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PROLOGUE  
(FOR SKEPTICS) 



FINDING NEW PHYSICS FROM ASTROPHYSICS? 

1868: soon after new tool (spectroscopy) introduced in 
astro, new “particle” (atom) identified first via astrophysics: 
He in solar spectrum (Janssen & Lockyer*) 
only discovered on Earth in 1882 (by Neapolitan physicist 
Luigi Palmieri, in Vesuvius lava)

*founder and first chief editor of "Nature"

587.49 nm

~1932-53: Particle zoo in cosmic rays such as positron 
e+ (Anderson ’32), predicted by Dirac in 1930,  but 
also μ, π, strange particles (K, Λ, Ξ, Σ)...

History would invite us to be optimists!

Last decades: systematically detected less ν’s 
than predicted from the sun: ν oscillations (hence m≠0)! 



…INCLUDING X-RAY ASTROPHYSICS!

Aerobee
Rocket

KamiokandeHomestake Mine

ν astrophysics

X-ray astrophysics

Nobel Prize 2002 



WHY IT IS SO? 

‣ Not surprising, if we think of the 
unusual scales of density, temperature, 
size, time, energy… if compared with 
what achievable in terrestrial 
laboratories! 

‣ Many orders of magnitude away from 
familiar ranges: conceivable that 
extrapolations of some physics may 
fail, highlighting new phenomena, or 
regimes

My goal in the following 
to provide a quick (necessarily only semi-quantitative) overview of a few discovery 
(or constraining) possibilities for X-ray astrophysics inspired by some open issues in 
theoretical physics. Take it as “food for thought”, an invitation to keep an open mind!



END OF PROLOGUE



PLAN OF MY LECTURE

Dark Matter: evidence 
& diagnostics

X-rays to identify 
particle DM candidates?

‣ Why not great for WIMPs
‣ Sterile Neutrinos (& others)

Axions & Axion-like 
particlesCompact objects, 

EOS dense matter…

testing gravity in 
new regimes…

Forthcoming 
cosmological probes



PART I. DARK MATTER



DARK MATTER ENTERS THE SCENE...



DM “DISCOVERY” IN COMA CLUSTER (~1933)

• “Astronomers are spherical bastards. No matter how you look at them they are just bastards.”
• Inferred the mass of the Coma cluster from the proper motion of the Galaxies, finding that the 
required mass is much larger than what could be accounted for

Varna, Bulgaria

I. No “physics beyond the standard model” (yet)
II. How did he do it? Clever & original application of Virial Theorem

Die Rotverschiebung von extragalaktischen Nebeln*", Helvetica Physica Acta (1933) 6, 110–127.
"On the Masses of Nebulae and of Clusters of Nebulae*", Astrophysical Journal (1937) 86, 217
*Nebula=Early XXth century name for what we call now galaxy

~103galaxies in 
~1 Mpc radius region We remember F. Zwicky here for two important discoveries:



SKETCH OF THE METHOD
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Expression of time average of total kinetic energy 
T of N particles bounded by conservative forces F

Average total 
potential energy <U>

For Gravity, U~ r -1

N2/2 pairs 
of Galaxies

doppler shifts in galactic spectra
inferred  
geometrically

 found a factor ~400 larger mass than the one from converting luminosity into mass!



MODERN PROOFS FROM CLUSTERS: X-RAYS

dPgas

dr
= GN

M(< r)�gas
r2

We know today that most of the mass in clusters (not true for galaxies!) is in the form of hot, 
intergalactic gas, which can be traced via X rays: bolometric X-luminosity can be eventually 

converted into gas density maps, spectral info into pressure information (or potential depth)

ROSAT 

 See for example
Lewis, Buote, and Stocke, ApJ (2003), 586, 135

Again, a factor ~7 more mass 
than those in gas form is 

inferred (also its profile can 
be traced...)



MORE SPECTACULAR: SEGREGATION!

bullet cluster

Baryonic gas gets “shocked” in the collision and stays behind. The mass causing lensing 
(as well as the subdominant galaxies) pass trough each other (non-collisional)

(most of the) Mass is not in the collisional gas, as would 
happen if law of gravity were altered! 



DM EVIDENCE @ MANY SCALES

“Astrophysical”“Cosmological” 
(growing effect of non-linearities, baryonic gas dynamics, feedbacks...) 

CMB
anis.

(Growth & Pattern of)
Large Scale Structures

Clusters
(X-rays, lensing)

Galaxies Dwarfs
(rotation curves, fits...)

‣ Exact solutions or linear perturbation theory applied to simple physical systems: credible and robust!

‣ Many would say: Suggests “cold” collisionless additional species, rather than a modification of GR 
(IMHO: academic debate mostly influenced by “classical” thinking… the need for new d.o.f. is key observation!)

‣  Tells that its majority is non-baryonic, rather than e.g. brown dwarf stars, planets...

Especially cosmological evidence of paramount importance for Particle Physics!

Beyond SM explanation needed, but gravity is universal: no particle identification! 
discovery via other channels is needed to clarify particle physics framework

 But what to look for depends on“theoretical prejudice” (curse of DM searches)

FIG. 1: The power spectrum of matter. Red points with error bars are the data from the Sloan

Digital Sky Survey [9]; heavy black curve is the ΛCDM model, which assumes standard general

relativity and contains 6 times more dark matter than ordinary baryons. The dashed blue curve is

a “No Dark Matter” model in which all matter consists of baryons (with density equal to 20% of

the critical density), and the baryons and a cosmological constant combine to form a flat Universe

with the critical density. This model predicts that inhomogenities on all scales are less than unity

(horizontal black line), so the Universe never went nonlinear, and no structure could have formed.

TeVeS (solid blue curve) solves the no structure problem by modifying gravity to enhance the

perturbations (amplitude enhancement shown by arrows). While the amplitude can now exceed

unity, the spectrum has pronounced Baryon Acoustic Oscillations, in violent disagreement with

the data.

matter model, on the other hand, the oscillations should be just as apparent in matter as

they are in the radiation. Indeed, Fig. 1 illustrates that – even if a generalization such

as TeVeS fixes the amplitude problem – the shape of the predicted spectrum is in violent
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“TRADITIONAL” LINK WITH PARTICLE PHYSICS

new particle

Strong prior for new TeV-scale physics (with SM-like couplings) to cure the hierarchy problem 
precision data (e.g. from LEP) suggest that tree-level couplings SM-SM-BSM should be avoided!

we want to avoid!

 One straightforward solution is to impose some symmetry (often “parity-like”, relic from some UV-
sym): SUSY R-parity, K-parity in ED, T-parity in Little Higgs. New particles only appear in pairs!

Ok with it!

➡ Automatically makes lightest new particle stable! 
➡ It has other benefits, e.g. respect proton stability bounds!

Cosmology tells us that the early universe was a hot plasma, in which all “thermally allowed” 
species should be populated.  Notion tested up to T~ few MeV (BBN, cosmo ν’s):

What happens if we extrapolate further backwards and account for the hypothetical presence of 
this new, stable weakly interacting massive particle?



THE WEAKLYINTERACTINGMASSIVEPARTICLE PARADIGM

Stable, massive particles in chemical equilibrium down to
T<<m (required for cold DM, i.e. non-relativistic distribution 
function!), suffer exponentially suppression of their abundance

So, what is left depends on the decoupling time, or their annihilation 
cross section: the weaker, the more abundant...
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Observationally inferred ΩDMh2~0.1recovered for EW 
scale masses & couplings (aka WIMP miracle)!

A textbook calculation yields the current 
average cosmological energy density

• Stability results e.g. from the same discrete “parity” symmetry previously invoked
• Matches (old?) theoretical prior for BSM at EW scale 
• Leads to a number of interesting, testable phenomenological consequences



WIMP (NOT GENERIC DM!) SEARCH PROGRAM

W+, Z, γ, g, H, q+, l+

W -, Z, γ, g, H, q -,l -

ECM ≈  
102±2 GeV

New 
physics

X=χ, B(1),… 

New
physics

X

Early universe and indirect detection

Direct 
detection  
(recoils on 
nuclei)

Collider Searches

multimessenger 
approach

! demonstrate the “particle physics” nature of astrophysical DM (locally, via DD; remotely, via ID)
 
! Possibly, create DM candidates in the controlled environments of accelerators (but not enough! Neither 
stability nor relic density “directly tested”, for instance…)

! Find a consistency between properties of the two classes of particles. Ideally, we would like to calculate 
abundance and DD/ID signatures → link with cosmology/test of production

any ro
om 

for X
-ra

ys?



WHY X-RAYS AT THE MARGIN OF THIS PROGRAM?

L. Bergstrom, M. Fairbairn and L. Pieri, “X-ray Radiation 
from the Annihilation of Dark Matter at the Galactic 

Center,”  PRD 74, 123515 (2006)  [astro-ph/0607327]

E-scale mismatch: 4 to 7 o.o.m. below the expected range of emitted prompt γ’s!
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FIG. 1: Multiwavelength luminosity of Sgr A* in the quies-
cent state. Observations in the radio and infrared come from
referenes [9, 10, 11, 12]. The Chandra data is reconstructed
from reference [13]. The HESS/MAGIC spectrum is plotted
as one line since the two experiments are in agrement with
each other [14, 15].

hole. The consensus at the time of writing is that the
sub-Eddington accretion flow onto the black hole is fu-
eled by stellar mass loss from the cluster of large mass
stars which exists in that region [16, 17, 20]. The radio,
mm and infrared radiation is thought to come from the
inner regions of this flow close to the black hole, whereas
the X-ray emission observed by Chandra is thought to
originate further from the black hole, close to the Bondi
radius at the interface between the spherical inflow region
and the stellar winds where the gravity of the black hole
starts to dominate the dynamics of the gas [13, 21]. The
Bondi radius is thought to be at around 0.04 pc from the
central black hole, rather close to the 1 arcsecond reso-
lution of the Chandra telescope at this distance. HESS
observations [14] which have recently been confirmed by
the MAGIC experiment [15] show that there is significant
TeV gamma-ray emission from the central 30 pc around
the black hole. This emission might be due to the annihi-
lation of dark matter [7, 23, 24, 25] or might have a more
mundane origin, being created by Fermi acceleration in
shock fronts in the stellar winds [26], or as a product of
the interaction of ultra high energy protons with ambient
photons and magnetic field, or as initiated by proton -
proton interactions in the accretion disk, or generated by
curvature and inverse Compton emission of accelerated
electrons close to the Black Hole [27]. Recently it has
been pointed out that this emission may hinder searches
for the annihilation of dark matter because it provides
too great a background [28].

In order to calculate the expected luminosity coming
from the annihilation of WIMPS, one first needs to know

what the density profile is within the region in question.
Many N-body simulations predict that the density at the
center of dark matter halos will asymptote to a power
law ρ ∝ r−γ [29, 30, 31] so the simplest approach is to
assume a simple power law and to normalise it so that
the local density at the sun is 0.3 GeV cm−3. Assuming
the emission along the line of sight is dominated by the
galactic central region, the luminosity expected from that
region is given by

L = fem⟨σtotv⟩mdm4π

∫ rmax

rmin

(

ρ(r)

mdm

)2

r2dr (1)

where fem ∼ 0.5 is the fraction of all the final states, like
electrons, muons, taus and quark jets that will give rise to
electromagnetic energy and ⟨σtotv⟩ is the total thermally
averaged KK particle annihilation cross section. The in-
ner radius rmin is the cut-off radius below which there is
a maximum density core due to the high self-annihilation
rate. If we assume that the dark matter halo has existed
for a time τh then then the radius rmin is defined by
ρ(rmin) = mdm⟨σtotv⟩/τh. The outer radius rmax cor-
responds to the angular resolution of the instrument in
question at the distance corresponding to the centre of
the galaxy. This may be an underestimate since the con-
tribution from the dark matter at r > rmax along the
line-of-sight is not considered. However, in our models,
which have rather steep central densities, the assumption
that the dark matter emission emanates entirely from a
sphere with radius corresponding to the angular resolu-
tion of the instrument is a good approximation. Eq. 1
can therefore be considered a correct estimate. In figure 2
we give the luminosity expected to lie within the beam of
an arcminute resolution device such as HESS or GLAST
and an arcsecond resolution telescope such as Chandra.

Typical values of the asymptotic power law for the den-
sity profile in the inner regions found in N-body simula-
tions are γ ∼ 1 − 1.5. The quiescent X-ray emission
observed by Chandra is around 1033 erg s−1, which is
interesting as it is rather close to the emission that one
would expect from the annihilation of WIMPs from the
same region for these values of γ.

Generation of energetic electrons in a magnetized
plasma will lead to synchrotron radiation and in order
to predict the synchrotron spectrum, we need a model
for the magnetic field around the center of the galaxy.

MAGNETIC FIELD

Radio observations of the galactic centre show some
evidence of variability thought to be associated with a
very small central accretion disk at a scale of 2.7 × 10−4

arcseconds, i.e. 40 RBH [18], where RBH ∼ 7 × 1011 cm
is the Schwarzschild radius for the black hole. At much
larger radii it is therefore valid to assume the behaviour
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FIG. 3: Assumed magnetic field as a function of radius from
the Black Hole. The solid line corresponds to the equipartition
magnetic field of Eq. 3 whereas the red dashed line is the flux-
reconnection magnetic field of Eq. 4.

whereas normal stellar radiation will contribute a few
eV cm−3 [8]. With the fields that we have assumed the
magnetic field B > 10−2 G in the region of interest which
corresponds to Usync ∝ B2 ≥ 106 eV cm−3,much larger
than Uics in the central accretion region. While sub-
dominant, the ICS radiation will emerge at much higher
energies than X-ray, for example the CMB photons will
be scattered to tens of MeV, the region soon to be probed
by the GLAST mission.

One can show that the SSC is subdominant through
numerical integration over the synchrotron flux to obtain
Ussc. A simpler, rougher way of seeing this is by checking
that the (over-)estimate of Ussc obeys the inequality

Ussc ≃
Lr

4πr3c
≪

B2

8π
= Usync (6)

where L is the luminosity of the system, r is the radius
and c is the speed of light. This is simply the amount
of synchrotron radiation that one would expect to flow
through a unit volume at a given radius due to the total
luminosity at smaller radii. Since the dark matter pro-
files we consider are rather steep, most of the emission
will come from smaller radii rather than from larger radii
which is why this is a good approximation to the full inte-
gral over all radii to obtain the background synchrotron
photons.

In the results that we present below it turns out that
only for the reconnection magnetic field and the most
spiked profiles (profile C below) could this inequality be
in danger, and then only in a small region of the emis-

sion region close to the black hole. Since we will see that
such profiles are already ruled out by gamma-ray obser-
vations, we conclude that we do not need to worry about
synchrotron-self absorption at the level of accuracy of
this paper.

Other timescales are also larger than the energy loss
time scale. For example, the gravitational infall timescale
compared with the synchrotron timescale for a TeV elec-
tron in the equipartition field (3) is given by

τgrav =

√

r3

GMBH
= 2.7 × 108

(

r

0.01pc

)
3

2

sec

τsync =
3

4σT c

8π

B2

E

γ2
= 2.6 × 105

(

r

0.01pc

)
5

2

sec

(7)

so that τgrav ≫ τsync, demonstrating our point. The
characteristic timescale upon which the synchrotron
timescale itself varies is very close to the gravitational
timescale.

We assume that the electrons lose energy before they
change position significantly. In order for this to be true,
the diffusion length scale should be much smaller than
the radial distance of the electron from the central black
hole. We obtain the diffusion length scale in the same
way as the authors of reference [22] by taking the geo-
metric average of the magnetic diffusion length scale dB

(taken to be one third of the gyromagnetic radius) with
the distance corresponding to the synchrotron lifetime
cτsync.

√

cτsyncdB

r
=

me

r

√

2π

eσT B3
= 2.78 × 10−4

(

r

0.01pc

)
7

8

(8)
so that the diffusion of the electrons can also be ne-
glected.

We will therefore assume that all terms other than syn-
chrotron energy loss can be set to zero, which would cer-
tainly not be true for electrons arising from SUSY WIMP
annihilations.

When considering direct dark matter annihilation into
electrons we will be interested in a delta function of elec-
trons with energy mdm. The solution of the diffusion-loss
equation then has the following form

dn

dE
(E, r) =

1

2

(

ρ(r)

mdm

)2

⟨σtotv⟩Neebee
1

Ė
cm−3GeV−1

(9)
which is valid over a range of energies, E < mdm.
Nee = 2 is the overall number of electrons and positrons
produced in each annihilation and bee = 0.19 is the
branching ratio of annihilation in the electron-positron
line. We used ⟨σtotv⟩ = 3 × 10−26cm3s−1. N(E, r) is
zero for E > mdm.
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FIG. 5: Synchrotron spectra from 1 TeV KK dark matter an-
nihilation in the central 0.01 pc of the galaxy assuming the
three density profiles (A,B,C) described in Eq. 10. The solid
lines correspond to the equipartition magnetic field of Eq. 3
and the dotted lines are the spectra with the flux-reconnection
magnetic field of Eq. 4.

expression

ν′Lν′ =
1

2
⟨σtotv⟩Neebeeme

∫ rres

0

4πr2

(

ρ(r)

mdm

)2

× exp(−NHσp.e.(ν
′))

∫ ∞

0

f(ν′, ν)

× θ

(

1 −
ν∗

B∗(r)

me

mdm

)
√

ν∗
B∗(r)

dνdr (11)

where the dimensionless quantity ν∗ is ν/Hz, B∗ =
B/2.8 × 10−6 G and θ is the heavyside step function.
The function f(ν′, ν) is defined to be

f(ν′, ν) = x

∫ ∞

x
K5/3(y)dy , x =

ν′

ν
(12)

where K5/3 is a modified Bessel function.
Figure 5 shows the synchrotron spectra from a 1 TeV

KK particle annihilation in the GC, for the different den-
sity profiles described in Eq. 10 and for the different mag-
netic field assumption of Eqs. 3 and 4.

In order to find out if the X-ray emission predicted in
our model is reasonable, we have to compare it with the
HESS data to make sure that the haloes we consider do
not give rise to too much emission in gamma-rays. First
we assume that the HESS resolution corresponds to a 30
pc radius sphere around the GC [14], then we note that
the authors of [7] fit the HESS data with an NFW γ = 1

FIG. 6: Comparison of profile B with Chandra data: the dot-
dashed curve is an approximate fit to the data presented in [21]
without the iron line. The solid curve is the signal expected
from synchrotron radiation from electrons produced in dark
matter annihilations assuming density profile B. The dashed
curve corresponds to the synchrotron radiation from the flat
core described in the text. We assume a Chandra effective
aperture of 400 cm2.

profile and a boost factor of 200 in the flux. It is therefore
necessary to ensure that the profiles that we use are not
so dense as to saturate this bound, otherwise one would
expect more emission in the form of TeV gamma-rays
than observed by HESS. The HESS bound corresponds
to a total luminosity from within the 30 pc sphere of
about 6.9 × 1037GeVs−1 whereas the three profiles A),
B) and C) that we have considered correspond to 3.5 ×
1030, 5.5×1035 and 1.3×1041GeVs−1 respectively, so that
profile C is ruled out.

Profile B, which does not violate the bound from
HESS, gives rise to approximately the same flux as the
observed signal from Chandra in the region of interest as
can be seen in figure 6. In this way one can claim that X-
ray observations are therefore more restrictive than TeV
observations, since they rule out density profiles which
are less steep than those ruled out by HESS.

It would be tempting to argue that the observed emis-
sion in X-ray could be explained via dark matter syn-
chrotron rather than thermal-bremsstrahlung. As we
see in figure 2, the flux from dark matter synchrotron
is certainly conceivably of the right order of magnitude,
although the spectrum seems to have the wrong shape
given the magnetic fields considered in this work. There
is also the observation of an iron line [13], a spectral
feature which could not be explained very easily by syn-

Strong dependence from B-field & DM 
distribution profile! useful to check DM hints 

@ other wavelengths (e.g. radio)

only proposed exception: models emitting energetic 
leptons (e.g. KK DM candidates) in environment with 

large B-fields (synchrotron). Possibly Gal. Center?

different DM 
density profiles

different B-field 
really near the 

BH….



BUT REMEMBER: THEORY BIAS!

Different motivations for alternative DM (in fact, beyond-the-
standard-model) models exist, in other scenarios signatures in X-

rays may be natural!



NEUTRINOS AS DARK MATTER?
Condition 1. Must be massive (which is already a departure from SM...)

Fulfilled! Oscillations established…implying mass for at least two states 
(mismatch between flavour and mass basis is in fact necessary!)

 Take the 2-flavour mixing for 
simplicity

 Account for flavor states being 
superposition of mass states, 
which are the true propagating 
states

 Each mass eigenstate 
propagates as ~eipz…

Losc=4π E/δm2

Sin2 2θ

It implies the survival probability

<1 only if δm2≠0



NEUTRINOS AS DARK MATTER?

�m2
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Failed! Why?

ΩDM≈0.3(Planck)⇒Σmi ≈ 15 eV

Condition 1. Must be massive (which is already a departure from SM...)

Fulfilled! Oscillations established, at least 2 
massive states, measured  splitting implies at 
least one state heavier than 0.05 eV

Condition 2. Must match cosmological abundance

Failed! Direct mass limits combined with splittings from oscillation experiments impose 
upper limit of about 7 eV to the sum (After KATRIN, potentially improved to ~0.7 eV) 

Condition 3. Must allow for structure formation (of the right kind)



DM IS NOT “HOT” (IT IS NOT RELATIVISTIC)!
DM cannot have a relativistic velocity distribution

(at least from matter-radiation equality for perturbation to grow)

This is the more profound reason why neutrinos would not work as DM, even if 
they had the correct mass: they were born with relativistic velocity distribution 
which prevents structures below O(100 Mpc) to grow till late!

Cartoon Picture:

ν’s “do not settle” in potential wells that they can overcome by their typical velocity: compared 
with CDM, they suppress power at small-scales

Neutrino free streaming

baryons, cdm
Φ

ν



THE NUMERICAL PROOF
ΛCDM run vs. cosmology including neutrinos (total mass of 6.9 eV)

simulation by Troels Haugbølle, see

http://users-phys.au.dk/haugboel/projects.shtml

http://users-phys.au.dk/haugboel/projects.shtml


MINIMALISTIC APPROACH

⇥L = N̄i⌅µ�
µN � ⇤�HN̄L� � M

2
N̄ cN + h.c.

� ⇠ ⇥ v/M

N ! ⇥ + �

" SM Neutrinos do not work as DM, but have some good properties (almost Ok!)
 Easy to add one extra neutrino state which works (=heavier & suppressed interactions)! 

" SM gauge singlet, but mixes with active (one needs ≥2 of these to give mass to ν’s...)

" Production via oscillations, suppressed by the small mixing (~10-4)
(never in equilibrium, non-thermal spectrum, avoid “hot-ness”)

" Further adjust mass M to obtain right abundance, keV range selected.

" Interesting astrophysical candidate: 
" “cold-to-warm”, may suppress structures at sub-kpc scales 
(as in simulations I showed, but at sub-Galactic scales due to higher masses) 
" can be searched for via X-ray line (rare loop-suppressed decay)
" can be embedded in a “minimal extension” of the SM with only 3 right-handed neutrinos (two GeV-ish ones 
explaining baryon asymmetry...)

νMSM, for a review, A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov,
  Ann. Rev. Nucl. Part. Sci. 59, 191 (2009)

in principle accessible to colliders… 
possible interplay X-ray astro/colliders!

F. Bezrukov, D. Gorbunov. M. Shaposhnikov,  JCAP 0906, 029 (2009) 
[0812.3622] JCAP 1110, 001 (2011)  [1106.5019]

" Still not exceeding MeV scale in a more general (EFT) 
analysis of its production & decay mechanism



GEV NEUTRAL LEPTONS AT COLLIDERS?

A number of different probes possible
(From 1504.04855)
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Figure 4.10: Limits on the mixing between the electron neutrino and a single HNL in the mass
range 100 MeV - 500 GeV. The (gray, dotted) contour labeled ‘BBN’ corresponds to an HNL lifetime
> 1 sec, which is disfavored by BBN [395, 414, 528]. The (brown, dashed) line labeled ‘Seesaw’
shows the scale of mixing naively expected in the canonical seesaw (see Section 4.3.2.3). The (dotted,
dark brown) contour labeled ‘EWPD’ is the 90% C.L. exclusion limit from electroweak precision
data [554]. The contours labeled ‘⇡ ! e⌫’ (yellow, solid) [542, 544] and ‘K ! e⌫’ (black, solid) [536]
are excluded at 90% C.L. by peak searches (see Section 4.4.1). Those labeled ‘PS191’ (magenta,
dot-dashed) [578], ‘CHARM’ (dark blue, dot-dashed) [579], ‘NA3’ (light yellow, solid) [580] and
‘JINR’ [581] are excluded at 90% C.L. from beam-dump experiments (see Section 4.4.2). The
(cyan, solid) contour labeled ‘K ! ee⇡’ is the exclusion region at 90% C.L. from K-meson decay
search with a detector size of 10 m [313]. The (green, solid) contour labeled ‘Belle’ is the exclusion
region at 90% C.L from HNL searches in B-meson decays at Belle [409]. The contours labeled
‘L3’ (pink, dashed) [550] and ‘DELPHI’ (dark green, dashed) [551] are excluded at 95% C.L. by
analyzing the LEP data for Z-boson decay to HNLs. The (red, solid) contour labeled ‘LEP2’ is
excluded at 95% C.L. by direct searches for HNL at LEP [553]. The (blue, solid) contour labeled
‘ATLAS’ is excluded at 95% C.L. from direct searches by ATLAS at

p
s = 8 TeV LHC [563]. The

(blue, dashed) curve labeled ‘LHC 14’ is a projected exclusion limit from the
p

s = 14 TeV LHC
with 300 fb�1 data [549]. The (purple, solid) contour labeled ‘ILC’ is a projected sensitivity atp

s = 500 GeV ILC with 500 fb�1 data [549, 556]. The (light blue, solid) contour labeled ‘LBNE’ is
the expected 5-year sensitivity of the LBNE near detector with an exposure of 5 ⇥ 1021 protons on
target for a detector length of 30 m and assuming a normal hierarchy of neutrinos [582]. The (dark
green, solid) contour labeled ‘FCC-ee’ is the projected reach of FCC-ee for 1012 Z decays occurring
between 10-100 cm from the interaction vertex [383]. The (violet, solid) contour labeled ‘SHiP’ is
the projected reach of SHiP at 90% C.L. [35, 583].
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Figure 4.11: Limits on the mixing between the muon neutrino and a single HNL in the mass
range 100 MeV - 500 GeV. The (gray, dotted) contour labeled BBN corresponds to an HNL lifetime
> 1 sec, which is disfavored by BBN [395, 414, 528]. The (brown, dashed) line labeled ‘Seesaw’
shows the scale of mixing naively expected in the canonical seesaw (see Section 4.3.2.3). The
(dotted, dark brown) contour labeled ‘EWPD’ is the 90% C.L. exclusion limit from electroweak
precision data [554]. The contour labeled ‘K ! µ⌫’ (black, solid) is excluded at 90% C.L. by
peak searches [535, 536]. Those labeled ‘PS191’ (magenta, dot-dashed) [578], ‘NA3’ (light yellow,
solid) [580], ‘BEBC’ (orange, dotted) [584], ‘FMMF’ (light cyan, dashed) [585], ‘NuTeV’ (purple,
dashed) [586] and ‘CHARM’ (dark blue, dot-dashed) [587] are excluded at 90% C.L. from beam-
dump experiments. The (cyan, solid) contour labeled ‘K ! µµ⇡’ is the exclusion region at 90% C.L.
from K-meson decay search with a detector size of 10 m [313]. The (green, solid) contour labeled
‘Belle’ is the exclusion region at 90% C.L from HNL searches in B-meson decays at Belle [409].
The (yellow, solid) contour labele1d ‘LHCb’ is the exclusion region at 95% C.L from HNL searches
in B-meson decays at LHCb [408]. The (dark blue, dot-dashed) contour labeled ‘CHARM-II’ [588]
is excluded at 90% C.L. from the search for direct HNL production with a wide-band neutrino
beam at CERN. The (pink, dashed) contour labeled ‘L3’ [550] and (dark green, dashed) labeled
‘DELPHI’ [551] are excluded at 95% C.L. by analyzing the LEP data for Z-boson decay to HNL.
The (blue, solid) contour labeled ‘ATLAS’ [563] and (red, solid) labeled ‘CMS’ [589] are excluded
at 95% C.L. from direct searches at

p
s = 8 TeV LHC. The (blue, dashed) curve labeled ‘LHC 14’

is a projected exclusion limit from the
p

s = 14 TeV LHC with 300 fb�1 data [549]. The (light
blue, solid) contour labeled ‘LBNE’ is the expected 5-year sensitivity of the LBNE near detector
with an exposure of 5⇥1021 protons on target for a detector length of 30 m and assuming a normal
hierarchy of neutrinos [582]. The (dark green, solid) contour labeled ‘FCC-ee’ is the projected reach
of FCC-ee for 1012 Z decays and 10-100 cm decay length [383]. The (violet, solid) contour labeled
‘SHiP’ is the projected reach of SHiP at 90% C.L. [35].
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Figure 4.12: Limits on the mixing between the tau neutrino and a single HNL in the mass range
100 MeV - 500 GeV. The (gray, dotted) contour labeled BBN corresponds to an HNL lifetime > 1
sec, which is disfavored by BBN [395, 414, 528]. The (brown, dashed) line labeled ‘Seesaw’ shows
the scale of mixing naively expected in the canonical seesaw (see Section 4.3.2.3). The (dotted,
dark brown) contour labeled ‘EWPD’ is the 90% C.L. exclusion limit from electroweak precision
data [554]. The (dark blue, dot-dashed) contour labeled ‘CHARM’ [590] and (purple, solid) contour
labeled ‘NOMAD’ [591] are excluded at 90% C.L. from the search for direct HNL production. The
(dark green, dashed) contour labeled ‘DELPHI’ [551] is excluded at 95% C.L. by analyzing the
LEP data for Z-boson decay to HNL. The (red, solid and dashed) contours labeled ‘B-factory’
are the conservative and optimistic projected limits at 90% C.L. from ⇠ 10 million ⌧ -decays at a
future B-factory [546]. The (dark green, solid) contour labeled ‘FCC-ee’ is the projected reach of
FCC-ee for 1012 Z and 10-100 cm decay length [383]. The (violet, solid) contour labeled ‘SHiP’ is
the projected reach of SHiP at 90% C.L. [35].
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DEDICATED EXPERIMENTS POSSIBLE
http://ship.web.cern.ch/ship/Proposed fixed target experiment at CERN

Physics paper at 1504.04855, Technical paper at 1504.04956



HINTS IN 2014?

E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein and S. W. Randall, 
“Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of 
Galaxy Clusters,''   arXiv:1402.2301, ApJ 789 (2014) 13

A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse,
“An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus 
galaxy cluster,''  1402.4119, PRL 113 (2014) 251301

2 analyses of X-ray spectra of galaxy clusters claim the 
presence of a monochromatic 3.55 keV line which can be 
interpreted as a decay signal of a 7.1 keV sterile neutrino

‣ ~5 σ, but look elsewhere (~3 σ)
‣ stack clusters (“shuffling” via z-dependence) 
‣ need to parameterize “effective” background to 
better than % level (but argued OK)
‣ Overall consistent with DM, but some anomaly in 
normalization of Perseus? 
‣Not confirmed (excluded?) by other searches…
‣ Further tests needed (unfortunately Astro-H/Hitomi 
was lost soon after launch!)

I won’t discuss about its status, or the analysis… let me just mention 
what kind of signatures (and model alternatives) may be out there



WHAT KIND OF CONFIRMING SIGNATURES?  

E. Bulbul et al. ApJ 789 (2014) 13

A. Boyarsky et al. 
PRL 113 (2014) 251301

2.  Hitomi would have had sufficient E-resolution to resolve the x-ray line shape: if the width of the line 
is relatively broad ⇒ consistent with the expected Doppler broadening of virialised DM particles. 

Narrower line(s) would suggest emission from normal atomic transitions (broadened through collisions)

3.  Also, with increased exposure one could verify whether the line 
weakens toward the edges of a cluster or a galaxy in a way that 

matches the predicted dark matter density profile of these objects.

Require increased exposure, plus improved angular resolution, spectral one (or both!)
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Figure 14. Sterile neutrino mass and mixing angle measurements
and upper limits obtained from the di↵erent samples used in this
study. The comparison of our stacking method with the limits
placed by the single well-exposed Bullet Cluster at 3.57 keV Bo-
yarsky et al. (2008) and Horiuchi et al. (2014) are also shown and
marked with “B08” and “H14” in the figure, respectively. The
error bars and upper limits are in the 90% confidence level.

neutrinos would be produced by oscillations with active
neutrinos at an abundance determined by the mass and
mixing angle (e.g. Dodelson & Widrow 1994; Kusenko
2009). Accounting for the increase in mixing angle that
would be inferred for a dark matter fraction in sterile
neutrinos less than unity, we find that this fraction is
⇠13%-19% based on the methods in Abazajian (2006)
and Asaka et al. (2007) – and cannot exceed 26% based
on the absolute lower bound distorted wave production
estimate in Asaka et al. (2007).
This implies that either (1) sterile neutrinos are a sub-

dominant component of dark matter, (2) sterile neutrinos
are predominantly produced by some other mechanism,
or (3) the emission line originates from some other radia-
tively decaying light dark matter candidate such as mod-
uli dark matter (Kusenko et al. 2013). The Shi-Fuller
mechanism is one of the possible production mechanisms
for the sterile neutrino dark matter interpretation of this
detection. The implications of the detection for struc-
ture formation in cosmological small scales are discussed
in detail in (Abazajian 2014).
They may also be produced by means that do not

involve oscillations, such as inflaton or Higgs decay
(Kusenko 2006; Shaposhnikov & Tkachev 2006; Petraki
& Kusenko 2008; Kusenko 2009), although there may
still be su�cient mixing to provide an observable radia-
tive decay signal. This detection is consistent with 100%
of dark matter composed of sterile neutrinos produced by
these mechanisms, as well as by the split seesaw mecha-
nism (Kusenko, Takahashi, & Yanagida 2010). Even in
this case, some sterile neutrinos would be produced by
non-resonant oscillations. However, based again on the
calculations in Abazajian (2006) and Asaka et al. (2007),
only ⇠1% -3% of the sterile neutrino abundance (with an
upper limit of 7%) would be accounted for in this way
for a sterile neutrino with mass of 7.1 keV and a mixing
angle corresponding to sin2(2✓) ⇠ 7 ⇥ 10�11.
Our result must be verified using a variety of X-ray

instruments, X-ray emitting dark matter dominated ob-
jects, methods of data reduction, background subtrac-
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Figure 15. 1 Ms Astro-H Soft X-ray Spectrometer (SXS) simu-
lations of the Perseus Cluster. The line width corresponds to line
of sight velocity dispersion of 1300 km s�1. The figure shows that
the decaying dark matter line broadened by the virial velocities of
dark matter particles will easily be distinguished from the plasma
emission lines which are broadened by turbulence in su�ciently
deep observations of the Perseus Cluster.

tion, and statistical techniques to investigate the inter-
pretation of this line. The future high-resolution Astro-H
observations will be able to measure the broadening of
the line, which will allow us to measure its velocity dis-
persion. To detect a dark matter decay line, which is
much weaker than the plasma lines will require a sig-
nificantly long exposure. We performed 1 Ms Astro-H
SXS simulations of the Perseus Cluster assuming that
the width (15 eV) of the dark matter decay line is de-
termined by the virial velocities of dark matter particles
of 1300 km s�1. Figure 15 shows that the broader dark
matter line will be easily distinguished from the plasma
emission lines, which are only broadened by the turbu-
lence in the X-ray emitting gas.

6. CAVEATS

As intriguing as the dark matter interpretation of our
new line is, we should emphasize the significant system-
atic uncertainties a↵ecting the line energy and flux in
addition to the quoted statistical errors. The line is very
weak, with an equivalent width in the full-sample spec-
tra of only ⇠ 1 eV. Given the CCD energy resolution
of ⇠ 100 eV, this means that our line is a ⇠ 1% bump
above the continuum. This is why an accurate continuum
model in the immediate vicinity of the line is extremely
important; we could not leave even moderately signifi-
cant residuals unmodeled. To achieve this, we could not
rely on any standard plasma emission models and instead
had to let all the tabulated lines free (including their
fluxes, energies and widths, within reasonable bounds),
as described in Section 3.
This approach results in a very large number of pa-

rameters to fit simultaneously, among which are the line
energies and widths that notoriously cause problems for
the statistic minimization algorithms. It was di�cult
to make XSPEC find absolute minima; the convergence
of all of the reported fits had to be verified by manu-
ally varying key parameters and refitting using di↵erent
minimization algorithms. Nevertheless, it is not incon-

1. That a line is really there (no statistical fluke)



OTHER THEORETICAL MODELS WITH X-RAY SIGNALS

Finkbeiner & Weiner 1402.6671, Cline & Frey 1410.7766
DM has an  excited state ~ 3.5 keV above the ground state,  which can be excited by DM-DM 
collisions. The X-ray photon is emitted by subsequent decay. Rate of excitation scales as density2 x 
f(velocity) - much less constrained than just DM density, seems to allow compatibility with data.

These models predict a different scaling with mass, for instance (and may be a way to 
reconcile apparently conflicting observations… at the expenses of some generic predictivity)

Ex. 1: Exciting dark matter

Dark matter decays into axion-like particles, which can convert into X-ray photon in the presence of 
magnetic fields (e.g. Conlon & Day 1404.7741). Due to different B-fields, can lead to brighter signals in 
clusters, fainter in dwarfs and galaxies (Alvarez et al 1410.1867).

Ex. 2: Axion-like particle as byproduct of DM decay



2. AND NOW FOR SOMETHING 
COMPLETELY DIFFERENT:  

AXIONS & ALPS



THE STRONG CP PROBLEM

θ
−

induces a neutron EDM violating experimental limits unless   <10-10 θ 
−

Standard QCD Lagrangian
contains  a CP, P & T 

violating term*

Due to non-trivial topological structure 
of QCD vacuum, 0<θQCD<2 π

Phase “rotated away” from quark mass 
matrix (complex couplings in Higgs sector)

Again, one of the nasty “fine-tuning” problems of the SM asking for an explanation
(like hierarchy, cosmological constant…)

€ 

LCP = θ
N f g

2

32π 2 Tr(Gµν
˜ G µν )

€ 

θ →θ = θ − Arg(detMq )

*despite being a total derivative, there are topologically inequivalent gauge configuration at infinity 
that make this term physical

Maybe a window on high-energy physics? Some dynamical solution?



INTRODUCING AXIONS
 One cannot solve the problem with known symmetries. Peccei, Quinn ‘77  proposed 

to solve it by a new global, axial U(1)PQ symmetry (1977), requiring a 2nd Higgs doublet.

 This symmetry is spontaneously broken at a scale fa : axions a are the corresponding 

Nambu-Goldstone mode (Weinberg,Wilczek ‘78)

At E ≈ fa 
• UPQ(1) spontaneously broken 

• The axion is the m=0 mode settling at 
some value “θ” in the “Mexican hat” a

V(a)

At E ≈ ΛQCD ≪ fa
• UPQ(1) explicitly broken by chiral SSBthe 
Mexican hat tilts (“a mixes with π0”)

• In the potential induced by LCP the (now-

massive) a(x) dynamically restores the CP-
conserving minimum

a

V(a)

θ=0
_



NEW WINDOWS TO ALPS?

€ 

Lagg =
α s

8π fa

a Gµν
˜ G µν

“Defining coupling”: Axions couple to gluons (and mix with π0)

  Axions satisfy  mπfπ
  ~ m

a
f
a  

 They can couple to fermions, but more model-dependent (especially for leptons)

 effective 2-γ coupling g
aγγ

 =ξ α/2πf
a
∝ m

a
 (important for phenomenology)

Search extended to axion-like particles (ALPs)≡ 
Light (pseudo)scalars with a 2-γ coupling  gaγγ with 

generic relation with m
a

Pseudoscalar fields with axion-like properties generically arise 
e.g. in string theory compactifications as Kaluza-Klein zero 

modes of antisymmetric tensor fields (“the phase” counterparts 
of the moduli describing the “size” of the compact manifolds)

 P. Svrcek and E. Witten, “Axions In String Theory,”   JHEP 0606, 051 (2006) [hep-th/0605206]; 
A. Arvanitaki et al., “String Axiverse” PRD 81, 123530 (2010) [0905.4720]; …

what has all this to do with high energy astrophysics?



UNRELATED (?!) TOPIC: “HILLAS” PLOT
Any accelerator (including cosmic ones!) 

must be able to contain the particle: Larmor 
Radius must be smaller than the size of the 

accelerator: s>rL

should be realized
in nature...

UHECRs extend at least up to ~3 1020 eV



ALPS & GAMMA/X-RAY ASTROPHYSICS!
For a photon propagating in a domain of size s 
with uniform field B along its direction, neutrino-
like oscillation probability formula holds (leading 
to ~30% flux distortions...)

Large phases (→large conversions) for 
unexplored range of coupling naturally 
expected for Hillas-efficient accelerators!

P.S. with D. Hooper, Phys. Rev. Lett. 99, 231102 (2007)

7

FIG. 2: Range of coupling constants and axion masses
Eq. (39) for which non-resonant axion-photon oscillations can
influence the γ−ray spectra from AGNs with fEdd = 10−3.

a factor ≃ 2/3 occurs for energies

E >
∼ 2.5 g−1

11 m2
µeV N−1/2

(

η

β0fEdd

)1/2

M1/2
9 MeV

>
∼ 0.083 g−2

11 m2
µeV

(

η

β0fEdd

)

MeV , (40)

E <
∼ 0.22 g−1

11 N1/2

(

η

β0fEdd

)1/2

M1/2
9 MeV

<
∼ 6.6 M9 MeV ,

where for the second expressions we have used the con-
straint on the number of domains in the second line of
Eq. (38). The third condition that can be obtained from
Eq. (24) is less stringent than the one given.

Note that the energies Eq. (40) tend to be in the hard
X-ray to soft γ−ray range except for very strong cou-
plings of the PVLAS type for which these energies can
extend down to the optical range. Such photons are not
absorbed by pair production and there is plenty of data
at such energies that could be searched for the spectral
features discussed here.

C. AGN jets and hot-spots

AGN jets and hot-spots seem to be likely candidates
to fulfill the requirements for observable photon-axion
conversion, as the condition Eq. (21) is satisfied for all
couplings g11

>
∼ 10−2 in such environments since even

the transverse dimension of the jets are of order kpc and
fields are at least of order 100 µG [32, 33, 34]. The first

condition in Eq. (26) shows that this allows significant

effects down to couplings g11
>
∼ 0.013 m1/2

µeV, provided the
coherence scale λ ∼ pc. Furthermore, the plasma density
in jets is assumed as ne

<
∼ 105 cm−3, about a factor 100

higher than the ambient density of an average galaxy,
as expected for termination shocks. Thus, the second
condition in Eq. (26) is also satisfied, unless g11

<
∼ 0.1.

According to Eq. (25), the resulting features would show
up at TeV energies. However, due to Eq. (14), resonances
would only occur for ma

<
∼ 1.2 × 10−8 eV.

In the proton synchrotron model, field strengths of up
to 10 mG have been discussed in Ref. [35]. For axions
with g11 ∼ 1, ma ∼ µeV Eqs. (24) and (25) thus imply
possible effects down to ∼ GeV energies, if λ ∼ 0.1 pc.

FIG. 3: Modification of the γ−ray spectrum of an AGN of
mass M = 109 M⊙, for B = 0.5 G over 2 × 106 Schwarzschild
radii, or ∼ 200 pc with coherence length λ equal to 10 times
the Schwarzschild radius, or ∼ 10−3 pc. The assumed in-
jection spectrum is ∝ E−2.25. The axion parameters are
gγa = 10−11 GeV−1, ma = 1µeV. The modification factor
Pγ→γ is given by Eq. (19). Spectral modification by pair pro-
duction has not been taken into account and is negligible for
redshifts z <

∼ 0.03 [36].

As an example for the effect of non-resonant oscilla-
tions we show in Fig. 3 the modification of the γ−ray
spectrum of a quasar around the maximal energy given
by Eq. (24). The parameters used are typical for AGNs
with central black hole masses around 109 M⊙. The mag-
netic field is assumed of order a Gauss over length scales
106 times the Schwarzschild radius. Such fields can oc-
cur in models of kpc scale jets which emit MeV γ−rays
produced by inverse Compton scattering of accelerated
electrons on low energy synchrotron photons and exter-
nal photons [16, 32], and in ultra-compact jets [37]. How-
ever, variability over scales of months or less would imply

K. Hochmuth and G. Sigl, 
PRD 76 123011 (2007) 

These and sim
ilar ideas stim

ulated lot of activity  

(included within Fermi and IACTs)



X-RAY POLARIZATIONAxion-like particle effects on the polarization of cosmic high-energy gamma sources 14

Figure 1. Average final linear polarization ΠL as a function of the photon energy E

after propagation in the extragalactic magnetic field for ALP masses m = 10−13 eV
(solid line) and m = 10−14 eV (dashed line), respectively. The emitting GRB is
assumed to be completely unpolarized and at distance d = 100 Mpc.

the dimming arising from photon-ALP conversion never prevents the observation of the

gamma-ray flux.

In Figures 3, 4, 5 and 6 we display the final probability density functions fΠ for

the GRB linear polarization, assuming that all sources are at redshift z = 0.03, z = 0.3,

z = 1 and z = 2, respectively. From our Eq. (46), these redshifts would correspond to

distances d ≃ 122.2 Mpc, d ≃ 1.2 Gpc, d ≃ 2.4 Gpc, d ≃ 3.5 Gpc, respectively. In these
simulations we are taking into account the redshift effects discussed in Subsection 3.5. To

obtain the probability distributions, we have performed 104 simulations of the photon

evolution within the random magnetic field configurations. For simplicity, we have

assumed that in each simulation all sources have the same initial linear polarization,

Π0 = 0.0, 0.3, 0.7, 1.0, rispectively. It turns out that photon-ALP mixing smears out

the initial GRB linear polarization. This effect increases with the source distance and
saturates at z ≃ 2. For z∼< 1, fΠ still presents a peak which is the relic of the initial

linear polarization, but with long tails which are not present in the standard polarization

distributions described in Section 2. In particular, the expected clustering in the linear

Axion-like particle effects on the polarization of cosmic high-energy gamma sources 15

Figure 2. Average linear polarizationΠL (dotted line) and photon survival probability
Pγγ evaluated numerically (dashed line) and analytically (solid line), as a function of
the source distance d for photon-ALP mixing in the extragalactic magnetic field. The
source is assumed to be fully polarized along the x direction.

polarization distributions gets smeared out by photon-ALP mixing. Moreover, since

the standard GRB linear polarization should have an initial spread and the GRBs are
actually distributed over a variety of distances, in the presence of photon-ALP mixing

the final distributions should to be even more smeared out and irregular than the ones

presented in these Figures. For z∼> 1 we find rather flat probability distributions in

the GRB polarizations, without any record of the initial linear polarization Π0. As a

consequence, the presence of photons-ALP mixing appears to hinder the possibility to

extract from observational data information on the initial polarization mechanism for
GRBs. Conversely – in the lack of any standard explanation – detection of the features

presented above can be interpreted as a hint at the existence of very light ALPs.

4.3. Intracluster magnetic fields

Given that GRBs are at cosmological distances, there is a nontrivial chance that in some
cases their line of sight crosses a cluster of galaxies. So, it is worthwhile to investigate

what happens in this instance.

Propagation of X-rays from distant sources 
(e.g. GRBs)+ ALP conversion in extragalactic 

B-fields may yield peculiar polarization 
features wrt Energy and/or distance

N. Bassan, A. Mirizzi and M. Roncadelli,
“Axion-like particle effects on the polarization of 

cosmic high-energy gamma sources,”
  JCAP 1005, 010 (2010) [1001.5267]

(possibly analogous signatures associated to 
crossing of the Galactic magnetic field)

degree of linear 
polarization



CASE OF COMPACT OBJECTS
clear advantage in celestial environments 

due to large B fields coherent over large lengths

26 Chelouche D. et al.
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FIG. 20.— The particle parameter space (spanned by mass and coupling constant) which is probed by the spectroscopic constraints discussed in this work
(hatched red surfaces whose difference is related to the assumptions concerning the density of the magnetosphere in magnetars; see §5.1.1) as compared to
other currently used methods such as laser experiments, microwave experiments, solar axion telescopes, and indirect astrophysical considerations. Also shown
(hatched magenta region) is the range probed by compact objects under the assumption of uniform conditions (see text). Clearly, the method described here can
directly probe a considerably larger parameter range than is accessible by other methods. The proof-of-concept limits obtained for quasars and pulsars are also
shown (for the case of cold plasma; see text).

constraint on the axion properties can from pulsars where a very broad spectral feature is predicted yet is not seen in the data.
Magnetars can, in principal, provide similar constraints given if the densities in their magnetosphere is higher than the Goldreich-
Julian value by several orders of magnitude. In this case, the broad features may extend to optical and UV energies (Fig. 19) were
data for a few objects are available. Nevertheless, our current understanding of the various emission mechanisms contributing to
the emission in these wavebands is at its infancy and different magnetars seem to have very different spectral behaviors (compare
the two data sets in Fig. 10). These issues are likely to pose considerable difficulties when interpreting the spectra and attempting
to draw robust conclusions of any kind. At face value, the spectral energy distribution of both magnetars shown is inconsistent
with the specific oscillation feature considered here.
For quasar, a broad X-ray feature is predicted yet is not seen in the data (Fig. 10). Interestingly, the oscillation feature, in

this case, lies in the part of the spectrum close to the iron Kα line and a more detailed analysis including the effect of atomic
features is in order. This is, however, beyond the scope of this paper. If the lack of discernible features in the spectrum is to be
taken seriously, then, given the current quality of the data and given our restrictive set of model assumptions, a tentative limit
(not marginalizing over model uncertainties!) on the coupling constant of g < 3× 10−11GeV−1 (< 5× 10−12GeV−1) may be
obtained for pulsars and quasars, respectively.
We emphasize that these observations were not conducted to maximize the efficiency for the detection of photon-particle oscil-

lations in those objects and that, in principal, much better data and analysis are required to reach meaningful limits. Specifically,
high quality and high resolution X-ray data for quasars as well better understanding of the infrared to optical spectral energy
distribution (via photometry and spectra) of magnetars may yield considerably better limits in this case. We re-emphasize that
the above limit on g is given here only as a proof-of-concept and applies only within our restrictive set of assumptions concerning
the physics of the relevant astrophysical objects.
Thus far we have considered pseudo-scalar particles such as the axion. The case of scalar particles is completely analogous

to the one considered here with the interchange of e∥ and e⊥. By symmetry, all the predictions given here remain valid with
the proper transformation. Naturally, the limits which can be obtained on such a class of particles are identical to the case of
pseudo-scalar particles.
The higher sensitivity (assuming 5% detection threshold) of compact astrophysical objects for probing photon-particle oscil-

lations over an interesting range of particle masses is summarized in figure 20 and is compared to the regions that can now be
probed by other means (CAST, microwave resonance haloscopes, and laser experiments). Also shown is the sensitivity assuming
uniform magnetic field and density conditions over a length scale r⋆ across. Overall, significantly larger phase space may be
probed by studying the spectra of compact objects which is unreachable by laboratory means. As such, the approach proposed
here may allow us to directly detect the long sought axion (and/or scalar particles) which provide perhaps the best solution to
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stellar populations in globular clusters [horizontal branch (HB) and red giant stars] suggest that the coupling constant is limited
to g< 10−10GeV−1 (see Raffelt 1996). This agrees with current mass limits for standard axion models.
Apart from general theoretical arguments that indirectly constrain the physical parameters of axions, there is a considerable

ongoing effort to directly detect these particles. We make no attempt to fully cover the numerous experimentalmethods especially
devised for this purpose but note a few general classes of them and that most utilize coupling of axions to photons. Microwave
cavity experiments (Sikivie et al. 1983) are most relevant for detecting axions as dark matter candidates and use the proposition
that the number of axions through any given surface is large if they are to constitute dark matter hence, in the presence of a
magnetic field, some of them would convert to photons. For axion mass of ∼ 10−5 eV and energies typical of the virialized
halos of galaxies, the photons with which such particles mix are the microwave band and a cavity is built with appropriate
resonances so as to enhance their conversion. These experiments are sensitive to very low g−values yet scanning the entire mass
range quickly and effectively is yet to be fulfilled (e.g., Duffy et al. 2006, Hagmann et al. 1990, Wuensch et al. 1989). That
said, if axions exist but their density is low (and so do not constitute dark matter) then they cannot be easily detected by such
experiments. The currently operating Cern Axion Solar Telescope (CAST; see Lazarus et al. 1992 and references therein for the
general concept and Andriamonje et al. 2007 for recent findings) utilizes the fact that ∼ keV photons in the sun’s core convert
to axions that reach the earth. Applying a ∼ 105 G magnetic field, this experiment attempts to reconvert solar axions to photons
and observe them. This approach has yielded limits on the coupling constant of axions to photons which are comparable to
indirect astrophysical arguments constraints suggesting that g< 10−10GeV−1 (e.g., Raffelt 2007 and references therein). Photon
regeneration experiments (”light shining through walls”) are based on a similar concept and use a light source and a magnetic
field to convert a fraction of the photons to axions (e.g., van Bibber et al. 1987, Cameron et al. 1993, Sikivie 1983, and also Adler
et al. 2008). A mounted wall blocks the light ray from propagating but not the axion ray which is later reconverted to photons
by a similar magnetic field (e.g., Rabadán et al. 2006 and references therein). Using such a method, upper limits on the coupling
constant, g, which are about 4 orders of magnitude higher than current astrophysical constraints are obtained (e.g., Robilliard et al.
2008; but see improvements recently suggested by Sikivie et al. 2007). One such ongoing experiment is the PVLAS experiment
(e.g., Zavattini et al. 2006). This experiment announced a tentative detection of a signal that may be interpreted as due to the
elusive axion. Nevertheless, a more thorough investigation of the measurements suggested a problem with the experimental setup
and the claim was later withdrawn by the same group (Zavattini et al. 2007). We note that the coupling of the axion to other
fields have also been investigated. In particular, a different type of experiment was initiated by Youdin et al. (1996) and utilizes a
gravitational interaction potential between spin and matter (Moody & Wilczek 1984). Much heavier, axion-like particles that are
predicted by some theories are probed by the DAMA experiment (e.g., Bernabei et al. 2008a,b and references therein). To date,
the axion has not been detected and the current limits are about 10 orders of magnitude higher than most theoretical predictions.
A major limitation of most terrestrial experiments for the detection of photon-particle mixing has to do with the fact that the

expected axion-photon conversion probability Pγ→a ∝ g2B2R2 is small (where B is the magnetic field and R the size of the system;
see §4 for the accurate expression for the conversion probability in the general non-linear case, and also Raffelt & Stodolsky 1988
and Sikivie 1983). The small probabilities require high signal-to-noise (S/N) data which render secure detection challenging.
It is worthwhile to compare laboratory expected probabilities to those which may be expected from astrophysical objects under
the assumption that the magnetic field is in equipartition with gravity i.e., GM2/R∼ B2R3; here, G is Newton’s constant and M
the object’s mass (this seems to be a fair approximation for many astrophysical systems and seems to be supported by recent
numerical simulations; e.g., Igumenshchev & Narayan 2002). In this case we obtain that, in the limit of small conversion
probabilities and in the linear regime holds (see however §4.1), the ratio between the conversion probabilities is

Plaboratory experimentsγ→a

Pcelestial objectsγ→a
≃
(

Blab
B

)2(Rlab
R

)2
≃
(

Robj
Rs

)2 B2labR
2
lab

c4/8G ≪ 1, (1)

where Rs ≡ 2GM/c2 is the Schwartzschild radius. For the particular case of a celestial object whose size is of the order of its
Schwarzschild radius, and taking Blab = 105 G and Rlab = 10m, one obtains a ratio < 10−30 (non-linear effects are treated in
§4). This demonstrates the potentially greater sensitivity that may be achieved in the case of astrophysical objects compared
to laboratory experiments. We note that several other works have already taken an astrophysical approach for constraining
the axion properties. An incomplete list includes: Deffayet et al. (2002) who considered photon-particle oscillations as an
explanation to supernovae dimming, Mörtsell & Goobar (2003) who investigated the physical properties of very light axions
(whose mass, ma ∼ 10−16 eV) using Sloan digital sky survey quasar spectra, Brockway et al. (1996) who deduced an upper limit
on the coupling constant for very light axions of ∼ 10−11GeV−1 from supernovae data, Rubbia & Sakharov (2008) who put
more stringent constraints on heavy, ma > 10−4 eV axions from polarization studies of the prompt emission in a γ-ray burst, and
Hochmuth & Sigl (2007) who investigated the observational implications of the (recently withdrawn) PVLAS experiment results.
More relevant to our study is the recent work by Lai & Heyl (2006) who explored the possibility for axion detection in the case
of magnetars.
In this work we wish to see whether, by studying at the spectra of various astrophysical objects, one can hope to observe

the signatures of photon-particle conversion down to low values of the coupling constant and extend the physical parameter
space accessible to us. This approach has been suggested in the past and was qualitatively treated in several works (e.g., Lai
& Heyl 2006 and references therein). Nevertheless, the application of such methods is more complicated and requires that we
have good understanding of the astrophysical object and can distinguish between photon-particle spectral oscillation features and
other spectral imprints such as atomic lines, edges, and continuum features. In particular, detailed predictions for the spectral
signatures of photon-particle mixing are crucial for correctly interpreting the observations. Unlike terrestrial experiments whose
setup may be controlled and the results verified or refuted (e.g., PVLAS), an astrophysical experiment cannot be controlled and
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The terms are self-explanatory with ∆⊥⊥,∆∥∥ being related to the refractive indices (or effective masses) of each polarization.
∆⊥∥ stands for the Faraday rotation and Cotton-Motton effects in optically active plasma (and its complex conjugate ∆⋆

⊥∥).
∆∥a = gBext∥ /2 is the (real) photon-axion conversion term, and ∆aa = −m2a/2ω stands for the axion mass term. We discuss the
relevant contributions to the refractive indices in the following section.
It is possible to further simplify the equation of motion by noting that the photon wavelength is by far the shortest length scale

in the problem in which case
! ≡ ∂ 2t + ∂ 2γ = ω2+ ∂ 2γ = (ω+ i∂γ)(ω− i∂γ) ≃ 2ω(ω− i∂γ) (11)

where the last step requires that the refractive index is close to unity and that the particles are relativistic, i.e., that the photon
undergoing oscillations satisfy ω ≫ma, ωp (where ωp is the plasma frequency, see §3). As we shall see below, these conditions
are, generally, satisfied for all cases considered here. In particular, cases where this approximation breaks down (e.g., at cyclotron
line frequencies and below the particle frequency) are irrelevant to this work since the photon source becomes optically thick
to radiation making it unsuitable for our purpose. Therefore, for all cases considered here, the equation of motion takes a
Schrödinger-like form:

(

ω− i∂γ +∆
)

A = 0→ i∂γA = HA (12)
The great advantage of this form for the equation of motion of the photon-particle system is the fact that probabilities may now
be calculated using the well-developed quantum mechanical formalism in its various representations. One difference is that the
time coordinate is replaced here by the space coordinate along the photon propagation direction. In particular, the evolution of
some initial state, |A(γ = 0)⟩ with distance is

|A(γ)⟩ = eiHγ |A(γ = 0)⟩ (13)
Furthermore, the probability that some final state |A′⟩ is obtained after the system has propagated a finite distance γ along the
(original) photon propagation direction is simply
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〉〈
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where Ei are the eigenvalues corresponding to the eigenvectors of the Hamiltonian
∣

∣Ãi
〉

. Clearly, any global phase is immaterial
and may be discarded so that only relative phases determine the interference pattern.
The orthonormal states that we define are:

⊥≡

[ 1
0
0

]

, ∥ ≡

[ 0
1
0

]

, and a≡

[ 0
0
1

]

, (15)

The first two states are (pure) photon polarization states and the third one is a pure particle state. Clearly, any initial photon
state in our coordinate system may be constructed from the first two eigenvectors. We emphasize that the above vectors are not
eigenvectors of the Hamiltonian but are the ones which characterize the system at the creation point of the photon and are those
which can later be measured by us. We note that if photon scattering occurs at some point along the photon propagation direction
then the wave-function collapses to a pure photon state from which it continues to propagate according to the above equation of
motion (until the next scattering or photon measurement by an observer takes place).
The above formulation of the problem is completely analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect of neu-

trino oscillations and the solution is alike. Specifically, there is a resonance conversion where the probability is highest when
∆∥∥(ω) = ∆aa. Using the definitions for ∆i j we find that resonance occurs at photon energy ω0 so that the momentum transfer to
the field, q, satisfies

q= n(ω0)ω0−
√

ω20 −m2a = 0; (16)

(for a specific example see below). Put differently, when the particle mass and the photon’s effective mass equal, no momentum
transfer takes place during the oscillation process and the probability for conversion is maximized. Basically, the problem is now
reduced to finding the photon frequency (or frequencies) that solves this equation which would correspond to region(s) in the
spectrum where photon-particle oscillations are most likely to occur (calculating the exact conversion probabilities is a different
matter which would be dealt with in §4). It is important to note that, for this equation to have a solution, it is necessary that
n(ω0) < 1. As we shall later show, this requires the presence of plasma without which no resonance occurs and the conversion
probability is lower. Non-resonance conversion, while generally having lower probability than resonance conversion, may still
be observed in cases where the coupling constant, g, is large enough. For probing the regime of small g, most relevant to particle
searches, resonance conversion should be sought after.
Thus far we have assumed that the Hamiltonian itself is independent of location; i.e., γ . Nevertheless, the density and magnetic

field of astronomical objects vary with distance and allowance should be made for their effect. The formalism developed above
still holds locally but the evolution of the initial state is now given by

|A(γ)⟩ = ei
∫ γ
0 dγ

′H(γ ′) |A(γ = 0)⟩ . (17)
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The first two states are (pure) photon polarization states and the third one is a pure particle state. Clearly, any initial photon
state in our coordinate system may be constructed from the first two eigenvectors. We emphasize that the above vectors are not
eigenvectors of the Hamiltonian but are the ones which characterize the system at the creation point of the photon and are those
which can later be measured by us. We note that if photon scattering occurs at some point along the photon propagation direction
then the wave-function collapses to a pure photon state from which it continues to propagate according to the above equation of
motion (until the next scattering or photon measurement by an observer takes place).
The above formulation of the problem is completely analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect of neu-

trino oscillations and the solution is alike. Specifically, there is a resonance conversion where the probability is highest when
∆∥∥(ω) = ∆aa. Using the definitions for ∆i j we find that resonance occurs at photon energy ω0 so that the momentum transfer to
the field, q, satisfies

q= n(ω0)ω0−
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(for a specific example see below). Put differently, when the particle mass and the photon’s effective mass equal, no momentum
transfer takes place during the oscillation process and the probability for conversion is maximized. Basically, the problem is now
reduced to finding the photon frequency (or frequencies) that solves this equation which would correspond to region(s) in the
spectrum where photon-particle oscillations are most likely to occur (calculating the exact conversion probabilities is a different
matter which would be dealt with in §4). It is important to note that, for this equation to have a solution, it is necessary that
n(ω0) < 1. As we shall later show, this requires the presence of plasma without which no resonance occurs and the conversion
probability is lower. Non-resonance conversion, while generally having lower probability than resonance conversion, may still
be observed in cases where the coupling constant, g, is large enough. For probing the regime of small g, most relevant to particle
searches, resonance conversion should be sought after.
Thus far we have assumed that the Hamiltonian itself is independent of location; i.e., γ . Nevertheless, the density and magnetic

field of astronomical objects vary with distance and allowance should be made for their effect. The formalism developed above
still holds locally but the evolution of the initial state is now given by
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Relatively simple Schroedinger-like mixing equation leads to 
rich & complicated phenomenology, due to the medium
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The first two states are (pure) photon polarization states and the third one is a pure particle state. Clearly, any initial photon
state in our coordinate system may be constructed from the first two eigenvectors. We emphasize that the above vectors are not
eigenvectors of the Hamiltonian but are the ones which characterize the system at the creation point of the photon and are those
which can later be measured by us. We note that if photon scattering occurs at some point along the photon propagation direction
then the wave-function collapses to a pure photon state from which it continues to propagate according to the above equation of
motion (until the next scattering or photon measurement by an observer takes place).
The above formulation of the problem is completely analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) effect of neu-
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∆∥∥(ω) = ∆aa. Using the definitions for ∆i j we find that resonance occurs at photon energy ω0 so that the momentum transfer to
the field, q, satisfies
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(for a specific example see below). Put differently, when the particle mass and the photon’s effective mass equal, no momentum
transfer takes place during the oscillation process and the probability for conversion is maximized. Basically, the problem is now
reduced to finding the photon frequency (or frequencies) that solves this equation which would correspond to region(s) in the
spectrum where photon-particle oscillations are most likely to occur (calculating the exact conversion probabilities is a different
matter which would be dealt with in §4). It is important to note that, for this equation to have a solution, it is necessary that
n(ω0) < 1. As we shall later show, this requires the presence of plasma without which no resonance occurs and the conversion
probability is lower. Non-resonance conversion, while generally having lower probability than resonance conversion, may still
be observed in cases where the coupling constant, g, is large enough. For probing the regime of small g, most relevant to particle
searches, resonance conversion should be sought after.
Thus far we have assumed that the Hamiltonian itself is independent of location; i.e., γ . Nevertheless, the density and magnetic

field of astronomical objects vary with distance and allowance should be made for their effect. The formalism developed above
still holds locally but the evolution of the initial state is now given by

|A(γ)⟩ = ei
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e.m.  field components & axion field 
(acting as “additional polarization state”)

Polarization-dependent refraction indexes,  
mass (and effective plasma mass) term, Faraday 
rotation and Cotton Mouton birefringence 
term…
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FIG. 8.— A ”curve-of-growth” for photon-particle spectral oscillation features compared to that of atomic lines. Clearly, the behavior is qualitatively different.
Most importantly, for small values of γ the dependence is strong compared to that of atomic lines. For large γ , the rest equivalent width,W0, oscillates around a
saturation value which is very different from the monotonic increase ofW0(γ) for atomic lines. The dependence ofW0 on the coupling constant, g, is also shown
(see text). The non-linear regime at smaller gγ values has a significant effect on the detectability of oscillation features in stratified plasma.

sensitive to g over the entire range, increasing at first as g2 and roughly as g in the ”optically thick” limit which is much steeper
than the behavior for atomic features. Specifically, for large enough g, the conversion feature could span a very broad energy
range and, as such, resembling more a continuum feature rather than a line-like signature. [We note that for large enough g our
analytic predictions for the width of individual conversion components (Eq. 34-36) may not hold since these were estimated in
the weak conversion regime while in this case the strong non-resonant regime may be more appropriate.] The sharp dependence
ofW0 on g raises the interesting possibility that the spectra of known astrophysical objects can be used to set stringent limits (or
even detect!) photon-particle oscillation feature (see §4).

4.2. Varying Conditions
For real astrophysical objects it is unlikely that their properties, such as the magnetic field and plasma density, are kept constant

with high precision within a given volume and are zero outside it. More realistically, the magnetic field and density are smoothly
varying functions of position. As indicated by the dependence of the resonance energy ω0 on the magnetic field and plasma
density, narrow spectral conversion features are expected to be considerably affected by the spatial stratification and/or time
dependence in the medium properties. In particular, any attempt to give quantitative spectral predictions should take such effects
into account.
We adopt the following numerical scheme in solving the problem of photon-particle oscillation in a stratified medium: we

divide space into N zones of size δγ j where j = 1...N. Over each zone the conditions are considered to be (quasi-)uniform. In
particular, for small enough δγ j, there is a well defined local Hamiltonian, H(γ j) at location γ j. In this case, the initial state for
the first zone is that given by the initial condition of the problem while the initial state for the j’th zone (1< j≤ N) is the evolved
state through j−1 zones. More formally, equation 17 now takes the form

|A(γ)⟩ = ei∑iH(γi)δγ |A(γ = 0)⟩ = ∑
i1,i2,...iN

(
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⟨Ai1 |A(γ = 0)⟩ |AiN ⟩ (38)

where i j goes over the number of eigenstates of the Hamiltonian H j which, in our case, means i j = 1,2,3 for all j’s. The
probability for photon-particle conversion given the initial and final states is then given by |⟨a|A(γN)⟩|2 (c.f. equation 14). In
the following calculations we have made sure that proper convergence is obtained by repeating the calculation using a finer grid
(larger N) and requiring that the relative probability differences does not exceed 5% at any energy bin. For very large γ , hence
very narrow features, differences may still be encountered, even for very large N, and we then require that the relative difference
of the outer envelopes agree to within 5% accuracy. The value of N depends among other things on how fast the conditions of
the system vary with radius. We find that, for most relevant applications, N ∼ 103− 104 suffices. We used spatial logarithmic
spacing in our calculations.
At present, our understanding of many astrophysical objects is rather qualitative and most models rely on self-similarity argu-

ments or general physical principles to obtain rough scalings of the object’s properties with the spatial coordinates (e.g., angle,
radial distance). Somewhat reassuring is the fact is that in several cases where more realistic numerical simulations have been
conducted, a qualitative agreement was found with the analytical approach. We shall therefore treat cases in which the density
and magnetic field depend only on the radial coordinate from the photon emitting source. While probably an oversimplification,
we are interested here mainly in the qualitative difference between spatially varying configurations and uniform ones. Further
refinements await better understanding of the physics of particular environments.
In the following examples we consider density and magnetic field variations with the radial coordinate alone so that they take

the following form

B= B(r⋆)
(

r
r⋆

)α

and ρ = ρ(r⋆)
(

r
r⋆

)β

. (39)

Can be identified? May be difficult in practice, although 
argued that dependence of rest-equivalent width/signal 

from variables is very different from corresponding atomic 
lines: peculiar shape and variability features expected!
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FIG. 18.— Left: A few examples for the predicted spectral feature from X-ray binaries assuming ma = 10−5 eV and g = 10−9 GeV−1, and for several values
of the density denoted next to each curve. Clearly, an observable feature is expected which may be narrow (in case the particle density is high) or broad (for low
plasma densities). Right: The spectral predictions assuming cold (black curves) or hot, 1 keV plasma (red line), and for two values for θ (see legend). Due to the
higher magnetic field and density values compared to the quasar case, the features are not as strongly affected by the plasma temperature as in the quasar case.
That said, higher densities are more sensitive to temperature and photon angles since the resonance feature in this case is pushed to higher energies where these
effects are more pronounced (see Fig. 5c).

constraints, although these objects are unlikely to considerably extend the phase space available to us.

5.5. Magnetic stars
While all stars have finite magnetic fields, some stars, known as Ap stars, have intense magnetic fields approaching 104 G near

their surface with approximately dipolar configurations (see howeverBreithwhite 2008 for possible deviations from this simplified
picture), implying considerable magnetic energy stored in the volume around the star. Typical sizes of such stars are typical of
ordinary A stars; i.e., of order 1011 cm. The plasma density around those stars is however less secure: it is known that such stars
shed winds extending to large radii yet the mass loss rate is somewhat uncertain. Here we take a fiducial value for the mass loss
rate of 10−7M⊙ yr−1 which translates to a mean particle volume density of ∼ 1012 cm−3 (we neglect the possibility of clumpy
plasma in this analysis). We have experimented with several density profiles for which −3 < β < −2 and the results remain
qualitatively similar: Ap stars cannot be used to probe photon-particle oscillations if the coupling constant g < 10−7GeV−1. (A
small fraction of Ap stars exhibits magnetic fields of order 105 G and allow to probe down to g ∼ 10−8GeV−1.) Furthermore,
due to the relatively high plasma densities in the stellar wind, the feature is expected to fall in the hard X-ray band, or even in
the γ-ray band, where the flux is negligible. Finite plasma temperatures only shift the feature to even higher energies making
the observations more challenging. Hence, limits on g obtained in this way are relatively uninteresting given the phase space
already probed by other means such as stellar ages and terrestrial experiments. We note that corroborative information may still
be valuable yet we choose to not explore this avenue any further in this work. Clearly, non-magnetic stars have much lower
magnetic fields resulting in even smaller conversion probabilities hence do not provide any advantage with respect to currently
available limits. We note that the limit of g= 10−10GeV−1 obtained from cooling timescale considerations for stars in globular
clusters are better than the spectroscopic limits since higher magnetic fields are encountered in the interiors of stars compared to
their surfaces.

5.6. White Dwarfs and Magnetic Cataclysmic Variables
White dwarfs (WD) are the final evolutionary phase of most (not too massive) stars. Their size is of order 109 cm and most

objects have magnetic field intensities in the range 103−106 G (e.g., Putney 1999 and references therein). A sub-population of
white dwarfs, called magnetic white dwarfs (mWD), has field intensities as high as 106−108 G (e.g., Kemp et al. 1970) and are
thought to evolve from Ap stars. Similar to Ap stars, the field configuration in those objects is thought to be dipolar. Magnetic
cataclysmic variables, (mCV), are systems in which the magnetic white dwarf is thought to be a part of a binary system, and also
exhibit magnetic fields of order 108 G (e.g., Tapia 1977). The density of the plasma in the magnetospheres of these objects and
its radial dependence are poorly known and we shall assume, as before, that the plasma follows the magnetic field.
If mCVs and mWDs are descendent of Ap stars then they provide, in principal (assumingωp >ma), better probes than Ap stars

since the product of the magnetic field and system size is larger (see Eq. 33). In particular, assuming B = 108 G, r⋆ = 109 cm,
α = β = −3, and a particle density of 1012 cm−3 at r⋆ (as for Ap stars), then a conversion feature may be observed down
to g ∼ 10−10GeV−1 at hard X-ray energies (assuming ma ∼ 10−5 eV and cold plasma). For much lower plasma densities of
∼ 108 cm−3 at r⋆, low mass particles may be detected down to g ∼ 3× 10−11GeV−1 in the soft X-ray band (around 0.1 keV
energies). UV observations may place interesting limits on light axions (ma < 10−6 eV) if the plasma densities in the objects’
magnetospheres is still lower, of order 106 cm−3 at r⋆. As in the X-ray binary case, the interesting resonance features are likely to
fall above the electron cyclotron frequencies making the predictions rather sensitive to the (unknown) plasma temperature. We do
not consider this specific case here. To conclude, this class of objects may, under favorable conditions, extend the particle phase
space accessible to us down to g∼ 3×10−11GeV−1. In cases where θ ≪ 90◦ and/or polarization measurements are impossible,
g-limits may be even higher and so the parameter space explored comparable to that accessible to CAST.
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FIG. 18.— Left: A few examples for the predicted spectral feature from X-ray binaries assuming ma = 10−5 eV and g = 10−9 GeV−1, and for several values
of the density denoted next to each curve. Clearly, an observable feature is expected which may be narrow (in case the particle density is high) or broad (for low
plasma densities). Right: The spectral predictions assuming cold (black curves) or hot, 1 keV plasma (red line), and for two values for θ (see legend). Due to the
higher magnetic field and density values compared to the quasar case, the features are not as strongly affected by the plasma temperature as in the quasar case.
That said, higher densities are more sensitive to temperature and photon angles since the resonance feature in this case is pushed to higher energies where these
effects are more pronounced (see Fig. 5c).

constraints, although these objects are unlikely to considerably extend the phase space available to us.
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picture), implying considerable magnetic energy stored in the volume around the star. Typical sizes of such stars are typical of
ordinary A stars; i.e., of order 1011 cm. The plasma density around those stars is however less secure: it is known that such stars
shed winds extending to large radii yet the mass loss rate is somewhat uncertain. Here we take a fiducial value for the mass loss
rate of 10−7M⊙ yr−1 which translates to a mean particle volume density of ∼ 1012 cm−3 (we neglect the possibility of clumpy
plasma in this analysis). We have experimented with several density profiles for which −3 < β < −2 and the results remain
qualitatively similar: Ap stars cannot be used to probe photon-particle oscillations if the coupling constant g < 10−7GeV−1. (A
small fraction of Ap stars exhibits magnetic fields of order 105 G and allow to probe down to g ∼ 10−8GeV−1.) Furthermore,
due to the relatively high plasma densities in the stellar wind, the feature is expected to fall in the hard X-ray band, or even in
the γ-ray band, where the flux is negligible. Finite plasma temperatures only shift the feature to even higher energies making
the observations more challenging. Hence, limits on g obtained in this way are relatively uninteresting given the phase space
already probed by other means such as stellar ages and terrestrial experiments. We note that corroborative information may still
be valuable yet we choose to not explore this avenue any further in this work. Clearly, non-magnetic stars have much lower
magnetic fields resulting in even smaller conversion probabilities hence do not provide any advantage with respect to currently
available limits. We note that the limit of g= 10−10GeV−1 obtained from cooling timescale considerations for stars in globular
clusters are better than the spectroscopic limits since higher magnetic fields are encountered in the interiors of stars compared to
their surfaces.
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white dwarfs, called magnetic white dwarfs (mWD), has field intensities as high as 106−108 G (e.g., Kemp et al. 1970) and are
thought to evolve from Ap stars. Similar to Ap stars, the field configuration in those objects is thought to be dipolar. Magnetic
cataclysmic variables, (mCV), are systems in which the magnetic white dwarf is thought to be a part of a binary system, and also
exhibit magnetic fields of order 108 G (e.g., Tapia 1977). The density of the plasma in the magnetospheres of these objects and
its radial dependence are poorly known and we shall assume, as before, that the plasma follows the magnetic field.
If mCVs and mWDs are descendent of Ap stars then they provide, in principal (assumingωp >ma), better probes than Ap stars

since the product of the magnetic field and system size is larger (see Eq. 33). In particular, assuming B = 108 G, r⋆ = 109 cm,
α = β = −3, and a particle density of 1012 cm−3 at r⋆ (as for Ap stars), then a conversion feature may be observed down
to g ∼ 10−10GeV−1 at hard X-ray energies (assuming ma ∼ 10−5 eV and cold plasma). For much lower plasma densities of
∼ 108 cm−3 at r⋆, low mass particles may be detected down to g ∼ 3× 10−11GeV−1 in the soft X-ray band (around 0.1 keV
energies). UV observations may place interesting limits on light axions (ma < 10−6 eV) if the plasma densities in the objects’
magnetospheres is still lower, of order 106 cm−3 at r⋆. As in the X-ray binary case, the interesting resonance features are likely to
fall above the electron cyclotron frequencies making the predictions rather sensitive to the (unknown) plasma temperature. We do
not consider this specific case here. To conclude, this class of objects may, under favorable conditions, extend the particle phase
space accessible to us down to g∼ 3×10−11GeV−1. In cases where θ ≪ 90◦ and/or polarization measurements are impossible,
g-limits may be even higher and so the parameter space explored comparable to that accessible to CAST.
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FIG. 18.— Left: A few examples for the predicted spectral feature from X-ray binaries assuming ma = 10−5 eV and g = 10−9 GeV−1, and for several values
of the density denoted next to each curve. Clearly, an observable feature is expected which may be narrow (in case the particle density is high) or broad (for low
plasma densities). Right: The spectral predictions assuming cold (black curves) or hot, 1 keV plasma (red line), and for two values for θ (see legend). Due to the
higher magnetic field and density values compared to the quasar case, the features are not as strongly affected by the plasma temperature as in the quasar case.
That said, higher densities are more sensitive to temperature and photon angles since the resonance feature in this case is pushed to higher energies where these
effects are more pronounced (see Fig. 5c).
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their surface with approximately dipolar configurations (see howeverBreithwhite 2008 for possible deviations from this simplified
picture), implying considerable magnetic energy stored in the volume around the star. Typical sizes of such stars are typical of
ordinary A stars; i.e., of order 1011 cm. The plasma density around those stars is however less secure: it is known that such stars
shed winds extending to large radii yet the mass loss rate is somewhat uncertain. Here we take a fiducial value for the mass loss
rate of 10−7M⊙ yr−1 which translates to a mean particle volume density of ∼ 1012 cm−3 (we neglect the possibility of clumpy
plasma in this analysis). We have experimented with several density profiles for which −3 < β < −2 and the results remain
qualitatively similar: Ap stars cannot be used to probe photon-particle oscillations if the coupling constant g < 10−7GeV−1. (A
small fraction of Ap stars exhibits magnetic fields of order 105 G and allow to probe down to g ∼ 10−8GeV−1.) Furthermore,
due to the relatively high plasma densities in the stellar wind, the feature is expected to fall in the hard X-ray band, or even in
the γ-ray band, where the flux is negligible. Finite plasma temperatures only shift the feature to even higher energies making
the observations more challenging. Hence, limits on g obtained in this way are relatively uninteresting given the phase space
already probed by other means such as stellar ages and terrestrial experiments. We note that corroborative information may still
be valuable yet we choose to not explore this avenue any further in this work. Clearly, non-magnetic stars have much lower
magnetic fields resulting in even smaller conversion probabilities hence do not provide any advantage with respect to currently
available limits. We note that the limit of g= 10−10GeV−1 obtained from cooling timescale considerations for stars in globular
clusters are better than the spectroscopic limits since higher magnetic fields are encountered in the interiors of stars compared to
their surfaces.
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White dwarfs (WD) are the final evolutionary phase of most (not too massive) stars. Their size is of order 109 cm and most

objects have magnetic field intensities in the range 103−106 G (e.g., Putney 1999 and references therein). A sub-population of
white dwarfs, called magnetic white dwarfs (mWD), has field intensities as high as 106−108 G (e.g., Kemp et al. 1970) and are
thought to evolve from Ap stars. Similar to Ap stars, the field configuration in those objects is thought to be dipolar. Magnetic
cataclysmic variables, (mCV), are systems in which the magnetic white dwarf is thought to be a part of a binary system, and also
exhibit magnetic fields of order 108 G (e.g., Tapia 1977). The density of the plasma in the magnetospheres of these objects and
its radial dependence are poorly known and we shall assume, as before, that the plasma follows the magnetic field.
If mCVs and mWDs are descendent of Ap stars then they provide, in principal (assumingωp >ma), better probes than Ap stars

since the product of the magnetic field and system size is larger (see Eq. 33). In particular, assuming B = 108 G, r⋆ = 109 cm,
α = β = −3, and a particle density of 1012 cm−3 at r⋆ (as for Ap stars), then a conversion feature may be observed down
to g ∼ 10−10GeV−1 at hard X-ray energies (assuming ma ∼ 10−5 eV and cold plasma). For much lower plasma densities of
∼ 108 cm−3 at r⋆, low mass particles may be detected down to g ∼ 3× 10−11GeV−1 in the soft X-ray band (around 0.1 keV
energies). UV observations may place interesting limits on light axions (ma < 10−6 eV) if the plasma densities in the objects’
magnetospheres is still lower, of order 106 cm−3 at r⋆. As in the X-ray binary case, the interesting resonance features are likely to
fall above the electron cyclotron frequencies making the predictions rather sensitive to the (unknown) plasma temperature. We do
not consider this specific case here. To conclude, this class of objects may, under favorable conditions, extend the particle phase
space accessible to us down to g∼ 3×10−11GeV−1. In cases where θ ≪ 90◦ and/or polarization measurements are impossible,
g-limits may be even higher and so the parameter space explored comparable to that accessible to CAST.

ex.: X-ray binary “conversion dips” 
different densities and temperatures

certainly deserves further studies, especially 
if puzzling features were to be observed!

path-length, coupling



3. COMPACT OBJECTS… ALSO 
PROBE DENSE MATTER!



EOS OF EXTREME MATTER

The QCD phase diagram is poorly known: no way to probe 
the high density regime (notably the “cold” one) in the lab!

the EOS P=P(ρ) is an ex. of poorly known observable

Andreas Schmitt,

“Dense matter in compact stars 
- A pedagogical introduction”  

Springer

“what happens to matter if you squeeze it more and more?”

2 1 Introduction

liq

T

µ

gas

QGP

CFL

nuclear
superfluid

heavy ion
collider

neutron star

non−CFL
hadronic

Fig. 1.1 Conjectured phase diagram of QCD in the plane of quark chemical potential µ and tem-
perature T . While matter at low density and high temperature is probed in heavy-ion collisions,
cold and dense matter can only be found in neutron stars (compact stars). We may find (superfluid)
nuclear matter and/or deconfined quark matter inside a star. Deconfined quark matter is, at high
temperatures, termed quark-gluon plasma (QGP) and is, at low temperatures, expected to be in a
color-superconducting state, here labelled by CFL (color-flavor locking), discussed in Sec. 4.2, and
non-CFL (some color superconductor other than CFL).

If we now go to lower temperatures and densities we have to cross a large un-
known territory. Only at small temperatures and densities, when we are deep in the
hadronic phase we have reached an area which again is under control, at least to
some extent. Theoretically, it is more complicated than the perturbatively treatable
asymptotic regions. After all, hadrons are quite complicated objects once we try to
describe them in terms of their constituents. However, we can use effective descrip-
tions which can be supported, confirmed, and improved by experiments in the lab.
Furthermore, at least for vanishing chemical potentials, we can perform brute-force
QCD calculations on the computer which gives us solid theoretical knowledge for
certain quantities (at nonvanishing chemical potentials these calculations are prob-
lematic due to the so-called sign problem).
We thus see that compact stars (as well as the quark-gluon plasma created in

heavy-ion collisions) reside in a region of the phase diagram which is hard to ac-
cess. More positively speaking, this region is interesting and challenging because
exciting and unknown physics may be discovered and new theoretical tools may
need to be developed. Or, in other words, the cold and dense matter we talk about
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 J. M. Lattimer and M. Prakash, “The Equation of State of 
Hot, Dense Matter and Neutron Stars,” Phys. Rept. 621, 

127 (2016) [1512.07820]

P=P(ρ) can be constrained in astrophysics via the mass-
radius relation, since it allows one to close the system 



MASS-RADIUS RELATION
A number of observables have been proposed to determine masses & radii of NSs, with the latter 
usually more challenging. Some handles relying on (current or future) X-ray observations are:

• Gravitational redshift of lines 

116 LI Zhao-Sheng / Chinese Astronomy and Astrophysics 35 (2015) 115–117

2. METHODS

Several methods to measure the mass and radius of NS are introduced as follows:

(1). The most straightforward way of determining the mass and radius ratio is by

measuring the gravitational redshift of spectral lines produced on the neutron star surface.

This observation puts very tight constraint on the mass-to-radius ratio, since, the redshift

can be expressed as z = 1−(1−2GM/Rc2)−1/2, where, M and R are the mass and radius of

a NS respectively, G is gravitational constant, c is the speed of light. Cottam et al. (2002)

[3] reported the detection of gravitation redshift with z = 0.35 in EXO 0748-676 during

its X-ray burst epochs. Unfortunately, this gravitational redshift wasn’t confirmed by the

following observations[4]. So, it needs to be checked by further powerful X-ray telescopes.

(2). In accreting induced X-ray pulsars, X-ray pulses are modulated by general rel-

ativistic light-bending effect, which depends on the compactness M/R, special relativistic

Doppler boosting and aberration. Modeling the X-ray pulse profile, the mass and radius can

be constrained. Here, lots of processes should be considered carefully, such as geometrical

factors and NS atmosphere emission[5].

(3). Almost of all LMXBs are transients in X-ray band. In accretion phase, LMXBs

behavior bright X-ray emission, most of energy emit outwards and small parts of energy

deposit in the inner crust of NS. When accretion terminated, the LMXB transit into quies-

cent state. The hotter inner crust radiate outwards as well as inwards. And then, its X-ray

spectrum is dominated by thermal X-ray emission, which is well fitted by nsatmo in Xspec

package. With the known distance to the source, e.g. in globular cluster, the mass and

radius are easy to obtained from high signal-to-noise X-ray spectra[6].

(4). Type I X-ray bursts, which is also known as Thermonuclear X-ray bursts, in

LMXBs are a sudden energy release process, which lasts tens to hundreds of seconds and

can emit as high as Eddington luminosity (∼ 3.79×1038 erg/s ). In the classical view, type I

X-ray bursts are powered by the unstable thermonuclear burning of H/He accreted on the NS

surface through its companion star Roche lobe overflowing. Most of the spectra of type I X-

ray bursts can be well fitted by a pure blackbody spectrum. Photospheric radius expansion

(PRE) bursts, a special case of type I X-ray bursts, were phenomenally distinguished from

the time-resolved spectra. At the touchdown moment, where the blackbody temperature and

its normalization reach their local maximum and minimum during X-ray burst, respectively,

the referred bolometric luminosity corresponds to its Eddington luminosity, that is, the

radiation pressure is balanced by gravity. After the touchdown point, the residual thermal

energy is believed to cool on the whole surface of the NS during the burst tail. So, the

mass and radius of the NS could be constrained if the distance to the source was measured

independently, i.e., also in globular clusters [7].

L = 4⇡R2�T 4• linked to Stefan-Boltzmann blackbody formula 
(or modifs., provided it applies!) 

• modulation of X-ray pulses in accreting systems via GR effects

• …

8 Özel

Figure 1. Four complementary methods to determine the mass and radius of a

neutron star. The contours on the mass-radius plane of neutron stars imposed by the mea-

surement of (i) the Eddington flux during photospheric radius expansion bursts (blue), (ii) the

ratio Fcool/T 4
c of the surface emission that asymptotes to a constant during the cooling tail of

a thermonuclear burst (green), (iii) the redshift of atomic absorption lines observed during the

burst (red), and (iv) the broadening of such lines due to the rotation of the star (magenta) for

a hypothetical star with M = 1.8M⊙ and R = 10 km. The second quantity, obtained from

the thermal flux Fcool and the color temperature Tc of the burst spectrum, is closely related to

the total emitting area from the stellar surface when the nuclear burst has engulfed the entire

star. The widths of the contours correspond to a hypothetical 10% uncertainty in each measure-

ment. The uncertainty in the redshift measurement can be negligible if a grating spectrometer

is used, as in the case of EXO 0748−676. The black shaded area is the intersection of the four

contours and corresponds to the uncertainty in the measurement of the true mass and radius of

the neutron star.

 F. Ozel,
 astro-ph/0605106

24 2 Mass and radius of the star
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Fig. 2.2 Mass-radius plot from Ref. [12] which shows the dependence of the mass-radius curve
on the (uncertain) parameters of the quark matter equation of state in a hybrid star. We see that
reasonable choices of the parameters lead to similar curves as for nuclear matter (here with the
APR equation of state). In this plot, the transition density ρc (in units of the nuclear ground state
density n0) between quark matter and nuclear matter has been used as a parameter, rather than
the bag constant. From our discussion it is clear that one can be translated into the other. The
coefficient c describes QCD corrections to the quark Fermi momentum and thus to the µ4 term in
the pressure, see Eq. (2.77).
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Fig. 2.3 Mass-radius plot from Ref. [13]. A comparison of a neutron star, different hybrid stars,
and a quark star is shown, using several nuclear equations of state (DBHF, APR, HHJ) and several
quark phases (CFL, 2SC). For more details and explanations of the various abbreviations, see Ref.
[13].

to take into account other observables which are linked to the microscopic physics.
While the equation of state is a bulk property, i.e., it is determined by the whole
Fermi sea, there are other phenomena which are only sensitive to the low-energy

M. Alford et al. 
astro-ph/0606524



COOLING

C. O. Heinke and W. C. G. Ho, “Direct Observation of 
the Cooling of the Cassiopeia A Neutron Star,’'  ApJ 

719, L167 (2010)  [1007.4719]

Alternative diagnostics exploit cooling of NS

 D. Page, M. Prakash, J. M. Lattimer and A. W. Steiner, 
“Rapid Cooling of the Neutron Star in Cassiopeia A 

Triggered by Neutron Superfluidity in Dense Matter,’'  
PRL 106, 081101 (2011) [1011.6142]; See also 

“Stellar Superfluids,” [1302.6626]
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Prospects of Detecting Baryon and Quark Superfluidity from Cooling Neutron Stars

Dany Page1, Madappa Prakash2, James M. Lattimer2, and Andrew Steiner2
1Instituto de Astronomı́a, UNAM, Mexico D.F. 04510, Mexico

2Department of Physics & Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3800, USA
(February 1, 2008)

Baryon and quark superfluidity in the cooling of neutron
stars are investigated. Observations could constrain combi-
nations of the neutron or Λ−hyperon pairing gaps and the
star’s mass. However, in a hybrid star with a mixed phase of
hadrons and quarks, quark gaps larger than a few tenths of
an MeV render quark matter virtually invisible for cooling. If
the quark gap is smaller, quark superfluidity could be impor-
tant, but its effects will be nearly impossible to distinguish
from those of other baryonic constituents.

PACS number(s): 97.60.Jd. 21.65.+f, 95.30.q

Pairing is unavoidable in a degenerate Fermi liquid if
there is an attractive interaction in any channel. The
resulting superfluidity, and in the case of charged par-
ticles, superconductivity, in neutron star interiors has a
major effect on the star’s thermal evolution through sup-
pressions of neutrino (ν) emission processes and specific
heats [1,2]. Neutron (n), proton (p) and Λ-hyperon su-
perfluidity in the 1S0 channel and n superfluidity in the
3P2 channel have been shown to occur with gaps of a few
MeV or less [3,4]. However, the density ranges in which
gaps occur remain uncertain. At large baryon densities
for which perturbative QCD applies, pairing gaps for like
quarks have been estimated to be a few MeV [5]. How-
ever, the pairing gaps of unlike quarks (ud, us, and ds)
have been suggested to be several tens to hundreds of
MeV through non-perturbative studies [6] kindling inter-
est in quark superfluidity and superconductivity [7,8] and
their effects on neutron stars.

The cooling of a young (age < 105 yr) neutron star is
mainly governed by ν−emission processes and the specific
heat [2]. Due to the extremely high thermal conductivity
of electrons, a neutron star becomes nearly isothermal
within a time tw ≈ 1−100 years after its birth, depending
upon the thickness of the crust [9]. After this time its
thermal evolution is controlled by energy balance:

dEth

dt
= CV

dT

dt
= −Lγ − Lν + H , (1)

where Eth is the total thermal energy and CV is the spe-
cific heat. Lγ and Lν are the total luminosities of photons
from the hot surface and νs from the interior, respec-
tively. Possible internal heating sources, due, for exam-
ple, to the decay of the magnetic field or friction from
differential rotation, are included in H . Our cooling sim-
ulations were performed by solving the heat transport

and hydrostatic equations including general relativistic
effects (see [2]). The surface’s effective temperature Te

is much lower than the internal temperature T because
of a strong temperature gradient in the envelope. Above
the envelope lies the atmosphere where the emerging flux
is shaped into the observed spectrum from which Te can
be deduced. As a rule of thumb Te/106 K ≈

√

T/108 K,
but modifications due to magnetic fields and chemical
composition may occur.

The simplest possible ν emitting processes are the di-
rect Urca processes f1 + ℓ → f2 + νℓ , f2 → f1 + ℓ + νℓ,
where f1 and f2 are either baryons or quarks and ℓ is
either an electron or a muon. These processes can oc-
cur whenever momentum conservation is satisfied among
f1, f2 and ℓ (within minutes of birth, the ν chemical po-
tential vanishes). If the unsuppressed direct Urca process
for any component occurs, a neutron star will rapidly
cool because of enhanced emission: the star’s interior
temperature T will drop below 109 K in minutes and
reach 107 K in about a hundred years. Te will hence
drop to less than 300,000 K after the crustal diffusion
time tw [1,9,10]. This is the so-called rapid cooling
paradigm. If no direct Urca processes are allowed, or they
are all suppressed, cooling instead proceeds through the
significantly less rapid modified Urca process in which
an additional fermion enables momentum conservation.
This situation could occur if no hyperons are present,
or the nuclear symmetry energy has a weak density de-
pendence [11,12]. The ν emisssion rates for the nucleon,
hyperon, and quark Urca and modified Urca processes
can be found in [13].

The effect of the pairing gaps on the emissivities and
specific heats for massive baryons are investigated in [14]
and are here generalized to the case of quarks. The prin-
cipal effects are severe suppressions of both the emissivity
and specific heat when T << ∆, where ∆ is the pairing
gap. In a system in which several superfluid species exist
the most relevant gap for these suppressions is the small-
est one. The specific heat suppression is never complete,
however, because leptons remain unpaired. Below the
critical temperature Tc, pairs may recombine, resulting
in the emission of νν̄ pairs with a rate that exceeds the
modified Urca rate below 1010 K [15]; these processes are
included in our calculations.

The baryon and quark pairing gaps we adopt are shown
in Fig. 1. Note that gaps are functions of Fermi momenta
(pF (i), i denoting the species) which translates into a
density dependence. For pF (n, p)

∼
< 200 − 300 MeV/c,

1

very fast one observed for Cas A! (Chandra data) 

3

increases Te0 and reduces β compared to the case of heavy
elements, e.g., Fe, depending on the total mass ∆Mlight

of light elements [23].
Using Eq. (7), the slope s = d log10 Te/d log10 t of the

transit cooling curve from Eq. (4) is

s = β
d log10 T

d log10 t
= −

β

6

f t/tC
1 + f(t− tC)/tC

, (8)

whereas the slopes of the asymptotic trajectories,
Eqs. (2) and (6), are both s = −β/6 ∼ −1/12. As long as
t is only slightly larger than tC , the transit slope is larger
than those of the asymptotic trajectories by a factor ∼ f .
The observed slope over a 10 yr interval is sobs ≃ −1.4.
Note, however, that the model ”0.5” of Fig. 1 does not
exhibit such a large slope. We are thus led to investigate
the origin of the rapidity of Cas A’s cooling.
Several factors influence the rapidity of the transit

phase. Firstly, LPBF depends on the shape of the Tcn(ρ)
curve. A weak ρ dependence, i.e., a wide Tcn(ρ) curve,
results in a thicker PBF neutrino emitting shell and a
larger LPBF than a strong ρ dependence. Secondly, the
T dependence of Te, i.e., the parameter β in Eq. (7),
also affects the slope in Eq. (8). Thirdly, protons in the
core will likely exhibit superconductivity in the 1S0 chan-
nel. Most calculations of the proton critical temperature,
Tcp(ρ), are larger than Tcn(ρ) at low densities. Proton
superconductivity suppresses the MU process in a large
volume of the core at a very early age, reducing LMU

[24]. In our analytical model, this reduction translates
to a lower L9 and, hence, to a larger f . The analyti-
cal model as well as our calculations reveal that proton
superconductivity significantly accelerates cooling during
transit and results in a large slope. This feature, essen-
tial to account for Cas A’s cooling rate, is illustrated in
the right panel of Fig. 2.
By varying the relevant physical ingredients, such as

the density range of proton 1S0 superconductivity, the
shape of the Tcn(ρ) curve, the chemical composition of
the envelope, and the star’s mass, many models can re-
produce the average observed Te of Cas A. These models
yield slopes ranging from ∼ −0.1 (no rapid cooling and
no constraint on TC) up to −2. A typical good fit to
the rapid cooling of Cas A is shown in Fig. 3, where the
large slope results from the strong suppression of LMU by
extensive proton superconductivity. Fig. 4 demonstrates
that the result TC ≃ 0.5× 109 K does not depend on the
star’s mass, but that the slope during the transit is very
sensitive to the extent of proton superconductivity. Mod-
els successful in reproducing the observed slope require
superconducting protons in the entire core. Although
spectral fits [5] seem to indicate that Cas A has a larger
than canonical mass (1.4 M⊙), a recent analysis [6] in-
dicates compatibility, to within 3σ, with a smaller mass,
1.25 M⊙. The need for extensive proton superconductiv-
ity to reproduce the large observed slope favors moderate
masses unless superconductivity extends to much higher

CT  = 10  K
T  = 0CCT  = 5.5x10  K8

9

FIG. 3. A typical good fit to Cas A’s rapid cooling for a
1.4M⊙ star, built from the EOS of APR [20] with an envelope
mass ∆Mlight = 5 × 10−13M⊙. The two dotted curves, with
indicated values of TC , are to guide the eye. The three models
have a proton 1S0 gap from [25] (the model “CCDK” in [14])
which results in the entire core being superconducting. The
insert shows a comparison of our results with the five data
points of [7] along with their 1σ errors.

densities than current models predict (see, e.g., Fig 9 in
[14] for a large sample of current models).

The inferred TC ≃ 0.5 × 109 K, either from Figs. 1,
3, and 4 or from Eq. (3), appears quite robust
and stems from the small exponent in the relation
TC ∝ (C9L

−1
9 t−1

C )1/6. Assuming L9 is not very strongly
affected by proton superconductivity, TC is mostly de-
termined by tC which, given the briefness of the rapid
cooling transit phase, cannot be much smaller than the
age of Cas A. On the other hand, the rapidity of the
cooling, i.e., the slope s, is predominantly controlled by
proton superconductivity reflected in the suppression of
LMU. We note, however, that if the proton 1S0 gap ex-
tends to much higher densities than current theoretical
models indicate, suppression of LMU could be larger than
considered here. This suppression can be up to a factor
∼ 50; thus, TC could almost reach 109 K [26].

Although we have assumed the minimal cooling
paradigm [14], our results remain valid in case some fast
ν process is allowed. Any of these processes is so efficient
that the high observed T∞

e of Cas A implies that it has
been strongly suppressed at a very young age (likely by
pairing of one of the participating particles) and rendered
inoperative [11]. In such a case, Lν , prior to the onset
of the neutron 3P2 phase transition, was dominated by
the MU and nucleon bremsstrahlung processes, exactly
as in the minimal cooling paradigm, and the results of
our present analysis are not altered.

Our value of TC deduced from Cas A’s cooling is com-
patible with the requirement TC

>
∼ 0.5 × 109 K inferred

from the minimal cooling paradigm described in [19].

3
2

S1
0

P3
2

S1
0P3

2

C
o

n
tr

o
l 

fu
n

ct
io

n
 R

ν

T/Tc T/Tc

1.0

0.5

0.0

1

2

3

p n

2.43
2.19

0.2 0.4 0.6 0.8 1.0
0

0.2 0.4 0.6 0.8 1.0

Specific Heat

C
o

n
tr

o
l 

fu
n

ct
io

n
 R

Neutrino Emission

C

S1
0 P

Figure 13: Control functions for neutrino emission from the modified Urca pro-
cess (as, e.g., n+n ! n+n+⌫⌫) (left panel) and the specific heat (right panel),
in the presence of 1S

0

pairing and 3P
2

in the B phase (see Eq. (29)), from the
analytical fits of [31] and [70].

The e↵ect C, neutrino emission from the formation and breaking of Cooper
pairs [71, 72], can be interpreted as an inter-band transition (as, e.g., n !
n + ⌫⌫) where a neutron/proton quasiparticle from the upper (+) branch of
the spectrum of Eq. (33) falls into a hole in the lower (�) branch. Such a
reaction is kinematically forbidden by the excitation spectrum of the normal
phase, Eq. (20), but becomes possible in the presence of an energy-gap, Eq. (33).
This process is described in more detail in Sec. 6.6. The resulting emissivity
can be significantly larger than that of the modified Urca process (as, e.g.,
n+ n ! n+ n+ ⌫⌫) in the case of spin-triplet pairing.

5 Superfluidity in Dense Quark Matter

The central densities of neutron stars can exceed the nuclear density ⇢
nuc

⇠
2.7 ⇥ 1014 g cm�3 by significant amounts. At su�ciently high densities, a de-
scription of neutron star interiors in terms of nucleons becomes untenable and
sub-nucleonic degrees of freedom, namely quarks, must be invoked. Interac-
tions between quarks is fundamentally grounded in Quantum Chromodynamics
(QCD), the theory of strong nuclear interactions. The theory has a gauge sym-
metry based on the Lie group SU(3), and the associated charge is referred to
as “color”. QCD is asymptotically free: interactions between quarks mediated
by gluons become weak at short distances, or equivalently, high densities. At
low densities, strong interactions “confine” quarks into neutrons and protons
which are color neutral. Asymptotic freedom guarantees that, at some large
density, the ground state of zero-temperature matter will consist of nearly-free,
“deconfined” quarks [73].

QCD has been amply tested by experiments at high energies where asymp-
totic freedom has been confirmed [74]. Lattice-gauge calculations of hadron

25

most likely cause: recent transition 
of inner NS to a superfluid phase!



4. GRAVITY



TESTING GRAVITY IN NEW REGIMES

Gravity Parameter Space 5

10-62  
 10-58  
 10-54  
 10-50  
 10-46  
 10-42  
 10-38  
 10-34  
 10-30  
 10-26  
 10-22  
 10-18  
 10-14  
 10-10

Cu
rv

at
ur

e,
 ξ

  (
cm

-2
)

10-12  10-10  10-8  10-6  10-4  10-2  100

Potential, ε

BBN

Lambda

 Last scattering

 WD
 MS

 PSRs

 NS

 Clusters Galaxies

 MW

 M87
S stars

R

M
SS

BH

 SMBH

P(k)| z=0
 Accn.
 scale

 Satellite

CMB peaks

Fig. 1.— A parameter space for gravitational fields, showing the regimes probed by a wide range of astrophysical and cosmological
systems. The axes variables are explained in §2 and individual curves are detailed in §3. Some of the label abbreviations are: SS = planets
of the Solar System, MS = Main Sequence stars, WD = white dwarfs, PSRs = binary pulsars, NS = individual neutron stars, BH = stellar
mass black holes, MW = the Milky Way, SMBH = supermassive black holes, BBN = Big Bang Nucleosynthesis.

in Fig. 1 (orange, dashed). Systems below-left of this
acceleration scale cannot be modelled without adding a
contribution to the gravitational field from unseen mat-
ter. This region of the parameter space is then prob-
lematic12 for testing gravity theories, since here there
is a degeneracy between two uncertain components of a
cosmological model: dark matter and an e↵ective dark
energy (which could be due to real fields or corrections
to General Relativity).
One final trend is worth noting before we move on to

describing specific systems. The gravitational field inside

12 But not impossibly so, due to the di↵erent properties of dark
energy and dark matter.

an isothermal sphere with a density profile

⇢(r) = ⇢
0

⇣r
0

r

⌘
2

(19)

corresponds to a vertical line on the parameter space,
since the potential (x-axis) parameter

✏
iso

=
GM(< r)

rc2
(20)

=
G⇢

0

rc2

Z r

0

4⇡
⇣r

0

r̃

⌘
2

r̃2dr̃

=
4⇡G⇢

0

r2
0

c2
(21)

T. Baker, D. Psaltis, C. Skordis,
“Linking Tests of Gravity On All Scales: from 

the Strong-Field Regime to Cosmology,''
  ApJ 802, 63 (2015)1412.3455 

No high precision GR tests,  apart for specific 
conditions: Is GR altered for conditions very far 
away from solar system ones, for instance?

• Quasi-periodic oscillations of X-ray flux  

• relativistically broadened Fe-lines, 

• thermal emission from the innermost regions 
of the accretion disks 

have all been proposed for such diagnostics, e.g. 
testing that BH are described by Kerr solution

 C. Bambi and E. Barausse, “Constraining the 
quadrupole moment of stellar-mass black-hole 
candidates with the continuum fitting method,’'  

ApJ 731, 121 (2011) [1012.2007]

  T. Johannsen and D. Psaltis,   “Testing the No-Hair 
Theorem with Observations in the Electromagnetic 
Spectrum. IV. Relativistically Broadened Iron Lines,’'   

ApJ 773, 57 (2013) [1202.6069]



FORECAST FOR LOFT/ATHENA+
T. Baker, D. Psaltis, C. Skordis,

“Linking Tests of Gravity On All Scales: from 
the Strong-Field Regime to Cosmology,''

  ApJ 802, 63 (2015)1412.3455

10 Baker et al.

10-62 
 10-59 
 10-56 
 10-53 
 10-50 
 10-47 
 10-44 
 10-41 
 10-38 
 10-35 
 10-32 
 10-29 
 10-26 
 10-23 
 10-20 
 10-17 
 10-14 
 10-11 

Cu
rv

at
ur

e,
 ξ

 (c
m

-2
 )

10-12  10-10  10-8  10-6  10-4  10-2  100

Potential, ε

 DETF4
 Facility

 BAO

 ELT S stars

  LOFT +
  Athena

     PPN 
constraints

  Tidal streams
     (GAIA)

 AdLIGO

 eLISA

 A
 P

 Atom

 Triple

 Inv. Sq.

 EHT

 Sgr A*

 M87

 Planck

PTA

Fig. 2.— The experimental version of the gravitational parameter space (axes the same as in Fig. 1). Curves are described in detail in
the text (§4). Some of the abbreviations in the figure are: PPN = Parameterized Post-Newtonian region, Inv. Sq. = laboratory tests of the
1/r2 behaviour of the gravitational force law, Atom = atom interferometry experiments to probe screening mechanisms, EHT = the Event
Horizon Telescope, ELT = the Extremely Large Telescope, DETF4 = a hypothetical ‘stage 4’ experiment according to the classification
scheme of the Dark Energy Task Force (Albrecht et al. 2006), Facility = a futuristic large radio telescope such as the Square Kilometre
Array.

4.1. Cosmology

Galaxy Surveys. In the lower section of the figure we
indicate the regions probed by two future galaxy clus-
tering surveys. In green we consider a next-generation
‘stage 4’ space-based survey of the kind envisaged by the
Dark Energy Task Force (Albrecht et al. 2006), labelled
DETF4. In blue, we consider a futuristic ‘Facility stage’
ground-based radio interferometer of the kind considered
by Bull et al. (2014), capable of mapping nearly the full
sky out to very high redshifts.
Each survey is delineated by two lines, whose separa-

tion is set by the survey redshift range. We used equa-
tions (11) and (15) to plot the minimum and maximum

k-values for each experiment, where the minimum k is
set by the size of the survey and the maximum k is
chosen to cut o↵ before nonlinearities become dominant
(the value chosen varies somewhat in the literature for
the di↵erent experiments). We have also plotted a point
of k ' 0.05 h Mpc�1, corresponding to the approximate
position of the turnover in the matter power spectrum.
The bent shape of these survey regions reflects the shape
of the matter power spectrum shown in Fig. 1 (cyan
curve). Table 1 shows the values used. In addition, we
have added a point to represent recent measurements of
the BAO feature (Anderson et al. 2014).
Although the extent of the parameter space probed

by cosmology is small, we stress that this is one of the

LOFT & Athena+  should be able to 
make these measurements for BH with 
masses from ∼ 5 M⊙ to >109 M⊙. 

1-10 Schwarzchild radii mark the 
boundary of the yellow box.

Distances greater than 10 RS 
become difficult to probe, 
because the relativistic 
broadening of the ∼ 6.5 keV Kα 
line cannot be disentangled from 
other astrophysical effects on its 
intrinsic width.



5. FULL CIRCLE, BACK TO 
COSMOLOGY



COSMOLOGY FROM FGAS IN CLUSTERS
Single cluster can be used to determine the fraction of mass 

in hot gas, whose z-evolution depends on cosmology!

S. W. Allen et al., “Improved constraints on dark energy from Chandra X-ray observations 
of the largest relaxed galaxy clusters,''  MNRAS 383, 879 (2008) [arXiv:0706.0033]

sometimes the observable mass, Mobs.) Complications associated with the signal–mass likelihood and with
redshift estimation are discussed below. As a starting point, consider a perfect tracer of mass, S = M , with
error-free redshifts, zest = z. Within a given survey, the expected number of halos, N̄ai, in a cell described
by mass bin a and redshift bin i with solid angle ∆Ω is

N̄(Ma, zi) ≡ N̄ai =
∆Ω

4π

∫ zi+1

zi

dz
dV

dz

∫ lnMa+1

lnMa

d lnM
dn

d lnM
. (7)

Cosmology enters this expression through the mass function and the volume element, dV/dz.
The counts in each large spatial bin will deviate from the mean by an excess number, b(Ma, zi)δ(x),

determined by the local large-scale density field, δ(x). Following Cunha, Huterer & Doré (2010), the spatial
covariance of the counts is

Ca
ij =

〈(

Nai − N̄ai

) (

Naj − N̄aj

)〉

= N̄aiN̄ajξ
a
ij , (8)

where ξaij describes the spatial correlation between mass-redshift bins,

ξaij =

∫

d3k

(2π)3
|Wi(k)Wj(k)| f (k ·∆x) baibaj Pm(k, z). (9)

Here, Wi is the window function for cell i (that, when present, can include the effects of redshift estimate
uncertainties) and f is a geometric term that depends on the comoving separation, ∆x, between cells i and
j. When cells i and j sample different redshifts, an accurate approximation uses their geometric mean to
evaluate Pm(k, z) (Cunha, Huterer & Doré 2010).

Combining the spatial clustering with a diagonal shot noise term forms the full covariance for a survey
sample. Derivatives of the mean counts and covariance with respect to model parameters form the Fisher
information matrix used in survey forecasts. Expressions for the Fisher matrix can be found in Hu & Cohn
(2006).

Equations (7) through (9) serve as the foundation of likelihood analysis of large cluster surveys. To
be useful in practice, these expressions must undergo a number of modifications, including: transformation
from mass to the signal used for cluster detection, p(S|M, z); inclusion of counting errors arising from
incompleteness (missed sources) and impurities (false sources); and inclusion of photometric uncertainties,
p(zest|z). We discuss these issues in Section 2.5 and summarize current results in Section 4.1.

2.2.2 BARYON FRACTION AS A STANDARD QUANTITY

The mass fraction of hot gas, fgas, measured within a characteristic radius of a halo at redshift z can be
written as

fgas(z) = Υ(z)

(

Ωb

Ωm

)

, (10)

where Υ(z) accounts for star formation and other baryon effects within that radius. At large radii in the
most massive halos, where the hot ICM dominates the baryon budget and the impacts of feedback processes
are modest, baryon losses are small and |1−Υ| <

∼ 0.1 is a reasonable expectation.
Motivated by the growing body of measurements of fgas from the ROSAT X-ray satellite, Sasaki (1996)

and Pen (1997) recognized that a mismatch in the dependence on metric distance, d, between gas mass
(∝ d5/2) and total mass (∝ d) measured from X-ray observations implied that gas fraction measurements in
massive clusters could be exploited as a distance estimator, with fgas(z) ∝ d(z)3/2. Like Type Ia supernovae,
massive clusters serve as standard calibration sources that test the expansion history of the universe. Key
benefits, relative to survey counts, are the ability to perform this test with a relatively small number of clusters
and the relative insensitivity to cluster selection. We summarize results from this exercise in Section 4.2.

2.2.3 DISTANCES FROM JOINT X-RAY AND SZ OBSERVATIONS

In a similar vein, Silk &White (1978) noted that X-ray and SZ measurements could be combined to determine
distances to clusters. The CMB spectral shift is governed by the Compton y-parameter, a measure of the
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and cover roughly 8000 deg2 of sky.
A primary challenge to cosmological analysis using such catalogs is the definition of robust mass proxies

that possess minimal and well-understood scatter across the full mass and redshift ranges of interest. Projec-
tion of filamentary structures and small groups along the line of sight has a greater impact on optical cluster
catalogs than X-ray, and these effects introduce a degree of skewness into the mass-observable relations
(Cohn et al. 2007). Uncertainty in modeling this and other selection effects currently limits the constraining
power offered by the large sample sizes of optical cluster catalogs.

3.2.3 SZ SURVEYS

The first large catalogs of galaxy clusters selected from observations of the SZ effect are currently under
construction, using measurements made with the South Pole Telescope (SPT; Vanderlinde et al. 2010; Carl-
strom et al. 2011), the Atacama Cosmology Telescope (ACT; Kosowsky 2006; Marriage et al. 2010) and the
Planck satellite (Bartlett et al. 2008; Planck Collaboration 2011a). The primary advantage of SZ surveys
is that, in contrast to X-ray and optical measurements, the SZ signal of a cluster does not undergo surface
brightness dimming. SZ surveys are therefore well-suited, in principle, to searches for massive clusters at
high redshifts. The surveys mentioned above are each expected to produce catalogs of hundreds of massive
systems at intermediate-to-high redshifts. Challenges for these projects include determining the optimal
observables (i.e. the best mass proxies) to measure from the survey data in the current, low signal-to-noise
ratio regime; calibrating the mass scaling for these observables; and understanding in detail the impact of
contamination by radio and infrared sources (Sehgal et al. 2010). Projection effects are also expected to be
more significant for SZ surveys than for X-rays (Shaw, Holder & Bode 2008).

3.3 Mass Measurements and Mass Proxies

3.3.1 X-RAY MASSES

Accurate measurements of cluster masses provide a cornerstone of cosmological work. X-ray mass measure-
ments are based on the assumption of hydrostatic equilibrium (HSE) in the ICM. For a spherically symmetric
system in HSE, the measured gas density and temperature profiles can be related to the total mass (e.g.
Sarazin 1988),

M(r) = −
r kT (r)

Gµmp

[

d lnn

d ln r
+

d lnT

d ln r

]

, (22)

where M(r) is the mass within radius r, T (r) is the ICM temperature, n(r) is the gas particle density, G
is Newton’s constant, k is the Boltzmann constant, and µmp is the mean molecular weight. Note that the
mass within radius r depends more strongly on the temperature than the density at that radius.

Hydrostatic equilibrium requires that the gravitational potential remain stationary on a sound crossing
time; that all motions in the gas be subsonic; and that forces other than gas pressure and gravity are
unimportant. The hydrostatic method can therefore not be applied robustly to systems undergoing major
merger events, nor to regions of otherwise relaxed clusters where these assumptions break down, e.g. in their
central regions where strong AGN feedback effects are commonly observed (Fabian et al. 2003; Forman et al.
2005; McNamara & Nulsen 2007).

Out to intermediate radii, measurements of the gas temperature and density profiles with Chandra or
XMM-Newton are straightforward. At large radii (r >

∼ r500), however, where the X-ray emission is faint, such
measurements become challenging. Recent advances in this regard have been made with the Suzaku satellite,
and opportunities for additional progress remain (Section 6.3). Potentially increased levels of non-thermal
pressure support (e.g. Nagai, Vikhlinin & Kravtsov 2007; Pfrommer et al. 2007; Mahdavi et al. 2008) and
gas clumping (Simionescu et al. 2011) can also complicate measurements at large radii.

A number of approaches have been used in implementing the hydrostatic method. The most common,
which employs relatively strong priors, uses parameterized fits to the observed, projected surface brightness
and temperature profiles; these are then used to calculate the appropriate partial derivatives at each radius
to determine the mass profile (e.g. Cavaliere & Fusco-Femiano 1976; Jones & Forman 1984; Pratt & Arnaud
2002; Vikhlinin et al. 2006). A second, arguably preferable, approach employs a non-parametric deprojection
of the brightness and temperature data, but assumes that the mass distribution follows a well-motivated
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COSMOLOGY FROM FGAS IN CLUSTERS
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Figure 9: Examples of cluster data used in recent cosmological work. Top: Measured mass functions of
clusters at low and high redshifts are compared with predictions of a flat, ΛCDM model and an open model
without dark energy (from Vikhlinin et al. 2009b). Bottom: fgas(z) measurements for relaxed clusters are
compared for a Ωm = 0.3, ΩΛ = 0.7, h = 0.7 model (left, consistent with the expectation of no evolution) and
a Ωm = 1.0, ΩΛ = 0.0, h = 0.5 model (right; from Allen et al. 2008). For purposes of illustration, cosmology-
dependent derived quantities are shown (mass and fgas); in practice, model predictions are compared with
cosmology-independent measurements.

cosmological models. In particular, an open universe with no dark energy clearly under-predicts the evolution
of the mass function over the redshift range of the data.

The optically selected maxBCG sample (Koester et al. 2007) employed by Rozo et al. (2010) probes a
different part of the cluster population; it is restricted to lower redshifts than the X-ray samples described
above (0.1 < z < 0.3), but extends to lower masses (M500 > 7 × 1013 M⊙). This lower effective mass limit,
which changes less strongly with redshift compared to X-ray surveys, makes the maxBCG sample significantly
larger than the others, with > 104 clusters divided into 9 bins based on optical richness. Mean masses for 5
richness ranges were estimated through a weak gravitational lensing analysis of stacked clusters, providing
information from which to constrain the richness–mass relation. The cosmological analysis accounts for the
covariance between cluster counts in each richness bin and the mean lensing mass estimates.

The results obtained by these three groups on flat ΛCDM and constant w models are summarized in
Table 2. Note that, for the two works which fit w models, the results on Ωm and σ8 are dominated by the
low-redshift data and so are not degraded noticeably by the introduction of w as a free parameter; thus all
three sets of constraints are directly comparable. The agreement between the different works, as well as
others listed in Table 2, is encouraging; in particular, the close agreement in the constraints on σ8 reflects
the relatively recent convergence in cluster mass estimates using different techniques, and our improved
understanding of the relevant systematics (Section 3.3; see also, e.g., Henry et al. 2009). Importantly, the
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Figure 9: Examples of cluster data used in recent cosmological work. Top: Measured mass functions of
clusters at low and high redshifts are compared with predictions of a flat, ΛCDM model and an open model
without dark energy (from Vikhlinin et al. 2009b). Bottom: fgas(z) measurements for relaxed clusters are
compared for a Ωm = 0.3, ΩΛ = 0.7, h = 0.7 model (left, consistent with the expectation of no evolution) and
a Ωm = 1.0, ΩΛ = 0.0, h = 0.5 model (right; from Allen et al. 2008). For purposes of illustration, cosmology-
dependent derived quantities are shown (mass and fgas); in practice, model predictions are compared with
cosmology-independent measurements.

cosmological models. In particular, an open universe with no dark energy clearly under-predicts the evolution
of the mass function over the redshift range of the data.

The optically selected maxBCG sample (Koester et al. 2007) employed by Rozo et al. (2010) probes a
different part of the cluster population; it is restricted to lower redshifts than the X-ray samples described
above (0.1 < z < 0.3), but extends to lower masses (M500 > 7 × 1013 M⊙). This lower effective mass limit,
which changes less strongly with redshift compared to X-ray surveys, makes the maxBCG sample significantly
larger than the others, with > 104 clusters divided into 9 bins based on optical richness. Mean masses for 5
richness ranges were estimated through a weak gravitational lensing analysis of stacked clusters, providing
information from which to constrain the richness–mass relation. The cosmological analysis accounts for the
covariance between cluster counts in each richness bin and the mean lensing mass estimates.

The results obtained by these three groups on flat ΛCDM and constant w models are summarized in
Table 2. Note that, for the two works which fit w models, the results on Ωm and σ8 are dominated by the
low-redshift data and so are not degraded noticeably by the introduction of w as a free parameter; thus all
three sets of constraints are directly comparable. The agreement between the different works, as well as
others listed in Table 2, is encouraging; in particular, the close agreement in the constraints on σ8 reflects
the relatively recent convergence in cluster mass estimates using different techniques, and our improved
understanding of the relevant systematics (Section 3.3; see also, e.g., Henry et al. 2009). Importantly, the
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clusters at low and high redshifts are compared with predictions of a flat, ΛCDM model and an open model
without dark energy (from Vikhlinin et al. 2009b). Bottom: fgas(z) measurements for relaxed clusters are
compared for a Ωm = 0.3, ΩΛ = 0.7, h = 0.7 model (left, consistent with the expectation of no evolution) and
a Ωm = 1.0, ΩΛ = 0.0, h = 0.5 model (right; from Allen et al. 2008). For purposes of illustration, cosmology-
dependent derived quantities are shown (mass and fgas); in practice, model predictions are compared with
cosmology-independent measurements.

cosmological models. In particular, an open universe with no dark energy clearly under-predicts the evolution
of the mass function over the redshift range of the data.

The optically selected maxBCG sample (Koester et al. 2007) employed by Rozo et al. (2010) probes a
different part of the cluster population; it is restricted to lower redshifts than the X-ray samples described
above (0.1 < z < 0.3), but extends to lower masses (M500 > 7 × 1013 M⊙). This lower effective mass limit,
which changes less strongly with redshift compared to X-ray surveys, makes the maxBCG sample significantly
larger than the others, with > 104 clusters divided into 9 bins based on optical richness. Mean masses for 5
richness ranges were estimated through a weak gravitational lensing analysis of stacked clusters, providing
information from which to constrain the richness–mass relation. The cosmological analysis accounts for the
covariance between cluster counts in each richness bin and the mean lensing mass estimates.

The results obtained by these three groups on flat ΛCDM and constant w models are summarized in
Table 2. Note that, for the two works which fit w models, the results on Ωm and σ8 are dominated by the
low-redshift data and so are not degraded noticeably by the introduction of w as a free parameter; thus all
three sets of constraints are directly comparable. The agreement between the different works, as well as
others listed in Table 2, is encouraging; in particular, the close agreement in the constraints on σ8 reflects
the relatively recent convergence in cluster mass estimates using different techniques, and our improved
understanding of the relevant systematics (Section 3.3; see also, e.g., Henry et al. 2009). Importantly, the
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X-RAY CLUSTER SURVEYS & COSMOLOGY
Essentially from endpoint of the halo mass function

 S. W. Allen, A. E. Evrard and A. B. Mantz, “Cosmological Parameters from Observations of Galaxy 
Clusters,”  Ann. Rev. Astron.  Astrophys. 49, 409 (2011) [arXiv:1103.4829]

a mass function accurate to ∼30% across the suite of models.
A recent study by Tinker et al. (2008) employs 22 large (N ∼ 109) simulations produced with three

independent N-body codes to calibrate a functional form motivated by Sheth & Tormen (1999),

f(σ) = A

[

(σ

b

)−a
+ 1

]

e−c/σ2

. (13)

This study was the first to open the density threshold degree of freedom; their fitting parameters are published
as functions of ∆ (against ρ̄m(z)) for ∆ ∈ [200, 3200]. With the high statistical power of their simulation
ensemble, Tinker et al. (2008) achieve a fit with 5% statistical precision in halo number at z = 0 for a
ΛCDM cosmology. Maintaining this precision for redshifts z ≤ 2.5 requires the introduction of mild redshift
dependence into the fit parameters, A(z), a(z) and b(z). The theoretically expected halo counts above masses
M200 = 1014 and 1015 M⊙ in the reference ΛCDM cosmology, shown in Figure 1, are based on the Tinker
form for threshold ∆ = 200 against the mean mass density (see fitting formulae in Mortonson, Hu & Huterer
2011).

On the other hand, the bias function measured in the same simulation ensemble shows no need for
such redshift-dependent corrections. Framed in terms of the normalized linear perturbation amplitude,
ν∝σ(M)−1, Tinker et al. (2010) find a robust fit of the form

b(ν) = 1−D
νd

νd + δdc
+ Eνe + Fνf , (14)

with a single set of parameters {d, e, f,D,E, F} that are written only as functions of ∆. For the case ν = 3
(i.e., 3σ peaks), the value of the bias is large, b ∼ 6, for ∆ = 200. The cluster power spectrum, Equation 4,
can be enhanced by factors of several tens over the mass power spectrum.

The very massive end of the FOF mass function was recently revised by Crocce et al. (2010) using 20483-
particle simulations in ΛCDM cubic volumes up to 7680 h−1Mpc in scale. Above 1015 h−1 M⊙, their fit lies
up to 30% above prior calibrations (Jenkins et al. 2001; Warren et al. 2006).

2.3.3 INTERNAL HALO STRUCTURE

Gravitational relaxation drives the phase-space structure of halos to a common structure that applies from
small galactic satellites to the most massive galaxy clusters. The form of the radial density,

ρ(r) =
ρcr(z)Ac

(r/rs) (1 + r/rs)
2 , (15)

is known as the Navarro-Frenk-White (NFW) profile (Navarro, Frenk & White 1995). Here, rs is the scale
radius, c is the concentration parameter (with c = r200/rs) and Ac = 200c3/3 [ln(1 + c)− c/(1 + c)].

Simulations show that concentration and mass are weakly correlated. In the mass range of galaxies to
clusters, c ∝ M−ζ, with ζ ∼ 0.14 at z = 0 and ζ → 0 at z >

∼ 3 (e.g., Gao et al. 2008). That study finds that
a fixed concentration, c ∼ 4 ± 1, applies in the mean to high mass halos, independent of redshift. Tracking
the mass accretion histories of halos in simulations, Wechsler et al. (2002) find a common functional form,
and show that the formation epoch correlates strongly with concentration. The concentration–mass relation
can be understood as a result of adiabatic contraction of differently-shaped peaks in the linear density field
(Dalal, Lithwick & Kuhlen 2010).

2.4 From Halos to Clusters: Mass Proxies, Scaling Relations and Projection
Effects

Cluster cosmology originates from phenomena observed on the sky, in the 2+1 space of angular coordinates
and redshift. The observables employed for a likelihood analysis must be predicted under a set of combined
cosmological and astrophysical parameters, {θ,α}. For constraints based on cluster counts, the mass func-
tion, n(M, z), written in terms of spherical overdensity or percolation measures from simulations needs to be
translated into a signal function, n(S, z), for one or more signals, Si. We use the terms signal and observable
interchangeably, and generically they refer to bulk measures at mm (SZ decrement Y ), optical (richness,

13

2.1.1 HALO MODEL DESCRIPTION OF LSS

Astrophysical structures, from the first stars at high redshift to galaxy clusters at low redshift, tend to emerge
from local maxima of the filtered density field. While density peaks are generally non-spherical (Bardeen
et al. 1986), a first-order description considers them spherical and isolated from their surroundings. Birkhoff’s
theorem then implies that the expansion histories of radial mass shells within a peak follow trajectories
perturbed from the overall background, with sufficiently dense shells expanding to a maximum size and then
contracting. The traditional ansatz assumes collapse by a radial factor of two (Gunn & Gott 1972), after
which a quasi-virialized and quasi-hydrostatic structure – a perfectly spherical halo – is born.

The collapse criterion is that the linearly-evolved perturbation amplitude reach a critical value, δ(a) = δc,
with δc = 1.686 the conventional choice. Applying this idea to the CDM spectrum, Equation 2, leads to a
characteristic mass scale, M∗(a), defined by σ[M∗(a), a] = δc. At a given epoch, a spectrum of halo masses
exist, with masses above (below) M∗(a) forming from perturbations with amplitudes above (below) the rms
level of the filtered Gaussian spectrum. Considerable literature (e.g. Press & Schechter 1974; Bond et al.
1991; Bond & Myers 1996; Sheth & Tormen 1999, and many others) has established this picture as the halo
model of large-scale structure. We review here only aspects relevant for cluster cosmology; a more thorough
review can be found in Cooray & Sheth (2002).

The basic element of the halo model is the population mean space density, n(M, z), in units of number
per unit comoving volume, commonly referred to as the mass function. Expressed as a differential function
of mass, it takes the form

dn

d lnM
=

ρ̄m
M

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

f(σ), (3)

where ρ̄m = Ωmρcr is the comoving mean matter density and f(σ) is a model-dependent function of the
filtered perturbation spectrum, Equation 2. Analytic forms for f(σ) capture much, but not all, of the
behavior seen in N-body simulations, as discussed below.

The spatial clustering of halos is described by a modified version of the matter power spectrum. On large
spatial scales, or low wavenumbers, the halo autocorrelation power spectrum is modified,

Phh(k, a) = b2(M,a)Pm(k, a), (4)

where b(M,a), the halo bias function, is independent of k, for the case of Gaussian fluctuations, but dependent
on mass and epoch. While this expression applies to the spatial autocorrelation of systems with fixed
mass M , it generalizes to the cross-correlation between sets of halos at different masses, Ph1h2(k, a) =
b(M1, a)b(M2, a)Pm(k, a). The theory of peaks in Gaussian random fields expresses the bias as a function
of the normalized peak height, ν = δc/σ(M,a) (Kaiser 1984; Bardeen et al. 1986).

Below, we show that N-body simulations support the forms of equations (3) and (4), but a precise fit to
the mass function requires that f(σ) be adjusted to include explicit redshift dependence, f(σ, z). There are
subtleties to the definition of mass in simulations that must also be taken into account.

2.1.2 ASTROPHYSICAL PROCESSES

Various astrophysical processes play out within the photon-baryon components of the evolving cosmic web,
including hydrodynamic, magnetohydrodynamic and radiative transfer effects; star and black hole formation
with associated feedback of momentum, energy and entropy; and so on. Except for the immediate vicinity of
black holes, these processes involve classical physics that is largely known. But the fully three-dimensional
and non-linear nature of the problem, the wide dynamic range in length and time scales, and the non-trivial
couplings among the constituent physical processes introduce tremendous complexity into baryon evolution.
Galaxy formation is truly a Grand Challenge computational problem. We touch on select issues relevant to
the observable features of galaxy clusters.

Shocks and turbulent MHD heating. During halo formation, gravitational potential energy in the baryonic
component is thermalized via shocks. The highest Mach numbers, of tens or more, should occur in the
accretion shocks at the edges of clusters (e.g. Pfrommer et al. 2006). While these strong shocks are expected
to be efficient particle accelerators, recent observations place tight limits on the volume-averaged pressure
contributions from relativistic particles (Ackermann et al. 2010). Shocks with Mach numbers of a few are
also associated with major mergers: a spectacular example is the narrow radio relic in the cluster CIZA

7

Table 1: Flat ΛCDM Parametersa from WMAP+BAO+H0

Parameter Value

ΩΛ 0.725± 0.016

Ωc 0.229± 0.015

Ωb 0.0458± 0.0016

h 0.702± 0.014

ns 0.968± 0.012

1010∆2
R(k0) 0.2430± 0.0091

σ8 0.816± 0.024
a From Komatsu et al. (2011).

background cosmological model. Dark energy models that involve modifications to general relativity may
introduce k-dependence into the growth function above.

The power spectrum in the reference ΛCDM model is set by present-epoch energy densities, θΩ =
{Ωbh2,Ωch2,ΩΛ}, where h = H0/100 kms−1 Mpc−1 is the dimensionless Hubble constant and ΩX ≡ ρX/ρcr
is the density of component X relative to the critical density, ρcr = 3H2

0/8πG. The curvature density,
1−

∑

X ΩX , is zero to within ±0.007 (Komatsu et al. 2011), consistent with a flat spatial metric on cosmic
scales. Our notation uses ‘b’ for baryons, ‘c’ for cold, dark matter (CDM), and ‘m’ for all matter: Ωm =
Ωb + Ωc. In the minimal model, the dark energy is a vacuum energy with equation of state, p = −ρc2. We
use ΩΛ for this case and employ ΩDE when referring to models wherein the dark energy equation of state,
w = p/(ρc2), differs from −1.

Current constraints for a flat ΛCDMmodel from CMBmeasurements, combined with angular clustering of
red galaxies and local measurements ofH0, are shown in Table 1 (Komatsu et al. 2011). The parameter∆2

R(k)
is the variance in density fluctuations evaluated at horizon crossing, which is independent of k for ns = 1,
and the wavenumber k0 = 0.002Mpc−1 corresponds to a large comoving length scale, ∼ π/k0 = 1.6Gpc.

In the minimal model, the matter density fluctuations filtered within a sphere of comoving radius R are
Gaussian distributed with zero mean. The comoving radius defines a mass, M = (4π/3)ρcrR3, of matter
within that radius in the young universe, when Ωm(a) = 1. Early observations that the variance in galaxy
counts is near unity on a scale of R = 8 h−1Mpc led to this as a conventional choice of scale at which to quote
the fluctuation amplitude (see Table 1 ). The corresponding mass, M = 0.59×1015 h−1 M⊙, is characteristic
of rich clusters of galaxies.

The variance of linearly-evolved, CDM fluctuations, filtered on mass scale M , has the form

σ2(M,a) =

∫

d3k

(2π)3
W 2(kR) Pm(k, a). (2)

where the filter function is W (y) = 3[sin(y)/y3 − cos(y)/y2] for the typical case of sharp (or top-hat) spatial
filtering within radius R. Evaluating Equation 2 at 8 h−1Mpc and a = 1 produces the oft-quoted matter
power spectrum normalization parameter, σ8. We will see below that σ(M,a) serves as a similarity variable
for expressing model-independent forms of the halo space density and clustering.

The evolution of the fluctuation spectrum, Equation 1, is valid at early times or at scales sufficiently large
so that σ(M,a) ≪ 1 at all times. On small scales, where CDM power spectra are generically maximum,
fluctuation growth produces δ ≥ 1, and linear theory breaks down. Mode-mode coupling terms become
important to the dynamics, and solutions in Fourier space become difficult. While higher-order perturbation
theory solutions can extend analytic evolution to later times than linear theory (e.g. Bernardeau et al. 2002;
Crocce & Scoccimarro 2006), the full problem is typically treated using N-body simulations, discussed below.

A recent analytical advance considers LSS as an effective fluid. Baumann et al. (2010) show that in-
tegrating out small-scale, non-linear structures renormalizes the cosmological background and introduces
dissipative terms, of order v2/c2, into the dynamics of large-scale modes, with v the typical velocity disper-
sion of collapsed halos. Since even the most massive halos have v < 0.01c, the magnitude of these effects
is very small. Furthermore, Baumann et al. (2010) show that virialized halos decouple completely from
large-scale dynamics, at all orders in the post-Newtonian expansion.
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Figure 9: Examples of cluster data used in recent cosmological work. Top: Measured mass functions of
clusters at low and high redshifts are compared with predictions of a flat, ΛCDM model and an open model
without dark energy (from Vikhlinin et al. 2009b). Bottom: fgas(z) measurements for relaxed clusters are
compared for a Ωm = 0.3, ΩΛ = 0.7, h = 0.7 model (left, consistent with the expectation of no evolution) and
a Ωm = 1.0, ΩΛ = 0.0, h = 0.5 model (right; from Allen et al. 2008). For purposes of illustration, cosmology-
dependent derived quantities are shown (mass and fgas); in practice, model predictions are compared with
cosmology-independent measurements.

cosmological models. In particular, an open universe with no dark energy clearly under-predicts the evolution
of the mass function over the redshift range of the data.

The optically selected maxBCG sample (Koester et al. 2007) employed by Rozo et al. (2010) probes a
different part of the cluster population; it is restricted to lower redshifts than the X-ray samples described
above (0.1 < z < 0.3), but extends to lower masses (M500 > 7 × 1013 M⊙). This lower effective mass limit,
which changes less strongly with redshift compared to X-ray surveys, makes the maxBCG sample significantly
larger than the others, with > 104 clusters divided into 9 bins based on optical richness. Mean masses for 5
richness ranges were estimated through a weak gravitational lensing analysis of stacked clusters, providing
information from which to constrain the richness–mass relation. The cosmological analysis accounts for the
covariance between cluster counts in each richness bin and the mean lensing mass estimates.

The results obtained by these three groups on flat ΛCDM and constant w models are summarized in
Table 2. Note that, for the two works which fit w models, the results on Ωm and σ8 are dominated by the
low-redshift data and so are not degraded noticeably by the introduction of w as a free parameter; thus all
three sets of constraints are directly comparable. The agreement between the different works, as well as
others listed in Table 2, is encouraging; in particular, the close agreement in the constraints on σ8 reflects
the relatively recent convergence in cluster mass estimates using different techniques, and our improved
understanding of the relevant systematics (Section 3.3; see also, e.g., Henry et al. 2009). Importantly, the
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X-RAY CLUSTERS & COSMOLOGY
Relatively easy X-ray identification of clusters; relatively clean path to complete cluster 
catalogues (critical for cosmology with cluster counts); now currently used… even to 

constrain gravity to the largest scales!

 S. W. Allen, A. E. Evrard and A. B. Mantz, “Cosmological Parameters from Observations of 
Galaxy Clusters,”  Ann. Rev. Astron.  Astrophys. 49, 409 (2011) [arXiv:1103.4829]
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Figure 18: Left: Joint 68.3% and 95.4% confidence regions for departures from a General Relativistic growth
history, parameterized by γ, and a ΛCDM expansion history, parameterized by w. The analysis uses a
combination of cluster growth (XLF; Mantz et al. 2010b), fgas (Allen et al. 2008), WMAP (Dunkley et al.
2009), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2007) data. From Rapetti et al. (2010). Right:
Constraints on neutrino mass and the amplitude of density perturbations for ΛCDM models, including global
curvature and marginalized over the amplitude and spectral index of primordial tensor perturbations. Gold
contours correspond to the same combination of data as in the left panel; blue contours show the strong
degeneracy between neutrino mass and σ8 that exists when cluster growth data are not included in the
analysis. From Mantz, Allen & Rapetti (2010).

calibrated using N-body simulations. These include the self-accelerated branch (Chan & Scoccimarro 2009;
Schmidt 2009b) and normal branch (Schmidt 2009a) of DGP gravity, and an f(R) model (Schmidt et al.
2009). Constraints on the latter model using the observed local cluster abundance and other data are
presented by Schmidt, Vikhlinin & Hu (2009).

An alternative to evaluating specific gravity theories is to adopt a convenient, parameterized description
for the growth of structure. This can then be used to constrain departures from the predictions of ΛCDM+GR
(Nesseris & Perivolaropoulos 2008). At late-times, the linear growth rate can be simply parametrized as
(e.g. Linder 2005)

d ln δ

d ln a
= Ωm(a)

γ , (26)

where δ is the density contrast and γ the growth index. Conveniently, GR predicts a nearly constant and
scale-independent value of γ ≈ 0.55 for models consistent with current expansion data. As in the case of w
for dark energy models, constraining γ constitutes a phenomenological approach to studying gravity. Rapetti
et al. (2009, 2010) report constraints on departures from GR on cosmic scales using this parameterization
with cluster data. Their results are simultaneously consistent with GR (γ ∼ 0.55) and ΛCDM (w = −1) at
the 68 per cent confidence level (left panel of Figure 18).

5.3 Neutrinos

The mass of neutrinos directly influences the growth of cosmic structure, since any particle with non-zero
mass at some point cools from a relativistic state, in which it effectively suppresses structure formation,
to a non-relativistic state, in which it actively participates in the growth of structure (details are reviewed
in Lesgourgues & Pastor 2006). In the standard scenerio where the neutrino species have approximately
degenerate mass, the species-summed mass,

∑

mν , is sufficient to describe their cosmological effects.
Although current data lack the precision to directly detect the effect of neutrino mass on the time-

dependent growth of clusters, cluster data do play a key role in cosmological constraints on neutrinos when
combined with CMB observations. On its own, the CMB can place only a relatively weak upper bound on
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Figure 15: Left: Joint 68.3% and 95.4% confidence regions on ΛCDM models with curvature from cluster
fgas data at z < 1.1, compared with those from CMB data (Spergel et al. 2007) and SNIa (Davis et al.
2007). Inner, gold contours show results from the combination of these data. Right: fgas values as a function
of ICM temperature. The measurements are consistent with a constant value over the temperature range
explored (5 keV < kTX < 15 keV). From Allen et al. (2008).

constant fgas with mass is realized. At lower temperature and mass (extending to the group scale), a trend
of increasing fgas with temperature and mass is observed (e.g. Sun et al. 2009).

Ettori et al. (2009) have also applied X-ray data to the fgas test, using Chandra measurements at r500 for
52 clusters in the redshift range 0.3 < z < 1.3, adopting similar priors on h and Ωbh2 and marginalizing over
a prior on Υ (assumed constant with redshift). However, their data set was not restricted to dynamically
relaxed systems, resulting in significantly weaker constraints (Table 2).

LaRoque et al. (2006) employed Chandra X-ray and OVRO/BIMA SZ observations of 38 clusters in
the redshift range 0.14 < z < 0.89 (with no restriction dynamically relaxed systems), finding fgas values
consistent with previous X-ray work. (Their analysis did not take advantage of the relative normalization
of the X-ray and SZ signals to simultaneously provide a second distance constraint; see Section 4.3.) They
adopted the simpler approach of assuming constant fgas and marginalizing over its value, incorporating a
WMAP prior on the total density, Ωm +ΩΛ. Although this explicitly ignores the information available from
the normalization of fgas(z), their results clearly disfavor a dark matter dominated universe, preferring a
low-density universe with dark energy (Table 2).

4.3 XSZ Distances

The different dependence on distance of the gas density inferred from X-ray and SZ observations of clusters
can be exploited in a conceptually similar way to fgas data (Section 2.2.3). The most recent contribution is
that of Bonamente et al. (2006), who measured distances to 38 clusters at redshifts 0.14 < z < 0.89. This
cosmological test is intrinsically less sensitive to distance than the fgas test, with the signal proportional only
to dA(z)1/2 (Equation 11), and currently can constrain only one free parameter. Assuming spatial flatness
and fixing Ωm = 0.3, Bonamente et al. (2006) obtained a constraint on the Hubble parameter, h = 0.77+0.11

−0.09,
consistent with results from other data such as the Hubble Key Project (Freedman et al. 2001) or the
combination of fgas and CMB data (Allen et al. 2008). We note that other works using the same method
have typically found somewhat lower best fitting values (h = 0.6–0.7; e.g. Grainge et al. 2002; Schmidt,
Allen & Fabian 2004), but these discrepancies are not significant given the systematic uncertainties.

4.4 High-Multipole CMB Power Spectrum

The CMB temperature power spectrum at multipoles ℓ >
∼ 1000 encodes the thermal SZ signature of unresolved

clusters at all masses and redshifts (Section 2.2.4). Although the primary CMB power decreases rapidly at
these scales, extracting this cosmological information from the tSZ spectrum has proved challenging due to
uncertainties in, e.g., the relevant observable–mass scaling relation at low masses and high redshifts; the
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establishing ΛCDM constraints to modified 
gravity

constraints to ν masses

Of course, many issues still to settle (e.g. bias!), especially for the 
forthcoming “high precision cosmology”! More on dedicated lectures…
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Figure 18: Left: Joint 68.3% and 95.4% confidence regions for departures from a General Relativistic growth
history, parameterized by γ, and a ΛCDM expansion history, parameterized by w. The analysis uses a
combination of cluster growth (XLF; Mantz et al. 2010b), fgas (Allen et al. 2008), WMAP (Dunkley et al.
2009), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2007) data. From Rapetti et al. (2010). Right:
Constraints on neutrino mass and the amplitude of density perturbations for ΛCDM models, including global
curvature and marginalized over the amplitude and spectral index of primordial tensor perturbations. Gold
contours correspond to the same combination of data as in the left panel; blue contours show the strong
degeneracy between neutrino mass and σ8 that exists when cluster growth data are not included in the
analysis. From Mantz, Allen & Rapetti (2010).

calibrated using N-body simulations. These include the self-accelerated branch (Chan & Scoccimarro 2009;
Schmidt 2009b) and normal branch (Schmidt 2009a) of DGP gravity, and an f(R) model (Schmidt et al.
2009). Constraints on the latter model using the observed local cluster abundance and other data are
presented by Schmidt, Vikhlinin & Hu (2009).

An alternative to evaluating specific gravity theories is to adopt a convenient, parameterized description
for the growth of structure. This can then be used to constrain departures from the predictions of ΛCDM+GR
(Nesseris & Perivolaropoulos 2008). At late-times, the linear growth rate can be simply parametrized as
(e.g. Linder 2005)

d ln δ

d ln a
= Ωm(a)

γ , (26)

where δ is the density contrast and γ the growth index. Conveniently, GR predicts a nearly constant and
scale-independent value of γ ≈ 0.55 for models consistent with current expansion data. As in the case of w
for dark energy models, constraining γ constitutes a phenomenological approach to studying gravity. Rapetti
et al. (2009, 2010) report constraints on departures from GR on cosmic scales using this parameterization
with cluster data. Their results are simultaneously consistent with GR (γ ∼ 0.55) and ΛCDM (w = −1) at
the 68 per cent confidence level (left panel of Figure 18).

5.3 Neutrinos

The mass of neutrinos directly influences the growth of cosmic structure, since any particle with non-zero
mass at some point cools from a relativistic state, in which it effectively suppresses structure formation,
to a non-relativistic state, in which it actively participates in the growth of structure (details are reviewed
in Lesgourgues & Pastor 2006). In the standard scenerio where the neutrino species have approximately
degenerate mass, the species-summed mass,

∑

mν , is sufficient to describe their cosmological effects.
Although current data lack the precision to directly detect the effect of neutrino mass on the time-

dependent growth of clusters, cluster data do play a key role in cosmological constraints on neutrinos when
combined with CMB observations. On its own, the CMB can place only a relatively weak upper bound on
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CONCLUSIONS/TAKE-HOME MESSAGE

! Virtually any new astrophysical window has been exploited to learn about fundamental physics.
 
! X-ray astrophysics is no exception, since this emission is often associated to environmental conditions very 
far from the ones probed in terrestrial labs.

! I quickly recalled the role X-rays is currently play in mapping Dark Matter observables, alone or in 
conjunction with other probes (such as lensing)

! I have argued why X-rays are not usually a good probe for WIMP DM diagnostics… but does not mean that 
they cannot contribute to more exotic DM candidates (DM searches are “theory-biased”, keep an open-mind!)

! X-rays can also probe new particles invoked in the solution of particle physics problems, such as axions, or 
generalizations of them arising e.g. in string-theory (axion-like particles). Usually, neutrino-like oscillations of 
photons into axions in external B-fields offer a great handle. We are also quite sure that Natural labs exceed 
the reach of terrestrial ones in parameter space (e.g. Hillas criterion & UHECRs) ! 

! Compact objects, notably neutron stars, offer one such environment; at the same time, unique lab to explore 
“standard physics” such as QCD in a density regime which is impossible to probe on Earth. 

! X-rays are also messengers to probe gravity in poorly explored regimes of curvature/potential

! In current cosmological context, significant auxiliary tool to probe dark energy/modified gravity!


