Direct searches for dark matter particles

Eric Armengaud - CEA Saclay OHP - 28/11/2019

1

References

- Reviews on WIMPs (phenomenology, a bit old)
 - "Particle Dark Matter: Evidence, Candidates and Constraints", Gianfranco Bertone, Dan Hooper, Joseph Silk, Phys. Rept., 405 :279–390, (2005):<u>arxiv.org/abs/hep-ph/0404175</u>
 - "Dark Matter Candidates from Particle Physics and Methods of Detection", Jonathan L. Feng, Ann.Rev.Astron.Astrophys., 48, 495-545.5(2010):<u>https://arxiv.org/abs/1003.0904</u>
- Experimental review
 - "Dark matter direct-detection experiments", Teresa Marrodan Undagoitia, Ludwig Rauch, J. Phys., J. Phys. G43 (2016) :<u>https://arxiv.org/abs/1509.08767</u>
- "Seminal article" on WIMP detection
 - "Detectability of certain dark-matter candidates", Mark W. Goodman and Edward Witten, Phys. Rev. D 31, 3059 (1985) :<u>http://hep.ucsb.edu/people/hnn/susy/goodwit/goodwit.pdf</u>
- Currently the best limit on WIMPs (most standard "channel")
 - "Dark Matter Search Results from a One Ton-Year Exposure of XENON1T", E. Aprile et al. (XENON Collaboration) Phys. Rev. Lett. 121, 111302 (2018) :<u>https://arxiv.org/abs/1805.12562</u>
- Prospects for DM search in particular other models than WIMPs
- "US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report", M Battaglieri et al. Phys. Rev. Lett. 121, 111302 (2018) :<u>https://arxiv.org/abs/1707.04591</u>

Dark matter and direct detection

- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

What is Dark Matter ??

« Direct detection » of dark matter

 The Earth is embed in the Milky Way halo local properties of that dark halo not very well measured, but unless simulations / observations are terribly wrong, we know the orders of magnitudes: mass density ~ 0.4 GeV / cm³ velocity distribution ~ maxwellian v ~ 200 km/s

- Assume DM is made of some kind of particles
- In many scenarios, DM particles have (non-gravitational) interactions with ordinary stuff

Ordinary stuff = nuclei, electrons, electromagnetic fields

DM beam = galactic halo target = terrestrial detector

If lucky enough, these (weak) interactions could be detected ! Highly risky endeavour, but the stake is high

Direct detection is model-dependent :

Terrestrial detectors are designed depending on the DM scenario to be tested

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

The WIMP paradigm

Assume new physics @ electroweak scale (SUSY, etc...)

Simple thermal relic calculation « WIMP miracle »

Collider / direct / indirect detection

Most explored DM scenario 90's - 2010's

Direct detection of WIMP dark matter

WIMP mass ~ 10s - 100s GeV

$$E_r = \left(\frac{m_{\chi}}{2}v^2\right) \times \frac{4m_N m_{\chi}}{\left(m_N + m_{\chi}\right)^2} \times \cos^2 \vartheta_r \sim 1 - 100 \text{ keV}$$

Nuclear physics

- Kinetics => search for interactions with nuclei (nuclear recoil NR)
- Energy spectrum ~ exponential
- Scales with ~ A² for spinindependent (SI) coupling
- Scaling with MwIMP : low recoil energies at low MWIMP

Direct detection of WIMP dark matter (2)

Cross-section : Highly model-dependent (structure of WIMP couplings, mediator mass...)

Understanding « WIMP exclusion curves »

WIMP detection is hard : signal vs backgrounds

Massive target (kg ... tons) Low detection threshold (~ few keV) Radioactive backgrounds : gamma-rays, betas, alphas, neutrons... passive rejection = underground detector, shields and vetos, radiopurity active rejection = smart detector design

A wonderful playground for detector R&D

P

Noble liquids, cryogenic bolometers, CCDs, gazeous chambers, solid scintillators, bubble chambers...

IGEX	DDDC		ZEPLIN Z	EPLIN-II	
HDMS	BPR5	CDIVIS	XENON-	XENON-10	
	NalAD	EDELWEISS ROSEBL		ZEPLIN-III	
TEXONO		AIS CRESST	XENON-1(00	
CoGeNT	LIBRA	EDELWEISS-II		LUX	
CDEX	KIMS	CDMS-II	XENON1t		
C4	SABRE	EDELWEISS-III	LZ	Panda-X	
COSINE	-100 ON Newage	SuperCDMS	DARWIN	XMASS	
SIMPLE	DRIFT CYGN	IUS COSINUS	DarkSido_	50 WaRD	
PICASSO	DM-TPC NEW	/S-dm CDMSlite	Dai KSide-		
COUPP	MiMac		XENONnt	ArDM	
PICO	DAMIC TREX	-DM	CLE	AN DEAP	
aleo-detectors	NEWS-G	SENSEI	DEAP3600	DarkSide-G2	

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

Germanium detectors (ionization)

- Measure low-energy background spectrum down to ~ few keV
- No background discrimination (electron recoils ER)

Low-threshold scintillating crystals (Nal, Csl...)

Goal exploit pulse shape discrimination to reduce
the ER background

- Statistical discrimination only, and hard at low energy
- DAMA : then turned to annual modulation search (presented later)

Low-temperature heat-ionization bolometers

- EDELWEISS CDMS CRESST
- Combine phonon (heat) with ionization
 measurement
 - \cdot Event by event discrimination of ERs vs NRs
- Orders of magnitude improvement in sensitivity

Dual-phase Xenon TPCs

- XENON LUX etc
- Discriminate ERs vs NRs with scintillation + ionization
 measurement
- Scale to large volume (self-shieding) + radiopurity of Xenon : very low intrinsic bg
- Calibration and low-threshold now quite mature
- Leading technology since ~ 2011

Example - dual-phase Xenon TPC

« S1 » = direct light, <u>scintillation</u>
 « S2 » = light emitted when electrons are accelerated in the gas phase, <u>ionization</u>

XENON1t resultPRL121, 111302 (2018)~1.3 ton Xe fiducial (~3ton total Xe)~1m diameter detector, 250 PMTsHUGE effort : material and Xe radiopurity, shielding, optimal operation of TPC280 days exposureprofile likelihood analysis

Projects with Xenon or Argon ...

Where we will stop : The neutrino floor

Coherent scattering of neutrinos on nuclei

Low-energy NRs : irreducible background for WIMP direct detection Sets a natural « target » for experiments Eventually detectors will do neutrino physics

Where we will stop : The neutrino floor

Coherent scattering of neutrinos on nuclei

Low-energy NRs : irreducible background for WIMP direct detection Sets a natural « target » for experiments Eventually detectors will do neutrino physics

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

« Astrophysical » signatures

 Prefered recoil direction from Sun motion wrt halo [Spergel+ PRD 37,1353 (1988)] Large effect O(1) dipole-like Technical challenge : track length ~1mm in gaz

2) Annual modulation from Earth rotation O(7%) offoot

~ O(7%) effect

The annual modulation signal of DAMA

Nal scintillating crystals (no rejection of ER bckgd)

- DAMA/Nal 1995-2002 9x9.7 kg
- DAMA/LIBRA (2003-2010) 25x9.7 kg
- DAMA/LIBRA phase 2 (2011-2018) new PMTs (1 keV threshold)

Large statistical significance

Near threshold signal, backgrounds not modeled

Still a mystery after 20 years ...

S. Cebrián, TAUP2019, 11 September 2019

Testing the potential DAMA signal

- « Standard » WIMP events : excluded by many experiments
- Electron recoil interpretation : excluded by Xenon experiments
- Redo exactly the same experiment ... : ongoing

« Spin-dependent » WIMP scattering

Case of WIMP-proton coupling :

- Can compare directly with searches for neutrinos from the Sun
- Leading sensitivity : bubble chamber-like technology

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

Beyond WIMPs

Many viable models exist for « light » DM with various masses and couplings to ordinary matter

Probably (much) less motivated than WIMPs, but still plausible

Underlying theories often invoke « dark sectors », ie new interactions (hidden photon, hidden QCD...)

May explain some astrophysical features

eg. $\Omega_b \sim \Omega_m$ for asymmetric DM scenarios

eg. DM « small-scale problems » for hidden-QCD-like DM scenarios

Kinematics :

M > 100 MeV : nuclear scatteringM < 100 MeV : electron scatteringVery low energy depositions in detectors

Signal intensity :

DM - ordinary matter coupling can be surprisingly strong

Need dedicated devices, or tricks...

Dark Sector Candidates, Anomalies, and Search Techniques

zeV aeV feV peV neV µeV meV eV keV MeV GeV	TeV PeV 3	®0M⊙			
QCD Axion Ultralight Dark Matter Hidden Sector Dark Mat		k Holes			
		K TIOICS			
Post-Inflationary Axion Asymmetric DM			US	Cosmic	Visions 2017
Freeze-In DM					(1707.04591)
SIMPs / ELDERS	Main Science Goal	Experiment	Target	Readout	Estimated Timeline
Beryllium-8		SENSEI	Si	charge	ready to start project (2 yr to deploy 100g)
Muon g-2	Sub-GeV Dark	DAMIC-1K	Si	charge	ongoing R&D 2018 ready to start project (2 yr to deploy 1 kg)
<	Matter (Electron	UA'(1)	Xe	charge	ready to start project
Small Experiments: Coherent Field Searches, Direct Detection, Nuclear and Atomic Physics,	Interactions)	liquid Xe TPC			(2 yr to deploy 10kg)
		Scintillator w/	GaAs(Si,B)	light	2 yr R&D
< 		TES readout	Not	Pake	2020 in sCDMS cryostat
zeV aeV feV peV neV µeV meV eV keV MeV GeV		NICE; Nal/Csl	Nal	light	3 yr R&D
		Ce Detector w/	Ca	charge	2020 ready to start project
		Avalanche Ioniza-	Ge	charge	1 yr 10kg detector
		tion Amplification			1 vr 100kg detector
		PTOLEMY-G3.	graphene	charge	1 yr fab prototype
		2d graphene	0.1	directionality	1 yr data
		supercond. Al cube	Al	heat	10+ yr program
		Superfluid helium	He	heat, light	1 yr R&D 2018 ready to
		with TES readout			start project; 2022 run
	Sub-GeV Dark	Evaporation &	superfluid helium,	heat	3 yr R&D 2020 ready to
	Matter (Nucleon	detection of He-	crystals with long		start project R&D
	Interactions)	atoms by field	phonon mean free		
		ionization	path (e.g. Si, Ge)		
		color centers	crystals (CaF)	light	R&D effort ongoing
		Magnetic bubble	Single molecule	Spin-avalanche	R&D effort ongoing
		chamber	magnet crystals	(Magnetic flux)	

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

Trick 1 for M>100 MeV : use atomic physics

Ibe+, JHEP 03, 194 (2018) Excitation / ionization of recoiling atom

Still to be calibrated

$$\frac{dR}{dE_{\rm ER}} \simeq \int dE_{\rm NR} dv \frac{d^2 R}{dE_{\rm NR} dv} \times \frac{1}{2\pi} \sum_{n,l} \frac{d}{dE_{\rm ER}} p_{q_e}^c(n, l \to E_{\rm ER} - E_{n,l})$$

atomic physics

Trick 2 : use cosmic rays !

Additional difficulty when probing light DM / large crosssections : Earth shielding effect

eg. Emken Kouvaris PRD97 115047 (2018)

Need involved calculations for DM propagation / energy losses in the Earth crust and/or atmosphere

Some parameter space can only be probed with experiments above ground or above the atmosphere

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

M < 100 MeV : search for DM - electron interactions

M < 100 MeV : search for DM - electron interactions

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons

• QCD axions

• Axion haloscopes

The QCD axion paradigm

Assume new physics @ very high energy scale

some complex field with U(1) symmetry breaking @ scale fa (Peccei-Quinn)

Massless Goldstone boson = axion angle $\theta_a = a/f_a$

Coupling to QCD After QCD phase transition :

- axion gets a mass $m_a \sim \Lambda^2_{QCD} / f_a$
- no CP violation in the QCD sector

Oscillations after QCD transition : misalignment mechanism **the axion field behaves like dark matter**

$$\Omega_a \sim 0.36 \, \left(rac{10 \, \, \mu \mathrm{eV}}{m_a}
ight)^{1.184}$$

The axion interacts with photons

- Dark matter and direct detection
- WIMP direct detection
 - Principle
 - History and the example of XENON1t
 - Supplementary material
- Low mass dark matter
 - Interactions with nuclei
 - Interactions with electrons
- QCD axions
 - Axion haloscopes

Axion « haloscopes » : principle

field

particle

Axion haloscope (2)

(Main) example : ADMX axion search

narrow QCD axion mass range excluded

QCD axion searches : the future

Many R&D started in the past years to cover a wide range of mass First prototypes exist. Will take years to reach QCD sensitivity

Conclusions

DM direct search is a long, risky endeavour

Only works in certain DM scenarios Driven by technological developments, R&Ds have possible applications in other branches of science

The WIMP scenario

Originally strongly motivated on phenomenological grounds Technology : from nuclear / particle physics Mature, large-scale experiments see no signal, in line with LHC / Fermi / ... Experiments will continue : go down to nu floor, do neutrino physics

« Low-mass » DM scenarios

Some phenomenological motivations Technology : from material science / quantum devices Currently small-scale experiments, progressing fast

QCD axions

Strong phenomenological motivation Technology : radiometer-like Experiments will probably explore most interesting scenarios in coming decade(s)