Anomalous X-ray pulsars
● Class of objects sharing several similarities with SGRs (e.g. 
Woods & Thompson 2006 ; Gavriil, Kaspi & Woods 2002)  

● Young NSs / some associated with SNRs / unlikely to be powered by accretion

● 14 AXPs known (12 confirmed + 2 candidates) – see Olausen & Kaspi14

Table from one of K. Hurley's talks (not up-to-date)

Gavriil, Kaspi & Woods 02

http://adsabs.harvard.edu/abs/2006csxs.book..547W
http://adsabs.harvard.edu/abs/2002Natur.419..142G
http://adsabs.harvard.edu/abs/2014ApJS..212....6O
http://adsabs.harvard.edu/abs/2002Natur.419..142G
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P–Pdot diagram 

Milli-second pulsars
'recycled' NSs

● SGRs and AXPs harbour recently 
formed NSs with very high 
magnetic fields.

● Bursts and quiescent X-ray 
luminosities not powered by 
accretion or by rotation. 

● Duncan & Thompson  (1992) 
proposed they are powered by 
magnetic energy. 

● They are part of the same family 
called magnetars for « magnetically 
powered stars ». 

http://adsabs.harvard.edu/abs/1992ApJ...392L...9D
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How do magnetars form? 

● If NS rotation is large enough P < PCrab, 
a strong dynamo could build up magnetic 
fields inside the star core (wound-up B 
field) up to 1016 G over a timescale of 10-
20 s. (Duncan & Thompson 1992) 

● Gravitational collapse of massive stars could lead to the formation of NSs.

● Newly formed NSs have a strong spin (down to a few ms) because of 
conservation of angular momentum (large star radius  NS radius)→

● Newly formed NSs are also very hot  (Tc ~ 20-50 MeV – Lattimer & Prakash07).  
 → convection in the hot and ultra-dense neutron fluid under the crust takes place to 

cool down the star (Burrows & Lattimer 88)
 → Neutron fluid conducts electricity due to

    presence of free e- & p+ 
 → B lines drag into the fluid (convection &

    rotation)   

http://adsabs.harvard.edu/abs/1992ApJ...392L...9D
http://adsabs.harvard.edu/abs/2007PhR...442..109L
http://adsabs.harvard.edu/abs/1988PhR...163...51B
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How do magnetars work? 
● At large distance, B field dipolar, but closer to the NS surface structure more 
complicated. 
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How do magnetars work? 
● Strong external magnetic fields imply faster spin down for magnetars than for 
pulsars (compare Pdot values) through efficient emission of magnetic waves. 

● Observed magnetars are slow rotators 
 → Pulsar mechanism (see Natalie Webb's talk) is no longer working  no radio pulses →

expected

● Dissipation of internal magnetic energy heats the core/crust and keeps the 
NS hot. 

 → Emission peaks in X-rays

● Internal magnetic fields also generate strong stresses on the NS crust 
inducing elastic deformation

 → no vertical motion because of high pressure and gravity, but rather horizontal
 → drifts of magnetic loop footsteps since B field lines anchored to the crust 
 → twists of magnetic field lines   
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How do magnetars work? 
● Twists of magnetic field lines 
create strong currents (from 
Ampere's law) ...

 → energize particles trapped in 
magnetic field loops

 → particles almost e- & e+

 → accelerated particles emit 
radiation (mostly in X-rays) and hit 
the crust that heats up to high 
temperature (X-rays) 

● associated with rapid magnetic 
reconnection 

 → lead to SGR bursts

● Analogy with solar flares
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How do magnetars work? 
● Where does the soft pulsating tail seen in SGR giant bursts come from?

● Electrons and positrons are trapped in the magnetic loops ... 
 → motion only along the B field lines 

● as well as X-ray/Gamma-ray photons 
 → interacting with particles
 → Gamma-rays  e+/e- pairs  Gamma-rays→ →

 → photons could not get away from the loops (optically thick)  trapped fireball  →  

● At the loop surface, photons could escape and annihilation of e-/e+ also removes 
energy 

 → emptying the energy content of the fireball over time 
 → luminosity decreases 

● Since B field lines anchored to the crust, the fireball moves when the NS 
rotates

 → NS rotation creates the flux modulation observed during the tail depending if the 
fireball is visible for the observer or not.

R. Duncan
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How do magnetars work? 

Credit: R. Mallozi, NASA MSFC 
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Direct evidence for very high B fields?
● Large spin down and low periods are indirect evidence of high B fields.

● Ibrahim+02 discovered proton cyclotron lines in a precursor event from 
 SGR 180 –20 / features too narrow to be due to e- cyclotron lines seen in pulsars

Energy

fundamental

harmonics

B ~ 1015 G
(compatible with Pdot)

This discovery was later
Disputed by the same authors
See Ibrahim+07, ApSS

!

http://adsabs.harvard.edu/abs/2002ApJ...574L..51I
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Direct evidence for very high B fields?
● Rea+04 reported the identification of a resonant cyclotron lines in an AXP. 

If due to protons, B = 1,6 1015 G

http://adsabs.harvard.edu/abs/2004NuPhS.132..554R
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How do magnetars evolve?
● Rate ~ up to 10% of formed NSs could be magnetars. 

● If so, why do we not see more magnetars?

● Duncan & Thompson (1996) proposed that frictions due to ambipolar diffusion 
 of the B field dissipate magnetic energy and result in heating up the NS

 → accelerate magnetic energy dissipation

● If the NS cools below a threshold temperature, this process stops 
 → the intense B field stays trapped within the star 
 → source powering magnetar activity vanishes 
 → could happen over a 104 yr timescale

 
● See also Vigano+13  

http://adsabs.harvard.edu/abs/1996ApJ...473..322T
http://adsabs.harvard.edu/abs/2013MNRAS.434..123V
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Why should we care about magnetars?

● B field strength in magnetars > quantum electrodynamics field strength BQ

● BQ = 2π me
2 c3 / h e = 4.4 x 1013 G

● Electrons gyrating B field lines are relativistic.

● Magnetars could help investigating weird effects on quantum vacuum, matter 
 and photons (e.g. photon splitting!) in this physical regime 
 (see Duncan 2000 – take your time to read it:))

● QED effects negligible in pulsars because B << BQ 

http://adsabs.harvard.edu/abs/2000AIPC..526..830D
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For fun
● When 1998 giant flare of SGR 1900-14 pertubated Earth ionosphere

K. Hurley's plot

● You could even do nice science using VLF waves!! (e.g. Tanaka+08 – see also Raulin+14)

● Modification of the propagation of Very Low Frequency (21 kHz) waves 

http://adsabs.harvard.edu/abs/2008JGRA..113.7307T
http://adsabs.harvard.edu/abs/2014JGRA..119.4758R
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Additional references

● References accessible via the NASA/ADS web interface 
●  http://adsabs.harvard.edu/abstract_service.html

● Turolla, Zane & Watts, 2015, Reports on Progress in Physics, 78, Issue 11

● Site R. Duncan : http://solomon.as.utexas.edu/magnetar.html#Strong_Magnetic_Fields

● Mereghetti, Pons & Melatos, 2015, Space Science Reviews, 191,  315

http://adsabs.harvard.edu/abstract_service.html
http://adsabs.harvard.edu/abs/2015RPPh...78k6901T
http://solomon.as.utexas.edu/magnetar.html#Strong_Magnetic_Fields
http://adsabs.harvard.edu/abs/2015SSRv..191..315M
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PART III

Connection GRBs – Magnetars
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Could magnetars produce short GRBs?
● Magnetar burst duration consistent 
with duration of short GRBs 

● Magnetar bursts have softer spectra
 than classical bursts.

● Initial short spikes of giant flares 
(~0.2 s) are harder than small magnetar
flares

● Tail contains only 1/1000th of the total
 radiated energy

● At large distance, tail invisible
 → resemble short GRBs

 

K. Hurley

● Detectable < 100 Mpc

● Possible candidates for short GRBs, but what fraction?
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GRB X-ray plateaus

X-ray plateau seen in 
Swift GRB

● Not consistent with AG standard model

● See also Zhang+06 et Nousek+06
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GRB X-ray plateaus
● Possible interpretations:

-  Energy injection into the forward shock to refresh it and to avoid the blastwave 
decelerating (e.g. Zhang et al. 2006)

 → Imply extended activity of the central source sometimes up to 105 s after the 
trigger (related to X-ray flares)

 → Energy injection by a newly formed magnetar before collapsing to form a BH 
due to fall-back matter 

- Hydrodynamical effect related to the deceleration of the blastwave                        
 (Kobayashi & Zhang 2007)

 → Not able to explain all observed plateaus

http://arxiv.org/abs/astro-ph/0508321
http://arxiv.org/abs/astro-ph/0608132
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GRB X-ray plateaus
● Swift-XRT observed a weird afterglow from GRB090515 (Rowlinson+10)

(see also Lyons+10 ; Gompertz+15)

http://adsabs.harvard.edu/abs/2010MNRAS.409..531R
http://adsabs.harvard.edu/abs/2010MNRAS.402..705L
http://adsabs.harvard.edu/abs/2015MNRAS.448..629G
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Additional references

● Greiner+15 : A very luminous magnetar-powered supernova associated with an 
ultra-long γ-ray burst

● Rea+15 : Constraining the GRB-Magnetar Model by Means of the Galactic 
Pulsar Population

● Mazzali+16 : Spectrum formation in superluminous supernovae (Type I)

http://adsabs.harvard.edu/abs/2015Natur.523..189G
http://adsabs.harvard.edu/abs/2015ApJ...813...92R
http://adsabs.harvard.edu/abs/2016MNRAS.458.3455M
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PART IV

Summary
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Summary
● GRBs and magnetars could give rise to powerful transient events. 

 → GRBs are on-shot events as far as we know 
 → magnetars could be repetitive 

● Both types of events involved compact objects (NSs and/or BHs) during their 
birth or during their evolution

● GRBs are cosmological events while known magnetars are mostly Galactic (even 
if their giant flares could be detected in the local Universe < 100 Mpc)

● Both phenomena involve extreme physics (ultra-relativistic jets & hyper-accretion 
for GRBs / ultra intense magnetic fields and ultra-dense matter for magnetars) 

● They could be used as tools to probe fundamental physics (QED and ultra-dense 
matter for magnetars / modified gravity theories & GWs for GRBs / ultra high energy 
cosmic rays for both)

● Possible connections between GRBs and magnetars outlined (also with some 
type of supernovae, the superluminous SNe)
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Summary
● Numerous open issues  that will keep us busy for a while !→

● GRBs:
● Nature of the X-ray plateaus
● Does the X-ray AG really track the optical AG? 
● Nature of the jet outflow (fraction of baryon loading)
● Particle acceleration mechanism(s)
● Emission mechanism(s) of the prompt emission
● Evolution of GRB rate with redshift?
● Differences between XRFs/GRBs
● … (could continue for a while :) )

● Magnetars: 
● What is the magnetar birthrate?
● What ingredients from the star progenitors could lead to their formation?
● What are magnetar lifetimes?
● What are the connections between SGRs and AXPs?
● Where is the population of dead magnetars?
● ... 



73

Vème Ecole de Physique des Astroparticules – Physique de l'Univers en rayons X 66

Prospects
● GRBs are cosmological events: 

 → help observing missing baryons in the WHIM
 → constraints on the reionisation phase of the Universe with high-z GRBs
 → connection GRB – pop. III stars
 → content of metals in high-z galaxies / formation of the first galaxies
 → constraints on cosmological parameters if GRB could be standardized as SNeIa

● Multi-messenger astronomy is starting now!! (new GW and particle facilities with 
much improved sensitivity)  

 → This is a fantastic time and I hope you realise how lucky we all are :)
 → Detection of short GRBs coincident with GW (possible BH-BH merger?) or 

neutrino signals
 → possible detection of GW signals due to asymetric NSs because of magnetic field 

deformation
 

● Fast (ms) Radio Bursts (FRBs) a new class of transients recently detected in radio. 
 → Spitler+16 observed repeating signals from a FRB (see Scholz+16).
 → Could these events be due to magnetars (e.g. Katz 2016)? 

https://arxiv.org/abs/1603.00581
http://adsabs.harvard.edu/abs/2016arXiv160308880S
http://adsabs.harvard.edu/abs/2016MPLA...3130013K
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Prospects
● In X-rays, new instrumentation like X-IFU on Athena in 2028 will open new 
avenues in the study of these objects with high-resolution spectroscopy.  Shame 
we lost HITOMI :( 
●  SVOM (French-Chinese GRB mission) in 2020 will help improving our understanding of 
GRBs.    

● New more sensitive instrumentation from 2020's in other wavelengths (e.g. 
JWST, LSST, CTA, SKA, ...) will also have a profound impact in our 
understanding on these fascinating objects and will surely bring lots of new 
discoveries/surprises! 

HOPE THERE WILL BE STILL SOMEBODY AWAKE !!

MANY THANKS TO MATTEO !!!
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