Problème : pendule plan dont le point de suspension est fixé à deux ressorts identiques.

1) Énergie cinétique

Conduites de la masse m : \[\begin{align*}
\dot{x} &= x + \dot{\theta} \cos \alpha \\
\dot{y} &= -\dot{\theta} \sin \alpha
\end{align*} \]

Conduites de la masse M : \[\begin{align*}
\ddot{x} &= 0
\end{align*} \]

\[T = \frac{\lambda}{2} \left[m (\dot{x}^2 + \dot{y}^2) + \frac{1}{2} M \dot{x}^2 \right] = \frac{\lambda}{2} \left[m (x^2 + 2 \dot{\theta} x \cos \alpha + \dot{\theta}^2 \cos^2 \alpha + \dot{\theta}^2 \sin^2 \alpha) \right] \\
+ \frac{1}{2} M \dot{x}^2 = \frac{\lambda}{2} (m + M) \dot{x}^2 + \frac{\lambda}{2} m \dot{\theta}^2 \cos^2 \alpha + \frac{\lambda}{2} M \dot{\theta}^2 \cos^2 \alpha = T \]

2) Énergie potentielle

Forces agissant sur la masse m :
- gravitation : \(-mg\hat{z}\)
- tension : \(-T\hat{x}\) ne contribue pas.

\[V_m = -\int mg \hat{z} \cdot \text{d}x = mg \int \text{d}x = mgx \]

Force agissant sur la masse M :
force de rappel \(-k x \hat{x}\) sur \(M\).

\[V_M = -\int -k x \hat{x} \cdot \text{d}x = k \int x \cdot \text{d}x = kx^2 \]

D'où : \[V = V_m + V_M = kx^2 - mgx \cos \alpha \]

3) Lagrangien \[\mathcal{L} = T - V \]

4) Équations de Lagrange

\[\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) - \frac{\partial \mathcal{L}}{\partial x} = \frac{1}{m + M} \left[l \dot{\theta} (m + M) \dot{x} + ml \dot{\theta} \cos \alpha \right] + kx = 0 \]
\[(m+1) \ddot{x} + m \ddot{\theta} \cos \theta - m \ddot{x} \sin \theta + 2 \ddot{\theta} \cos \theta = 0\]

\[\frac{d}{dt} \left(\ddot{x} \sin \theta \right) - \ddot{\theta} \cos \theta \frac{d}{dt} \left(\ddot{x} \sin \theta \right) = m \ddot{x} \sin \theta - m \ddot{x} \sin \theta + m \ddot{\theta} \sin \theta + m \ddot{\theta} \sin \theta = 0\]

\[\Rightarrow \ddot{x} \sin \theta + m \ddot{\theta} \sin \theta = 0\]

5a) Pour \(\theta = 0 \), les équations se réduisent à:

\[(m+1) \ddot{x} + m \ddot{\theta} + 2 \ddot{\theta} \cos \theta = 0\]

\[\ddot{x} + \ddot{\theta} + g \theta = 0\]

5b) Fréquences propres du système

On réduit la solution sous la forme :
\[x = X \cos \omega t\]

\[\omega = \sqrt{\omega_2 - \omega_1^2} \]

\[\begin{vmatrix} -(m+1)A \omega_1^2 - mB \omega_2^2 + 2B \omega_1 \omega_2 & 0 \\ -B \omega_1^2 - A \omega_2^2 + gB & 0 \end{vmatrix} = 0\]

\[\begin{pmatrix} 2B \omega_2 \omega_1 \omega_2 + m \omega_2^2 - m \omega_1^2 + \omega_1^2 \omega_2^2 \\ g - \omega_2^2 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\]

Déterminant :
\[\begin{pmatrix} g - \omega_2^2 \end{pmatrix} \begin{pmatrix} 2B \omega_1^2 \omega_2 + m \omega_2^2 \\ -m \omega_1^2 + \omega_1^2 \omega_2^2 \end{pmatrix} = 0\]

Au propre \(\omega = \omega_2 \) cela donne :
\[2B \omega_1^2 + m \omega_2^2 = 2B \omega_1^2 + m \omega_2^2 = 0\]

\[\Rightarrow m \omega_2^2 - (2B^2 + g \omega_1^2 + g \omega_1^2) \omega_1^2 = 2B \omega_1 \omega_2 \]

\[\Delta = (2B^2 + g \omega_1^2 + g \omega_1^2)^2 - 8B \omega_1 \omega_2 \]

\[\omega = \frac{\sqrt{2B^2 + g (\omega_1^2 + \omega_2^2) \pm \sqrt{(2B^2 + g \omega_1^2 + g \omega_1^2)^2 - 8B \omega_1 \omega_2}}}{2B \omega_1} \]
5c) Espace de phase

On a alors $\dot{q}(t) = B \omega \sin(t)$

\[\dot{\theta}(t) = -B \sinh(t) \]

\[\begin{align*} \frac{\ddot{q}}{\omega^2} - \frac{\dot{\theta}^2}{\omega^2} &= \frac{B^2}{\omega^2} \end{align*} \]

Equation d'un ombilque

5d) Pour $\theta = 0$ (absence de ressort):

\[\nu = \pm \sqrt{\frac{g(M+m)}{20M}} = \frac{0}{m} + \frac{\sqrt{g(m+m)}}{2M} \]

Fréquence du pendule simple
Problème 2 : Trajectoire optimale d'un obusier

1) Énergie potentielle

\[V = \int mg \sin \alpha \, dz = -mg \sin \alpha \, x \]

\[\Rightarrow V = -mg \sin \alpha \, x \]

(Projection de la verticale sur l'axe \(z \).)

2) Énergie cinétique

\[T = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) \]

\[\Rightarrow \frac{3}{2} = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) + mg \sin \alpha \, x \]

3) Impulsions

\[p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = mx \]

\[\Rightarrow H = p_x \dot{x} + p_y \dot{y} - \mathcal{L} \]

\[\Rightarrow H = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) - mg \sin \alpha \, x \]

4) Initialement, nous avons \(H = T + V = E = 0 \) d'après l'énoncé \((E_o = 0) \)

5) Nous avons donc : \(\dot{x}^2 + \dot{y}^2 = 2g \, x \, \sin \alpha \)

\[\Rightarrow \frac{dx^2 + dy^2}{2g \, x \, \sin \alpha} = dt \, dt \]

6) \[t_k = \int_0^{t_k} dt = \int_0^{t_k} \frac{dx^2 + dy^2}{2g \, x \, \sin \alpha} = \int_0^{t_k} \frac{(1 + (y(x))^2)}{2g \, x \, \sin \alpha} \, dx = t_k \]
Conclusion, nous avons \[k = \frac{\int F(x,y,y')\,dx}{\int 2g \sin x \,dx} \] avec :

\[F(x,y,y') = \sqrt{1 + (y'(x))^2} \]

7) Nous avons \[\frac{dy}{dx} = 0 \] donc \[\frac{dF}{dy} = 0 \]

\[\Rightarrow \frac{dy}{dx} = \text{Constante pour rapport à } x \]

\[\Rightarrow \frac{dy}{dx} = C \Rightarrow y'(x) = C \sqrt{2g \sin x (1 + (y'(x))^2)} \]

8) \[y''(x) = \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{y'}{x} = \frac{k - \cos(kt)}{k \sin(kt)} = \frac{A - \cos(kt)}{\sin(kt)} \]

\[1 + (y''(x))^2 = \frac{\sin^2(kt) + 1 - \cos^2(kt) - 2 \sin(kt)}{\sin^2(kt)} = \frac{2(1 - \cos(kt))}{\sin^2(kt)} \]

\[\Rightarrow 2g \sin x \cdot (y''(x))^2 = \left(\frac{4g \sin x}{K^2} \right) \frac{1 - \cos(kt)}{\sin(kt)} \]

Nous avons \[y'(x) = C \sqrt{2g \sin x (1 + (y'(x))^2)} \Rightarrow \frac{2C \sqrt{g \sin x}}{k} = 1 \]

\[\Rightarrow k = 2C \sqrt{g \sin x} \]

9) C'est une cycloïde.