AC CONDUCTANCE AND NON-SYMMETRIZED NOISE AT FINITE FREQUENCY IN QUANTUM WIRE AND CARBON NANOTUBE

Adeline CRÉPIEUX 1, Cristina BENA 2,3 and Inès SAFI 2

1 - Centre de Physique Théorique, CNRS Marseille, France
2 - Laboratoire de Physique des Solides, CNRS Orsay, France
3 - Institut de Physique Théorique, CEA Saclay, France

CURRENT FLUCTUATIONS

ORIGINS OF NOISE
- High temperature: Johnson-Nyquist noise
- High voltage: Shot noise
- High frequency: Quantum noise
- We neglect the 1/f noise

ZERO FREQUENCY AND ZERO TEMPERATURE: SHOT NOISE

⇒ Schottky relation \(S^+(\omega = 0) = e^* |\langle \delta j \rangle| \)

where \(S^+(\omega) = \text{FT} \left\{ \frac{1}{2} \left[\langle \delta j(0) \delta j(t) \rangle + \langle \delta j(t) \delta j(0) \rangle \right] \right\} \)

symmetrized noise

HIGH FREQUENCY NOISE MEASUREMENTS
- High-frequency measurement in a diffusive wire 1–20 GHz
- On-chip detection using SIS junction → 100 GHz
- Direct measurement in a QPC 4–8 GHz

What is measured is \(S(\omega) = \int dt e^{i \omega x} \langle \delta j(0) \delta j(t) \rangle \)

non-symmetrized noise
The system comprises a wire with an impurity at position x_i, modulated by gates V_1, V_2, and V_3, and a backscattering amplitude L.

Model

\[H = H_0 + H_B + H_V \]

\[
H_0 = \frac{\hbar v_F}{2} \int_{-\infty}^{\infty} dx \left[\Pi^2 + \frac{1}{g^2(x)} \left(\partial_x \Phi \right)^2 \right]
\]

\[
H_B = \lambda \cos \sqrt{4 \pi} \Phi(x_i, t) + 2 k_F x_i
\]

\[
H_V = -\int_{-\infty}^{\infty} \frac{dx}{\sqrt{\pi}} eV(x) \partial_x \Phi(x, t)
\]

WE CALCULATE PERTURBATIVELY

- The non-symmetrized noise:
 \[S_{nm}(\omega) = \int dt e^{i\alpha} \langle \delta m(0) \delta n(t) \rangle \]
 where \(n,m = 1,2,3 \)

- The AC conductance:
 \[G_{nm}(t-t') = \left. \frac{\partial \delta n(t)}{\partial V_m(t')} \right|_{V_m=0} \]

RESULT

\[S_{nm}(\omega) = S_{nm}^+(\omega) - \frac{\hbar}{i} \omega \text{Re}[G_{nm}(\omega)] \]

with \[S_{nm}^+(\omega) = \frac{1}{2} \int dt e^{i\alpha} \langle \delta m(0) \delta n(t) + \delta m(t) \delta n(0) \rangle \]

Symmetrized noise

Generalized Kubo-type formula

\[S_{nm}(\omega) = S_{nm}(\omega) - S_{nm}(-\omega) = -2 \hbar \omega \text{Re}[G_{nm}(\omega)] \]

Safi and Sukhorukov (unpublished)
AC CONDUCTANCE

WEAK-BACKSCATTERING LIMIT OF THE EXCESS AC CONDUCTANCE

\[\Delta G_{11}(\omega) = G_{11}(\omega) - G_{11}(\omega) \] _\big|_ \omega = 0 \]

where \(V = V_2 - V_1 \)

source-drain voltage

FOR \(g=1 \): \[\Delta G_{11}(\omega) = 0 \] because of the linearity of the I-V characteristic

FOR \(g \neq 1 \): oscillations with frequency with a pseudo-period related to the wire frequency \(\omega_L = v_F / gL \)

The pseudo-period depends on \(L \) and \(g \):

\[\Omega_g = \frac{hv_F}{gL\lambda} \]
ZERO-FREQUENCY NOISE

IN THE WEAK-BACKSCATTERING LIMIT

\[S_{nm}(\omega = 0) = eI_B \coth\left(\frac{eV}{2k_B T} \right) + 2k_BT \left[\frac{e^2}{\hbar} - 2 \frac{\partial I_B}{\partial V} \right] \]

where \(I_B \) is the backscattering current

- **REGION A:** short-wire limit \(eV < \hbar \omega_L \)
 \(\Rightarrow \) linear variation with voltage
 \(\Rightarrow \) qualitative agreement with experiments on carbon nanotubes

 \textit{WU et al., PRL 99, 156803 (2007)}
 \textit{HERRMANN et al., PRL 99, 156804 (2007)}

- **REGION B:** long-wire limit \(eV > \hbar \omega_L \)
 \(\Rightarrow \) oscillations whose envelope has a power-law dependence

- **REGION C:** high temperature limit \(k_B T > \hbar \omega_L \)
 \(\Rightarrow \) behaves like the noise of an infinite length interacting wire: power-law variation
FINITE-FREQUENCY NON-SYMMETRIZED NOISE

WE CALCULATE \[\Delta S_{nm}(\omega) = S_{nm}(\omega) - S_{nm}(\omega) \big|_{V=0} \]

FOR \(g=1 \): the non-symmetrized excess noise is symmetric

\[S_{nm}(\omega) = S_{nm}^+(\omega) - \hbar \omega \text{Re}[G_{nm}(\omega)] \Rightarrow \Delta S_{nm}(\omega) = \Delta S_{nm}^+(\omega) \] because \(\Delta G_{11}(\omega) = 0 \) when \(g = 1 \)

FOR \(g \neq 1 \): the non-symmetrized excess noise becomes asymmetric

SHORT-WIRE LIMIT \(g \hbar \omega_L / eV = 1 \)

\[\Delta S_{11}(\omega) / eB \]

\[x_i = 0 \]
\[T = 0 \]
\[\lambda / eV = 0.01 \]
FINITE-FREQUENCY NON-SYMMETRIZED NOISE

LONG-WIRE LIMIT

\(g = 0.25 \)
\(x_i = 0 \)
\(T = 0 \)
\(\lambda / eV = 0.01 \)
\(g \hbar \omega_L / eV = 0.01 \)

CARBON NANOTUBE

\[\Delta S_{11}(\omega) / eB \]
\[\text{infinite length wire limit} \]

\[\Delta S_{11}(\omega) / eB \]
\[\text{infinite length nanotube limit} \]

four channels of conduction

\{ charge sector with \(g < 1 \)
3 others sectors with \(g = 1 \) \}
WE CALCULATE THE AVERAGE OVER THE FIRST HALF PERIOD

\[
\langle F \rangle_{\pi \omega_L} = \frac{\langle \Delta S_{11}(\omega) \rangle_{\pi \omega_L}}{e I_B}
\]

where

\[
\langle \Delta S_{11}(\omega) \rangle_{\pi \omega_L} = \frac{1}{\pi \omega_L} \int_0^{\pi \omega_L} \Delta S_{11}(\omega) d\omega
\]

⇒ we obtain \(\langle F \rangle_{\pi \omega_L} \approx g \)

⇒ it should be possible to extract the value of the interaction parameter \(g \)
Simple relation between the AC conductance the non-symmetrized noise

\[S_{nm}(\omega) = S_{nm}^+(\omega) - \hbar \omega \text{Re}[G_{nm}(\omega)] \]

In the presence of Coulomb interactions, the non-symmetrized noise is asymmetric:

Emission noise (\(\omega > 0 \)) ≠ Absorption noise (\(\omega < 0 \))

At low-temperature and for a long wire or a long nanotube, we obtain oscillations with a period related to \(L \) and \(g \)

The average non-symmetrized excess noise over the first half period gives the value of \(g \)

\[\langle \Delta S_{11}(\omega) \rangle_{\pi \omega_L} \approx g \]

ACKNOWLEDGMENTS TO: C. GLATTLI, H. BOUCHIAT, R. DEBLOCK T. KONTOS, B. REULET, E. SUKHORUKOV