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Abstract

We show that antisymmetric exchange interactions D;;- (S; x.S;) occur near magnetic surfaces due to surface symmetry
breaking. The direction of the D;; vectors is determined for several simple surfaces. Consequences of these interactions on
magnetic structures are investigated: rearrangement of the magnetic structure close to the surface may occur and
non-collinear magnetic structures may be stabilized in thin films. These interactions also contribute to the surface

anisotropy. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Almost 40 years ago, Dzyaloshinsky pointed out,
using symmetry arguments, that the combination
of low symmetry and spin—orbit coupling gives rise
to antisymmetric exchange interactions (AEI)
which can be expressed as: D;; - (S; x.S;) [1,2]. Mori-
ya has shown how to calculate this AEI for local-
ized magnetic systems in a microscopic model
[3,4]: this interaction can be derived by taking into
account the spin—orbit coupling in the theory of
superexchange interaction proposed by Anderson
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[5]. As this interaction vanishes if there is a center
of inversion between sites i and j, it is expected to be
relevent only when the local symmetry is suffi-
ciently low. The weak ferromagnetism observed in
several antiferromagnetic insulating compounds,
such as a-Fe, O3 or CrF3, was attributed by Mori-
ya and Dzyaloshinsky to this AEI. More recently it
has been proposed that the same interaction is
present in the low temperature distorted phases of
the La,CuO, and YBa,Cu;O4 type perovskite
compounds [6-10].

In the presence of disorder the AEI is also
expected to play a role since local symmetry is
broken by disorder. The importance of the AEI
in spin glass systems was emphasized by several
authors [11,12]: it was shown that the AEI leads to
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remarkably large anisotropy energies in disordered
magnetic systems containing nonmagnetic impu-
rities with strong spin—orbit coupling. Fert and
Levy in Ref. [12] proposed a different mechanism
for AEI which involves both magnetic and non-
magnetic sites.

In this paper we show that AEI may also be
present close to the surface of a magnetic material,
because the symmetry is broken by the surface.
This idea was already proposed by Fert in Ref.
[13]. Here we calculate the AEI between a surface
and a bulk site using Moriya’s formalism in a par-
ticular case (Section 2.1); we also show that the
mechanism proposed by Fert in Ref. [13] leads
mainly to AEI between surface sites (Section 2.2);
then for any surface, we show that the direction of
D;; can be derived from the symmetry arguments
developped by Dzyaloshinsky [1,2]. Finally, in Sec-
tions 3 and 4, we show using several examples that
the magnetic order can be modified by this interac-
tion in the vicinity of the surface.

2. Derivation of the antisymmetric exchange
interaction near a surface

In this section, we calculate the D;; vector for two
different surfaces, using the mechanism proposed
either by Moriya (Section 2.1) or by Fert and Levy
(Section 2.2); then we derive the direction of
D;; using the symmetry rules for several surfaces
(Section 2.3).

2.1. Application of Moriya’s formalism to the (00 1)
surface of the FCC lattice

Moriya [3,4] has developed a microscopic model
for calculating the D;; vector which is valid for
localized magnetic systems. For simplicity, the cal-
culation is presented here for the case of one 3d
electron (or one 3d hole) on each magnetic site but
more complex cases can be studied in the same way.
We consider two sites i and j, one site being at the
surface, the other one in the first layer below the
surface. We describe these two sites by a Hubbard-
type Hamiltonian:

H = H) + Hj + TV + H', + H,; (1)

Hi describes the states of a 3d electron localized on
site i:

i +
0= Z &i,mCimcCims +U Z
m,o

mao#m'c’

NimeNim' o' (2)

where ¢;, is the atomic energy of one 3d electron in
the orbital m; ¢;, is site-dependent because the
crystalline field is not the same at the surface and in
the bulk. U is the Coulomb repulsion which will be
considered as site-independent.

TY describes the hopping between sites i and j:

Tij = Z tin,jm(ci:acjma + C;na'cina)a (3)
n,m,c
where t;, j, is the hopping integral between orbitals
n and m on sites i and j, respectively.
H;, is the spin—orbit interaction on site i

Héo = )LLlSl (4)

By considering the last three terms of the Hamil-
tonian of Eq. (1) as a perturbation, it is possible to
derive the effective interactions between the spins
S; and S; of the two sites:

Heffz —JIJSISJ+D1J(SIXSJ)‘FS,FUSJ (5)

The isotropic superexchange interaction J;; is ob-
tained in second order perturbation theory on the
Hamiltonian Hy + H) + TY: it is of the order of
(t;)*/U. The AEI arises in the next order taking into
account the spin-orbit coupling: the vector D;; is
found to be proportional to A(t;;)*/U4 (4 being an
energy difference between two atomic levels which
will be specified in the following). Moriya [3,4] also
calculated an anisotropic exchange interaction,
I';; which is obtained in fourth order of perturba-
tion, this interaction being proportional to
23(t;j)?/UA*. This last term will not be discussed
in this paper. An order of magnitude of these
interactions can be derived from the shift Ag of
the gyromagnetic ratio, g¢:|D|/J =~ Ag/g,|I'|/J ~
(Ag/g)*, where Ag/g is usually not larger than 0.1.

The expression of D;; will be presented for the
(00 1) surface of an FCC lattice. The calculation
was done following Moriya’s scheme with the
Hamiltonian of Eq. (1) for the case of one electron
in t,, orbitals. To perform the calculation we have
to make an assumption on the crystal field energies
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Fig. 1. Crystal field levels on a surface site.

at the surface and in the first layer below the sur-
face. We assume that on a surface site the crystal
field splitting is large and the 3d electron occupies
the d,, orbital (the x- and y-axes being parallel
to the surface, while the z-axis will be taken
perpendicular to the surface). The e, states are
supposed to be higher in energy and do not
contribute (Fig. 1): the energy splitting 4 is a

(a) (@) (®

Fig. 2. Projection on the surface plane of the nearest neigh-
bour sites of a surface site for the 9 cases studied in the
paper. For each case the choice of x and y axis are indicated.
The D;; vectors are shown when they are parallel to the
surface plane. When it is not shown, it is perpendicular to
the surface. (a), (b) and (c): (0 0 1) surface of the simple cubic,
BCC and FCC structures, respectively; (d), (e) and (f): the same
for (10 1) surface; (g), (h) and (i): the same for (1 1 1) surface
plane.

consequence of the symmetry lowering near the
surface. Thus it is expected to be much larger at the
surface (4) than in the first layer (4). In fact,
we have considered two different cases: (i) no crys-
tal field splitting in the bulk, i.e. 4" = 0; (ii) a non-
zero crystal field in the first layer, 4'« 4, but
still large enough to perform a perturbation calcu-
lation, i.e. 4'> 1 and t;;.

The hopping integrals between a surface site and
a neighbouring site below the surface can be cal-
culated for different nearest neighbours. It is found
that only the hopping integrals t; .. vy, ti xy:j.x= and
lixyjyz CONtribute to Dyji b yejvy = 3 (ddn + ddo)
for all i and j sites in neighbouring (00 1)
planes, while t; ... and t;,,.;,. are equal to
+3 (ddn — ddé). (ddn and ddé are the two-center
integrals using the notation introduced by Slater
and Koster [14]).

The results are the following: each surface site
has four neighbours in the first layer below the
surface (Fig. 2c) and the four D;; vectors are parallel
to the surface:

D,=Dy, D,=—Dx, Dy= —Dy, D,=Dx.

(6)
In case (i) (ie. 4»A4’»>A and t; we have
D = (A/U)(ddm)* — (ddd)*)(1/4) — (1/47). If 4’ =0
(case (i), we find: D = (4/U)(ddr)* — (dd5)*) (1/4)
since the spin—orbit interaction on the bulk site
gives a much smaller contribution (of the order of
2*U/t}) because the three t,, orbitals are equally
occupied. Calculation for intermediate values of A’
are not easy within this formalism.

In this model AEI arises since the crystal field
splitting is different at the surface and in the first
layer below the surface. Moreover, as shown in the
next section, the results [Eq. (6)] are consistent
with the symmetry considerations developed by
Dzyaloshinsky [1,2].

2.2. AEI due to 3-sites mechanism: (00 1), (10 1)
and (1 1 1) surfaces of a simple cubic structure

Another mechanism for AEI was proposed by
Levy and Fert [15]: this mechanism involves a
3-sites interaction, two magnetic sites and one
non-magnetic site on which spin—orbit interaction
occurs, while Moriya’s interaction is a 2-sites
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Fig. 3. D;; vectors for two surface sites. (a): cases a, b, ¢ of
Table 2; (b): cases d and f of Table 2; (c): case e; D;; is in the
surface plane, but the angle between D;; and R;; is not deter-
mined. (d): cases g, h, i; D;; is in a plane perpendicular to
R;; (indicated by 44, 4, and 43).

interaction, with spin—orbit coupling on the mag-
netic sites. Both mechanisms are expected to be
important in different situations: the 2-sites mecha-
nism applies to rather localized magnetic systems,
while the 3-sites mechanism involves the conduc-
tion band and is more appropriate to itinerant
systems. Moreover the 3-sites mechanism may give
rise to AEI between two surface sites as shown in
Ref. [13], while the 2-sites mechanism requires
a different crystal field splitting for the 2 sites and
vanishes between two surface sites in all cases con-
sidered in this paper.

We have calculated the AEI due to 3-sites
mechanism for a cubic crystal: the magnetic atoms
are supposed to form a simple cubic lattice while
the non-magnetic atoms responsible for spin—
orbit coupling are in the center of the cube (i.c.
CsCl structure). Then the expression derived by
Levy and Fert in Ref. [15] yields the following
expression for the interaction between two mag-
netic sites:

_ Do« Riv R;(Ri, X R;)

Di j — >
! R (RinRjn)3

™)

ij n

where R;(R;,) is the vector joining the magnetic
site i(j) to the non-magnetic site n. Dy is pro-
portional to the spin—orbit coupling and measures
the strength of the interaction; in Ref. [15] it
was shown that D;;/J;; = Ap(Er) implying that
the calculation is valid for Ap(Eg)« 1. For the
cubic system considered in this section, we calcu-
late the leading contribution to D;; for nearest
neighbours surface sites using Eq.(7), and
considering only nearest neighbours non-magnetic
sites (n).
® (001) surface: AEIl occurs between nearest
neighbours sites at the surface, two non-mag-
netic atoms below the surface should be con-
sidered for each pair (ij); D;; is perpendicular to

R;; and in the surface plane (Fig. 3a).
® (101) surface: as in the preceeding case, AEI

occurs between neighbouring surface sites with

D;; perpendicular to R;; and in the surface plane

(Fig. 3b); for this case there are in principle three

non-magnetic atoms to consider in Eq. (7): two

of them are in the surface plane and give a van-
ishing contribution since they do not break the
symmetry, and only one below the surface con-
tributes to AEIL

e (11 1) surface: in this case, Eq. (7) leads to AEI
between a surface site and a site below the sur-
face (similar to what is obtained from the Mori-
ya’s mechanism) and to AEI between surface
sites, both of the same order of magnitude. For
two surface sites, only one non-magnetic site

n below the surface is involved in the mechanism

and D;; is perpendicular to the triangle (ijn): thus

it is perpendicular to R;; but not in the surface
plane (Fig. 3d).

Thus we have described two mechanisms
which can be responsible for AEI at the surface. In
the next section we show that the direction of
D;; can be determined for most surfaces using
symmetry arguments, but the strength of the coup-
ling depends on the mechanism involved in the
interaction.

2.3. Other surfaces: determination of D;; by
symmetry arguments

Dzyaloshinsky [1,2] has shown that the direc-
tion of the vector D;; obeys the following rules:
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Table 1
Direction of the D;; vectors for nearest neighbours sites at the surface and in the bulk in cubic strucures. The z axis is always
perpendicular to the surface and x and y axis are in the surface plane (see Fig. 2 for the definition of these axes and the position of the

different sites). D refers to sites in the 1st layer and D’ to sites in the 2nd (or 3rd) layer below the surface

(00 1) surface

(101) surface

(111) surface

Simple cubic lattice

BCC lattice

FCC lattice

(a) 1 neighbour in
1st layer
D, =Dz

(b) 4 neighbours in
1st layer

D, =D(—x+y)
D, =D(—x—y)
D3 =D(x —y)

D, =Dx +y)

(c) 4 neighbours in the

1st layer
D, =Dy
D, = — Dx
D;= —Dy
D, =Dx

(d) 2 neighbours in

1st layer
D, =Dy
D, = — Dy

(e) 2 neighbours in

1st layer
D, = — Dx
D, =Dx

(f) 4 neighbours in the 1st layer,
1 in 2nd layer

D1=D(—\/%x+ﬁy)
Dy =D(~/3x~ %)
Dy=D(~3x~ )

Dy =D(~/3x+ %)
Ds=D'z

(g) 3 neighbours in

1st layer

D1 = — Dx

D, =D(Gx—3%./3y)
Dy =D(x+%./3y)
(h) 3 neighbours in st layer
1 in 3rd layer

D, =D(—ix+%./3y)
D,=D(—%x—%./3y)
D; =Dx

D,=D"z

(i) 3 neighbours in
1st layer

D, =D(—3x+1./3y
D,=D(—3x—3./3y)
D; =Dx

Table 2

Direction of the D;; vectors for nearest neighbours surface sites in cubic strucures. The z axis is always perpendicular to the surface and
x and y axes are in the surface plane (see Fig. 3 for the definition of these axes and the position of the different sites). For each case the
two-dimensional structure of the surface sites is indicated

(00 1) surface

(101) surface

(111) surface

Simple cubic lattice

BCC lattice

FCC lattice

(a) Square lattice

D, =Dy
D,;= — Dx
D3, = — Dy
D, = Dx

(b) Square lattice

D, =Dy
D,3; = — Dx
D3, = — Dy
Dy, =Dx

(c) Square lattice
Dy, =D(—x+y)
D3 =D(—x—y)
D3, = D(x —y)
D,y =Dix +Yy)

(d) Rectangular lattice

D, =Dy
D,3 = — Dx
D;,= — Dy
D, = Dx

(e) lozenge’ lattice

D;; in the surface plane,
direction is not determined
(Fig. 3¢c)

(f) Rectangular lattice

D, =Dy
D,3 = — Dx
D;,= — DYy
Dy, =Dx

(2). (h) and (i)
direction of D;; is not
completely determined.
(see Fig. 3d)
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(i) When a center of inversion is located on site M,
in the middle of sites 1 and 2, D;; = 0; (ii) if there is
a mirror plane perpendicular to R;, =R, — R,
and passing through site M, D;; is parallel to this
plane; (iii) if there is a mirror plane containing both
sites 1 and 2, D;; is perpendicular to this plane;
(iv) when a twofold rotation axis perpendicular to
R, passes through M, D;; is perpendicular to this
axis; (v) if there is an n-fold axis (n > 2) along R, ,,
D;; is parallel to R ».

Using these rules it is possible to find the direc-
tion of D;; between one site at the surface and one
site below the surface or between two surface sites
for a given surface. Some examples for nearest
neighbour interactions in cubic structures are
given in Tables 1 and 2. Figs. 2 and 3 indicate the
directions of the D;; for the same cases as in
Tables 1 and 2.

(i) AEI between surface and bulk sites (Table 1
and Fig. 2). In cases (f) and (h) there are nearest
neighbours in the first and second (or third) layers
below the surface, with different AEI, D and D'. In
cases (b)—(e), (g) and (i) all D;; vectors are parallel to
the surface and the sum D; = ) ; D;; vanishes, while
in cases (a), (f) and (h) this sum does not vanish
because one of the D;; is perpendicular to the sur-
face. As will be shown in Section 3 the effect of AEI
is different when D; = ) ; D;; is equal to zero (type
A) or different from zero and perpendicular to the
surface (type B).

(i) AEI between two surface sites (Table 2
and Fig. 3). In this case, the Dzyaloshinsky rules
[1,2] are not always sufficient to determine D;;:
in cases (a){f) D;; is in the surface plane and
perpendicular to R;; but in some cases (e), (g),
(h) and (i) the direction of D;; is not completely
determined and it should be determined from
a microscopic model; e.g. we have shown above
that in case (g) Eq. (7) determines the direction of
D;; for a given distribution of the non-magnetic
sites (Section 2.2).

Thus these calculations show that AEI may be
different from zero near a surface. Several factors
influence this interaction: the character of the oc-
cupied orbitals and the crystal field scheme, the
crystal structure, the direction of the surface, the
number of 3d electrons. Also deformations of the
lattice, which often occur near a surface or inter-

face, may give rise to AEI. Each experimental case
is different and realistic calculations of D can be
made in each case, taking into account all these
parameters.

3. Modifications of the magnetic ordering
near the surface due to the AEI between
a surface and a bulk site

In the preceeding section it was shown that
AEI exists between surface and bulk sites due to
a different environment. In this section it will
be shown that this interaction modifies the
magnetic structure near the surface. We consider
one example of each type A and B: for type A we
study the (0 0 1) surface of an FCC lattice and for
type B, the (1 1 1) surface of a BCC structure. How-
ever the results can be generalized easily to other
surfaces depending on the classification given in
Section 2.3.

3.1. FCC structure with a (0 0 1) surface (type A)

For this surface we have D; = ) ; D;; = 0 for all
surface sites i. Thus, from Eq. (6) it can be seen that
the AEI will not play any role if the system is
ferromagnetic: the four neighbours of the surface
atom are in the same layer and it is then natural to
suppose that their magnetic moments are the same
if the system is ferromagnetic: §; =8, =853 = S,.
Then the interaction energy of the surface atom,
characterized by S, with its four neighbours of
the 1st layer, Egq= (}i—; DS xSs, vanishes
and there is no modification of the ferromagnetic
ordering.

However, the AEI may have some influence if the
ground state is antiferromagnetic. In fact in the
FCC structure several (degenerate if only nearest
neighbour exchange J; is considered) antifer-
romagnetic orderings exist. A negative second
neighbour interaction stabilizes the type II antifer-
romagnetic structure (alternating ferromagnetic
(1 11) planes). With AEI this structure is changed
into a four sublattice structure: in each of the fer-
romagnetic (1 1 1) plane, two sublattices are formed
with a small angle between the spins (of the order of
D/J). The resulting structure is a four-sublattice one
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and weak ferromagnetism is stabilized with a small
magnetization proportional to D/J and parallel to
the surface plane.

The same result is obtained for all type A surfa-
ces: no effect is expected for ferromagnets, at least
for small values of D/J, while for antiferromagnets
weak ferromagnetism may exist. The effect also
depends on the easy axis direction: the energy due
to AEI is appreciable only for perpendicular aniso-
tropy since in type A surfaces the D;; are parallel to
the surface. Thus in this case AEI favors perpen-
dicular surface anisotropy.

3.2. BCC structure with a (1 1 1) surface (type B)

For type B surfaces, as D; = ZJDU does not
vanish, AEI is expected to play a role, not only in
antiferromagnetic materials, but also in ferromag-
nets. We study one example of such a type B sur-
face, namely the (1 1 1) surface in BCC structure. As
indicated in Table 1 and Fig. 2h, a surface atom
has one neighbour in 3d layer (numbered as 4 in the
following) and three in the 1st layer (numbered as 1,
2 and 3), and the D;; are expressed as (there are no
nearest neighbours in 2nd layer):

D, =D(—ix+1./3),
D, =D(—ix—1./3),
D3 = Dx, D4 =D’z (8)

We consider a ferromagnetic film of n atomic
layers and we suppose that the moments of all
atoms of a given layer are equal: we call §; the
moment of the layer k (1 <k<mn). Since
D, + D, + D5 = 0 there is no effect of AEI between
the surface and the first layer, but only between the
surface (k = 1) and the 3d layer below the surface
(k = 4) and, for the n-layers film, betwen k = n and
k =n — 3 layers. Assuming a nearest neighbour
exchange interaction J > 0, the total magnetic en-
ergy for the film is given by

n—1
EZND/Z[SI XS4+S,,XS,,_3:]—NJ|:3 Z Sk.
k=1

n—3
Si+1 + Z Sk'sk+3] + nky, )
k=1

0.5

041

03f

0.2

6,/ (D'/))

0.1}

oL ®°® 000000, °°

. .
-0.1 1 1 1 1 1 1 1 1 1
o 2 4 7 9 11 13 15 18 20 22

k

Fig. 4. Deviation angle 0 as a function of k for n = 20 (see text
in Section 3.2).

where E; is the exchange between moments belong-
ing to the same ferromagnetic layer, N is the num-
ber of sites of one layer. In the present case there are
no nearest neighbours in the same layer and
E; = 0. In the general case, E; does not depend on
the canting of the structure (since it is supposed that
in each layer the moments remain aligned) and this
last term does not play any role in the calculation.

The ferromagnetic state of the film has an energy
E, = — 2JN(2n — 3)S% The effect of AEI depends
on the easy magnetisation axis direction: if the easy
axis is perpendicular to the surface, the AEI does
not modify the ferromagnetic structure of the film.
But if there is an easy axis in the surface plane the
ferromagnetic state is modified: e.g., for an easy axis
along the x-direction the results obtained by min-
imizing the energy of Eq. (9), are the following: the
moments stay parallel to the surface but deviations
from the x-direction occur in all the layers of the
film. Fig. 4 shows the deviation angle 6, of the kth
layer for a film of 20 layers: 0, oscillates with k but
only the first oscillation is large; deviations occur in
the first 4 planes. Fig. 5 shows the ratio of the two
components of the total magnetisation: M,/M,;
this ratio increases linearly with D’/J and the slope
is larger for smaller values of n.

The same results are obtained for the other type
B surfaces: for in-plane anisotropy, deviations of
the spin directions are obtained, and this leads to
a rotation of the total magnetisation which can be
of the order of a few degrees for typical values of
D'/J ~0.1.
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Fig. 5. Ratio M,/M, as a function of D'/J for several values of n.

4. Modifications of the magnetic ordering near the
surface due to the AEI between two surface sites

In this section we show that AEI between surface
sites can be responsible for a rearrangement of the
surface structure and can give contribution to the
surface anisotropy. We consider the case of a ferro-
magnetic simple cubic thin film with (0 0 1) surfaces
and AEI at both surface planes. In the central layer
the spins are aligned in the same direction and only
the surface spins are allowed to rotate. We have
considered three different directions for the central
layer’s spins, corresponding to different easy aniso-
tropy axis in the bulk; in each case the surface spins
are slightly tilted, forming a four sublattice struc-
ture:

(i) The central layer’s spins are perpendicular to
the film. Minimization of the total energy leads to
canting angles equal to ﬁD/&I with respect to the
z axis. The energy gain per surface site is then:
AE = —3(D/J)*JS?%

(i) The central layer’s spins are in the film plane,
parallel to the x axis. At the surface the spins are
making a small angle with the surface (equal to
D/3J) and the energy gain per surface site is:
AE = — 5 (D/J)*JS?. The same energy is obtained
if the spins are parallel to the (1 1 0) axis (but the
values of the canting angles are different).

In all cases the resulting magnetization is re-
duced at the surface due to the canting of the

magnetic moments, but the direction of the total
magnetization is not changed. Moreover the
energy gain depends on the direction of the mag-
netization: in the present case ((1 00) surface of
a simple cubic lattice) perpendicular anisotropy is
favoured because the D;; are in the surface plane.
Thus this effect contributes to the surface anisot-

ropy energy.

5. Conclusions

We have shown the AEI is present close to mag-
netic surfaces or interfaces. In most cases, the sym-
metry rules determine the direction of D;; Two
different mechanisms have been proposed for cal-
culating the order of magnitude of this interaction.
We have made some predictions concerning its
consequences on the magnetic structure in mag-
netic films or multilayers: surface reorientations or
weak ferromagnetism may occur. We have shown
also that AEI contributes to the surface anisotropy
energy since it always favours magnetic structures
where the moments are perpendicular to D;;.

We have studied separately AEI between two
surface sites and between surface and bulk sites, but
in general both types can be present and give rise to
more complex rearrangements of the magnetic
structure.

AEI may also be present at interfaces in bilayers
or multilayers: recently it was shown that in
a three-layers system (two ferromagnetic layers sep-
arated by a paramagnetic layer), spin—orbit interac-
tion at interfaces is responsble for AEI between the
ferromagnetic layers [ 16] and this interaction indu-
ces a non-collinear interlayer coupling.

Finally, it can be pointed out that AEI may have
consequences not only on the magnetic arrange-
ment but also on other properties: e.g., it was
shown that new magneto-electric effects arise in
multilayers with antisymmetric exchange interac-
tions [17].
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