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Abstract: The central topic of this thesis is the physics of noise: the Fourier transform
of the current-current correlation function in time. We examine situations where the noise
generated by a given mesoscopic circuit affects the behavior of another mesoscopic circuit.
In the first part of this study, the noise source is unknown, and the mesoscopic circuit
which is capacitively coupled to it acts as a detector of high frequency noise. In our case,
the detector consists of a normal metal-superconductor junction where electron transport
occurs via quasiparticle tunneling, or more interestingly, via Andreev reflection processes.
The theory of dynamical Coulomb blockade is employed in order to compute the dc current
which flows into the detector circuit, providing information on high frequency noise. In
the second part of this thesis, the noise source is known: it consists of a Hall bar with
a quantum point contact, for which anomalous current voltage and noise characteristics
are established when the Hall bar is placed in the fractional quantum Hall regime. A
quantum dot connected to leads, which is placed next to this point contact, acquires a
finite linewidth when the current fluctuates, and acts as a detector of charge noise. We
compute the dephasing rate in the weak and strong backscattering regime, describing
both case of unscreened and screened Coulomb interaction between the Hall bar and the
quantum dot.

INTERACTION ENTRE DEUX CIRCUITS MESOSCOPIQUES POUR LA MESURE DU BRUIT

Résumé: Le point central de cette thése est la physique du bruit: la transformée de
Fourier de la function de correlation temporelle courant-courant. Nous examinons des
situations dans lesquelles le bruit généré par un circuit mésoscopique donné affecte le
comportement d’un autre circuit mésoscopique. Dans une premiére partie, la source de
bruit est inconnue, et le circuit mésoscopique qui lui est couplé de maniére capacitive se
comporte comme un détecteur de bruit a haute fréquence. Dans notre cas, le détecteur est
constitué d’une jonction métal normal-supraconducteur, ou le transport électronique est
du au transfert de quasiparticules, ou, de maniére plus intéressante, est du a la réflexion
d’Andreev. La théorie du blocage de Coulomb dynamique est utilisée pour calculer le
courant continu qui passe dans le circuit de détection, procurant ainsi une information
sur le bruit & haute fréquence. Dans la deuxiéme partie de cette thése, la source de
bruit est connue : elle provient d’une barre de Hall avec un contact ponctuel, dont les
caractéristiques de courant-tension et de bruit sont bien établies dans le régime de 'effet
Hall quantique fractionnaire. Un point quantique connecté a des bornes source et drain,
qui est placé au voisinage du contact ponctuel, acquiére une largeur de raie finie lorsque
le courant fluctue, et se comporte comme un détecteur de bruit de charge. Nous calculons
le taux de déphasage du point quantique dans le régime de faible et de fort rétrodiffusion,
tout en décrivant I'effet de ’écrantage faible ou fort de I'interaction Coulombienne entre
la barre de Hall et le point quantique.

Speciality: Theoretical nano-physics.

Keywords: quantum noise, noise measurement, dynamical Coulomb blockade theory,
Andreev reflection, fractional quantum Hall effect, Luttinger liquid, Keldysh formalism,
decoherence, dephasing rate.
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Chapter 1

Introduction

1.1 Mesoscopic physics

Electrons carry the current in most commonly used conductors. Electrons are elementary
particles that have a discrete charge and a spin. In quantum physics, depending on their
energy, the temperature conditions and the length scales involved, electrons can propagate
in conductors as waves which are characterized by the Fermi wavelength. However, the
particle and wave properties of individual electrons are hardly important in usual electrical
wires supplying electricity, say, to light fixtures in a room. The wire width is about 10
million times the Fermi wave length of an electron. In this case, electrons flow through
wires like a liquid does.

The ability to transmit current of a piece of wire as a conductor can be characterized
by its conductivity or its conductance. The conductance, which is, as we shall see, a useful
concept for this study, is defined as the current passing through the wire divided by the
voltage bias applied between the wire ends. In classical or incoherent regime, where the
wave picture does not apply, the conductance is directly proportional to the wire width,
and inversely proportional to its length. The proportionality coefficient, or conductivity,
characterizes the material the wire is made of, but not the shape of the wire. However,
what happens with this simple scaling law for the conductance when we make a wire
thinner and shorter? It turns out that the scaling law breaks down when the wire size
is small enough to allow coherent propagation of an electron across it. A new field of
physics studying such conductors, which are small enough to allow for coherent electron
propagation, but which still consist of a huge number of atoms, is called mesoscopic
physics. Mesoscopic physics has been a rapidly growing field in solid state physics for
more than two decades [1, 2, 3,4, 5, 6, 7, 8|.

Let us give a few more precisions about the mesoscopic regime. We consider conductors
whose size have to be compared to other characteristic length scales: the Fermi wavelength,
which is related to the kinetic energy of the electrons, the elastic mean free path, which is
the average distance that an electron travels before its initial momentum is destroyed, and
the phase relaxation length — the distance that an electron travels before its initial phase
is destroyed. This phase relaxation length is typically related to processes which change
the initial electron energy or the phase of the wave function, such as electron-phonon
collisions, electron-electron collisions, and spin flip scattering due to magnetic impurities.
For a solid these lengths can vary wildly depending on the material and the temperature,
they can range from a nanometer to tens of microns. What decides the transport regime is
how they compare. The phase coherence length is always assumed to be the largest length



scale in mesoscopic physics. For instance, if the size of the sample is smaller than the
elastic mean free path, the transport is called ballistic. If this mean free path is smaller
than the sample size, but larger than the Fermi wave length, we have a quantum diffusive
regime, and so on...

Note that quantum effects can also occur at the macroscopic scale, as is the case for
superconductivity (as in the Josephson effect [9]), in the early signatures of weak localiza-
tion in thin films [10] or in the quantized Hall effect [11]. Nevertheless the major part of
mesoscopic physics deals with the submicrometer range and with low temperatures. One
of the most famous phenomena to characterize phase coherence is the Aharanov-Bohm
effect [12]. Another high ranking experiment of mesoscopic physics is the quantization of
the electrical resistance in a quantum point contact [13] (which we shall use later on).
Finally, we also mention, as an important concept of mesoscopic physics, the Coulomb
blockade in small electrical islands [14] and quantum dots [15], which behave like artificial
atoms (another point of our study).

1.2 Motivation

Conductance studies are widely used to obtain information about electronic transport
properties, by measuring the current (average amount of charge transferred in a unit of
time) for an applied voltage bias. At the same time, the fluctuations in time of a measured
quantity can provide important information that is not presented in the time averaged
value. Noise is defined as the Fourier transform of current-current correlation function.
In mesoscopic systems, quantum noise detection is a powerful tool to get information not
accessible by transport experiments [16]. It can provide information on the statistics of
carriers (bosons or fermions), their charges, and correlations may be related to interaction
effects. And the measurements of some other physical quantities such as the dephasing
rate of quantum dot level also invoke the noise. This is the reason that noise measurements
attract attentions of both theoretical and experimental nano-physicists.

The unifying theme of this thesis is the study of two coupled mesoscopic systems,
typically in situation where the behavior of one of these influences the other one. In most
cases, one will be considered as the noise source, and the other will be considered as the
detector.

1.2.1 Part one: Capacitive measurement of noise at high frequen-
cies

The field of quantum noise in mesoscopic physics has been intensively developing for more
than a decade. Most experiments focused on measuring the noise at low frequencies (kHz
range) where shot noise dominates [17]. The shot noise spectrum is white with a power
density directly proportional to the average current and symmetric in terms of frequencies.

However, how to study noise in the high frequency regime? In this case, it is im-
portant to consider the quantum system (mesoscopic device circuit) together with the
surrounding environment (another mesoscopic system called the detector circuit), and
the energy exchange between two circuits. In Ref. [18], the authors consider a time aver-
aged measurement of finite frequency current noise using a resonant circuit, which can be
an ordinary LC' element, as a model for the detector, i.e., an inductive element coupled to
the quantum wire, a capacitor whose charge is the quantity to be measured as a response,



and the resistance of the circuit. In this work, a mixture of the two unsymmetrized noise
correlators is measured. This point has been reemphasized in Ref. [19].

In Ref. [20], a detection circuit, which was capacitively coupled to the mesoscopic
circuit to be measured, was proposed as a high frequency noise detector (GHz range).
This basic idea was implemented experimentally recently [21, 22| using a superconductor-
insulator-superconductor (SIS) junction as a detector, measuring in this case the finite
frequency noise characteristics of a Josephson junction, or a Super-Poissonian noise of a
carbon nanotube/quantum dot [23].

The purpose of the first project is thus to analyze a similar situation, except that the
SIS junction is replaced by a normal metal-superconductor circuit, which may also be
inserted by a quantum dot, transferring two electrons using Andreev reflection between a
normal lead and a superconductor. The measurement of a DC current in the detector can
thus provide information on the absorption and the emission components of the current
noise correlator.

1.2.2 Part two: Dephasing of a quantum dot level in the presence
of a fluctuating current

Mesoscopic systems can be used to study the interplay between interference and dephasing
of electrons [24]. Nano-scale fabrication and low temperature measuring techniques, which
minimize unintentional dephasing, enable the observation of variety of coherent effects of
electrons such as an induced Aharonov-Bohm phase, weak localization, resonant tunneling
and conductance quantization [7].

Recently, a set of elegant Aharonov-Bohm ring experiments was performed to detect
the phase shift of electrons passing through a quantum dot built in one arm of the ring
[25, 26, 27]. The observation of phase coherence in transport through a quantum dot
presents an opportunity to study the origins of decoherence in mesoscopic structures.
These experiments, however, did not control the rate of dephasing. An Aharonov-Bohm
ring with a quantum dot in one of its arms offers the ability not only to measure dephasing
rates, but also to directly control these rates by modifying the environment of the quantum
system. This proposal has been done by Y. Levinson |28] and I. L. Aleiner and coworkers
[29] independently where the environment is a quantum point contact located close or
coupled capacitively to the quantum dot.

The aim of this second project is to study the dephasing rate of an electron state in
a quantum dot, due to charge fluctuations in a nearby voltage-biased point contact in
the fractional quantum Hall regime, which can be described by Luttinger liquid theory.
Quantum point contact transmission can then be described by tunneling between edge
states [30]. In this strongly correlated electron regime, edge states represent collective
excitations of the quantum Hall fluid: depending on the pinching of the quantum point
contact, it is either FQHE quasiparticles or electrons which tunnel. It is particularly
interesting because the current-voltage and the noise characteristics deviate strongly from
the case of normal conductors [31, 32, 33]: for the weak backscattering case, the current
at zero temperature may increase when the voltage bias is lowered, while in the strong
backscattering case the (V') is highly non linear. It is thus important to address the issue
of dephasing from a Luttinger liquid.



1.3 Thesis outline

The first part presents results on the detection of quantum noise at high frequencies by
using the on-chip detector circuit including the normal metal — superconductor junction.
This part is organized as follow:

Chapter 2: We introduce the concept of noise in mesoscopic physics, the sources of
noise. We also introduce the scattering approach to obtain the expression of noise in a
two-terminal conductor, then apply for the quantum point contact, a simple mesoscopic
conductor we use to study noise.

Chapter 3: We discuss the single electron tunneling in a ultra-small tunnel junction,
which is known as dynamical Coulomb blockade. This theory is a basis for detecting noise
in a mesoscopic device by coupling it capacitively to a junction in a nearby detector
circuit, which is also discussed in this chapter. Some experiments of noise detection are
pointed out in the last section.

Chapter 4: Andreev reflection is briefly introduced, together with the transmission and
reflection of particles at the normal metal-superconductor interface, where the Bogolubov-
de Gennes theory is applied.

Chapter 5: We propose a way to measure high frequency quantum noise. A detector
is proposed, which consists of a normal lead—superconductor circuit, which is capacitively
coupled to a mesoscopic circuit where noise is to be measured. We discuss two detector
circuits: a single normal metal — superconductor tunnel junction and a normal metal
separated from a superconductor by a quantum dot operating in the Coulomb blockade
regime. A substantial DC current flows in the detector circuit when an appropriate photon
is provided or absorbed by the mesoscopic circuit, which plays the role of an environment
for the junction to which it couples. Results for the current can be cast in all cases in the
form of a frequency integral of the excess noise of the environment weighted by a kernel
which is specific to the transport process (quasiparticle tunneling, Andreev reflection,...)
which is considered. We apply these ideas to the measurement of the excess noise of a
quantum point contact and we provide numerical estimates of the detector current.

In the second part, we study the dephasing in a quantum dot which is coupled capac-
itively with a quantum point contact in the fractional quantum Hall effect regime. This
part is organized as follow:

Chapter 6: This chapter presents the history of the Hall effect, the quantum Hall
effect as well as both integer and fractional quantum Hall edge states. We also introduce
the Luttinger liquid and the chiral Luttinger liquid which describes well the fractional
quantum Hall edge states. Studying non-equilibrium transport between two quantum Hall
edges motivates us to review the Keldysh formation. The backscattering current noise is
proportional to the backscattering current as the Schottky formula which allows us to
observe directly fractional charge.

Chapter 7. In this chapter, we introduce the phase measurement in a quantum dot
via a double-slit interference. Then, we introduce the problem of decoherence of electron
propagation through the quantum dot due to the effect of environment. The environment
can be a normal quantum point contact, which is coupled to or in the proximity of quantum
dot.

Chapter 8 We consider the dephasing rate of an electron level in a quantum dot,
placed next to a fluctuating edge current in the fractional quantum Hall effect. Using
perturbation theory, we show that this rate has an anomalous dependence on the bias



voltage applied to the neighboring quantum point contact, which originates from the
Luttinger liquid physics which describes the Hall fluid. General expressions are obtained
using a screened Coulomb interaction. The dephasing rate is strictly proportional to the
zero frequency backscattering current noise, which allows to describe exactly the weak to
strong backscattering crossover using the Bethe-Ansatz solution.

In the conclusion, we resume our work in this thesis.

Notice that in this thesis, I omit the Planck constant (A = 1) in the calculation, but
it is restored in the numerical results.



Part 1

Capacitive measurement of noise at
high frequencies



Chapter 2

Noise in mesoscopic physics

2.1 Introduction to noise

In dc current setups, when a constant voltage is applied to a conductor, a stationary
current is typically established. However, with a more sophisticated measurement, we
discover that it fluctuates in time around the average value (Figure 2.1). One of the ways
to characterize the fluctuations of this stationary current is to compute the current —
current correlation function and to calculate its Fourier transform, which is called the
noise.

The fundamental reason for fluctuations to occur is the fact that electronic transport is
a stochastic process: incoming/outgoing states of electrons are specified by an occupation
probability, and the transmission trough the sample is also probabilistic.

2.1.1 General current fluctuations

The current /(t) flowing through a device exhibits fluctuations Al = I(t) — (I) in time
around the average (/). The noise is defined as the mean square fluctuations of Al per
unit frequency bandwidth, i.e. the spectral density of the fluctuations. Experimentally
the fluctuations are measured within a finite frequency bandwidth determined by a band-
pass filter restricting frequencies to an interval [w — Aw/2,w + Aw/2]. Mathematically,
we express the fluctuations in this interval as follows [34]:

1 wHAw/2 ‘ ‘

Alpona(t) = —/ dw[AT(w)e ™" + AT*(w)e™] | (2.1)
2m w—Aw/2

where AJ(w) is the Fourier transform of AI(¢). For Aw < w the mean squared fluctuations

((AI)?) are proportional to the width of the frequency interval Af = Aw/27. Therefore,

we obtain for the spectral density

S1(w) = ((Albana)®) /AS . (2.2)

To derive the frequency-dependence of Eq. (2.2), we need to know on which time scale
the fluctuations take place. This is described by the correlation function that connects
the fluctuations at two different instants ¢ and ¢ +t": C(¢t) = (AI(t + ¢ )AI(t')) . From
the Weiner - Khintchine theorem we know that the spectral density is exactly twice the
Fourier transform of the correlation function [35]

Sr(w) =2 /00 dt(AI(t +t)AI(t))e™" . (2.3)
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Figure 2.1: The current as a function of time through a mesoscopic device, the fluctuations around
the average value and their frequency are characterized by the noise.

Usually physical systems have a certain relaxation time 7, after which all correlations are
lost. Therefore, the correlation function tends to zero for ¢ > 7. Normally in an electric
transport experiment the sampling rate is much slower than any characteristic relaxation
time. This does not mean that the fluctuations vanish or cancel out. They are still present
as a white background noise.

In the classical limit, the current — current correlation is real and symmetric: C'(—t) =
C'(t), then the noise spectral density is symmetric: S;(—w) = Sr(w). So we can define the
symmetrized spectrum S7¥"(w) = (Sr(w) + S;(—w))/2 for positive frequencies w, which is
detected in standard, low frequency noise measurements. However, in the quantum limit,
the spectrum is no longer symmetric S;(—w) # S;(w) and this classical description is not
valid anymore.

The fundamental sources of noise (thermal noise, shot noise, and a mixture of both)
depend on the relation between three energy scales: the thermal energy kg6 !, the energy
associated with the frequency of interest w, and the energy eV provided by the device
voltage. Three limit cases of noise are discussed immediately in this section. On the other
hand, there exists 1/f noise, which is caused by slow changes in the device resistance and
they are found in most conducting materials. 1/f noise dominates at very low frequencies
(< 10 — 100 kHz) and is strongly suppressed as frequency is increased, so that in this
thesis, it is not addressed since noise measurements are considered at high frequencies.
When frequency in the range from 100 kHz to 1 - 10 MHz, the white noise exists (such as
thermal noise, shot noise), and at frequencies above 1 GHz, we find finite frequency noise.

2.1.2 Thermal noise

At non-zero temperature, thermal fluctuations contribute considerably to the noise, even
in the absence of the bias current (i.e. in equilibrium). These thermal fluctuations are
called thermal noise and also known as Johnson-Nyquist noise because they were first
reported experimentally by J. B. Johnson [36] and analyzed theoretically by H. Nyquist

1To avoid the confusion of temperature symbol with transmission probability symbol, we use 6 to
denote temperature.



[37]. In the limit kgf > eV, w, thermal noise dominates over other types of noise. The
magnitude of the noise power is proportional to the conductance G of the system, which
is an illustration of the fluctuation-dissipation theorem:

Sy = 4kpbG (2.4)

where G = 1/R with R is resistance. We note that the expression in Eq. (2.4) is valid in
both the classical and the quantum regime. In the latter case, we have simply to replace
G by the conductance quantum in Landauer’s formula G = 2¢*T/h, where T is the
transmission probability (for single channel case).

Thermal noise is also called white noise — the spectral density is independent of f.

2.1.3 Classical and quantum shot noise

Shot noise in an electrical conductor is a non-equilibrium (bias voltage V' # 0) noise orig-
inated from the discreteness of the charges of electrical current. Shot noise is a dominant
contribution in the noise when eV > kg#,w. Shot noise was first described by Schottky
[38] who studied the charge fluctuation phenomena in a vacuum tube diode.

If we assume that the electrons pass completely independent through a conductor,
then the number of quanta N in a time interval 7 fluctuates and can be described by
Poissonian statistics. The average number is given by the mean current (N) = (I)Tj/e
and the mean square derivation is ((AN)?) = (N), which is used to calculate the current
fluctuations at zero frequency

e*((AN)?)
T3
e(I)

= 3 (2.5)

(an?) =

From Eq. (2.3), we can determine the universal shot noise expression in the zero-temperature
limit

Spoisson — 9e(J) . (2.6)
The shot noise power is twice the product of the charge quantum and the mean cur-
rent flowing through a device. This effect can be observed in vacuum tubes or in tunnel
junctions where the charge quanta are transferred independent of each other. This shot
noise is called Poissonian noise and Eq. (2.6) is known as Schottky formula. This result
is modified in quantum transport due to the fact that electrons are fermionic particles
which obey the Pauli principle. In this case, if we consider incident electrons on a poten-
tial barrier which are randomly either transmitted with probability 7" or reflected with
probability R = 1 — T (this is the reason that shot noise is also called partition noise), so
the frequency independent shot noise spectral density is [39]

Sp=2e(IY(1—T). (2.7)

It is useful to define the Fano factor as the ratio between the independent frequency shot
noise divided by the Poisson noise

(2.8)



which is equal to 1 — T in the present case. In the limit of very low transmission (7" < 1),
we recover the Poissonian noise.

Interestingly, correlation phenomena like the Pauli principle or Coulomb interaction
can substantially suppress shot noise in mesoscopic systems. For systems in which cur-
rent is not carried in units of electron charge, the general formula for the shot noise is
S; = F2q(I), where the electron charge e is replaced by an effective charge ¢. Shot noise
measurements performed in the fractional quantum Hall regime allowed the observation
of the fractional charge corresponding to the quasi-particles [40, 41, 42|, and shot noise is
enhanced by a factor 2, in a NS-junction because of the Andreev-reflection [43|. There-
fore, a shot noise measurement gives additional information about the electrical transport
which is not accessible via conductance measurements. Shot noise measurement also can
be used to distinguish between classical and quantum scattering in a chaotic cavity [44],
it gives information about the electron scattering processes in a diffusive wire [45] or in a
system in Coulomb blockade regime. On the other hand, shot noise measurements can be
used to probe particle statistics. Bosons emitted by a thermal source tend to bunch result-
ing in a super-Poissonian statistics [46], while a fermionic thermal source emits particles
separately (anti-bunching) leading to sub-Poissonian statistics [47]. This fact constitutes
a very important tool for testing entanglement in the context of quantum computation.

In macroscopic systems, shot noise is not present because current fluctuations are
averaged out by electrons transferred through multiple transport channels.

2.1.4 Quantum noise at high frequencies

In the high frequency limit (w > kg, eV), zero-point fluctuations in the device introduce
an asymmetry in the spectrum S(w) # S(—w). In the definition of noise (Eq. (2.3)),
I(t) is replaced by the time dependent current operator in the Heisenberg picture I(t) =
exp(iHt)Iexp(—iHt) with H being the time independent Hamiltonian of the system. The

spectral density is now defined as

Srw) = 2/00 dt(AI(t)AI(0))e™ (2.9)

—00

If we know the initial (ground) states |i) and the final (intermediate) states |f), we obtain

Si(w) = dm Y [(fI[D)[PP(i)(Es — Ei — w) | (2.10)
¥

with P(7) is the probability distribution for initial states. In order to interpret physically
Sr(w) we assume the noise source system is coupled to a detector. We find that S;(w) is
proportional to the energy transfer rate between the system and the detector. If £y > E;
(w= Ef — E; > 0), energy is transferred from the detector to the system. That means
positive frequencies correspond to an absorption energy process from the environment,
while negative frequencies correspond to an emission process. The reason of the asymmetry
in the spectrum is the presence of zero-point fluctuations. If the system is in equilibrium
at zero temperature, no energy is available for emission so that S;(—w) = 0, but the
system can always absorb energy and therefore S;(w) # 0. The asymmetry is important
also at finite voltage V' and temperature 6 if the condition w > eV, kg6 still valid.
In equilibrium, at finite temperature 0, the power density obeys the detailed balance
relation [48]
Sr(w) = e*/*805(—w) . (2.11)

10
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— (br.) (br)

Figure 2.2: The model of a conductor connected to two terminals and several transverse channels. If
the left/right lead has Ny, /i channels then (ay/r), (br/r) have Ny /r dimensions.

In the limit of low frequency w < kgf, we recover the classical case S;(w) = S;(—w).

In principle, it is possible to measure separately the two sides of the spectrum, but a
special detector, which can discern between emission and absorption processes, is needed
[18, 19, 20, 21, 49]. To be convenient, hereafter, in this thesis, I use the notation I(¢)
instead of I(t) for current operator. We also introduce other definition of unsymmetrized
noise spectral density

St(w) =2 / h dte™ (AT(0)AI(t)) (2.12)
ST (w) =2 /OO dte™ (AI(t)AI(0)) , (2.13)

which relates to the S;(w) by S*(—w) = Sr(w), S™(w) = Sr(w). With these definitions, it
is quite simple to remark that in S*(w) (S~ (w)), positive (negative) frequencies correspond
to an emission rate from the mesoscopic device, while negative (positive) frequencies
correspond to an absorption rate.

2.2 The scattering approach of noise in a two-terminal
conductor

The idea of the scattering approach (also referred as the Landauer approach) is to relate
transport properties of the system (in particular, current fluctuations) to its scattering
properties, which are assumed to be known from a quantum mechanical calculation. This
approach was generalized to multi-channel, multi-terminal conductors [50].

In this section, we consider a conductor connected to two terminals as left (L) and
right (R) where each lead has N channels (see Figure 2.2). The reservoirs are assumed
so large that they can be characterized by a temperature 0,z and a chemical potential

KL/R-

2.2.1 Average current

This is a standard result which can be found in Refs. [51, 52]. We introduce now operators
a} /rolE) and ar/pq(E) which create and annihilate electrons with energy £ in the
channel « in the left lead (L) or right lead (R), which are incident upon the sample. In the
same way, the creation bTL /r.o(E) and annihilation b/ . (E) operators describe electrons
in the outgoing states. Because we assume that the scattering matrix is independent of the
spin states of the electrons, we ignore the spin index in these operators. These operators

11



obey anticommutation relations such as

{a} o(E)ara(EN} s = Gawd(E—E)
{ava(E)apa(EN} s = 0,
{a} o(E).af (E)}s = 0.

The operators a and b are related via the scattering matrix s as

br1 ari
brn, arny,
=3 . 2.14
bri apr1 ( )
bRNR ARNg

The scattering matrix s has dimensions (N + Ng) x (N + Ng). It relates all reflection
processes at the left reservoir, all transmission processes from the right reservoir to the
left one, and vice versa. It has the block structure

( : f, ) (2.15)

where the square diagonal blocks r (size Ny, x N1) and 7’ (size Ng x Ng) describe electron
reflection processes, while the off-diagonal, rectangular blocks ¢ (size Ng x Np) and t’ (size
N1, x Ng) describe the electron transmission through the sample.

The current operator can be considered in the left lead as

f r
ngZ / dyd2<% o M%(x’t)w@,w), (2.16)

where x, y, and z are the coordinates in the left lead, wz and v, are the fermion creation
and annihilation field operator. The annihilation field operator is expressed in terms of
the scattering properties of the sample as

NL(E)

br(r,t) = \/LQ_W / dEe it Z Xraly:2) pa(E)e™e® 4 by (E)e*er] (2.17)

'ULa

In Eq. (2.17), X1a(y, 2) is the transverse wave function in the left lead channel «, which is
normalized as [ dydzXra(Y, )X} o (Y, 2) = o, the velocity of carriers v, (E) = krqo/m,
and ko, = v/2m(F — EL,), with the notice that we separate the energy F of electrons into
the transverse energy FEr, corresponding to the motion of electrons in the a-th transverse
channel (across the lead), and the longitudinal energy corresponding to the motion of
electrons along the lead. The summation in Eq. (2.17) only includes channels with real
kL«. Substituting the fermion operators relation in Eq. (2.14) for the current operator, we
have

I(t) /dE/dE’ZZ E=E0tat (E)AS(L; E, Eawa (E') (2.18)

nn' aao’
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where Agg,’ (L; E, E') is the current matrix element, which depends on position in general,

/ 1
A%, L, E, E/ = /{ZL E kL El

e ks 5 b Sy, — oD Ro ] () s ()|

Hkra(E) — krs(E')]

X [67”’“5(E)+’“L5(E,)]m5ﬁa5nLSLn';ﬁa'(EI) - ei[km(Eka(El)]mSTLn;aﬂ<E)55°‘/5"'L] } '
(2.19)

However, here we discuss some assumptions and anticipate a few results.

e As our model does not take into account inelastic processes, we get a delta function
of energy when we compute the average current and noise at zero frequency. As a result
the average stationary current is constant and the zero frequency noise does not depend
on where it is measured.

e In practical situations, the bias eV is assumed to be much smaller than the chemical
potential of the leads. Because most relevant momenta happen in the vicinity of the
chemical potential within a few el/, this implies that the momenta k;3(E) and kg(E’) are
rather close. In this case, the second big term in formula of Agf{f (L; E, E') oscillates rapidly
with a wavelength 7/kpr. These kp oscillations can thus be neglected in this condition.
This assumption will be applied to calculate both average current and noise.

Hereafter in this thesis, we will work in this assumptions, then we will have

ALy B, E') = Soa0ni0wr — > Shas(E)SLwigar (E') - (2.20)
B

In order to compute the average current, it is necessary to consider the statistical
average for a system at thermal equilibrium

no

(al (E)awa (E")) = fu(E)YS(E — E6ppbaa (2.21)

with f,,(E) is the Fermi-Dirac/Bose-Einstein distribution function associated with lead n
whose chemical potential is p,,: f,,(E) = 1/[exp((F — pn)/kp0,) £ 1]. Taking into account
the unitary of the scattering matrix, from Eq. (2.18), we obtain

(1) = 5 [(EDHEUBE) - 1a(E) (222)

™

with ¢ is the off-diagonal block of the scattering matrix (2.15), taor = SRL:aa’- The matrix
t't can be diagonalized, and has a real set of eigenvalues (transmission probabilities) T,.
So that the average current can be written as

1) = 3= [AET(Bu(E) - fu(E)] (2.23)

This equation of average current would has been generalized for many channels and many
terminals [52].
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2.2.2 Expression for noise

The noise is defined in terms of current operators as

S*(w) = lim = / 7 / T e (LI ) — (VD] . (2.24)

The calculation of noise involves products I(t)I(t 4+ t') of two current operators. It
therefore involves grand canonical averages of four fermion operators, which can be com-
puted with Wick’s theorem

< Apy o (Eh )an2042 (EQv t) ngag(E37 l+t )GN4G4(E47 1+ )>
= fm (E1>fn3 <E3)5n1n250410425713”450!30!45(E1 - E2)5(E3 - E4)
+fm (El)[l + fm(E2)]57117145041@4571271350420435(E1 - E4)5(E2 - E3)6_i(E1_E2)tl '(2'25)

The first term presents the product of the average currents. In the expression for the
noise, only the irreducible current operator contributes, and the integral over time gives
a delta function in energy (one of the integrals drops out). The noise (considered in the
left lead) is obtained as

sy = 2 dEZ{A%% (Li B, B+ 0) AT (L B+ w, E) fu(E)1 ¥ fu(E +)

+ ASH (L B, E + w)AGH (L E + w, E) fL(E)[1 F fr(E + w)]
+ A% (L B, E + w)AYR(L E + w, E) fr(E)[L F fL(E + w)]
4 A (LB E 4 w)AYS (L E + w, B) fr(E)[1 T fR(E+w)]} . (2:26)

where A% (L; E, E') is expressed in Eq. (2.20). Assuming that s,,.a5(E) is independent
of energy, we have

s = 22 [ {ZT2 FUB)LF fulE + W) + Fa(E)[L F fa(E +w))
+ZT (1-To) (f(E)[L ﬂFfR(EJrW)]+fR(E)[1$fL(E+W)])} :
(2.27)
The noise at w = 0 is obtained without assuming s,,..3(E) is independent of energy
as
S (w=10) / AE{To(E){Fu(LF f2) + ful1 F fo)
iT To(E)(fL — fr)*} (2.28)

This formula is also obtained for fermions by using the wave packet approach [53]. In
the absence of bias or at high temperature 0 (|u;, — pr| << kp#), the two first terms
dominate. Using the relation f;(1 — f;) = —kp00f;/OE, we recover the Johnson Nyquist
formula [36, 37| for thermal equilibrium noise [54]

2
SHw=0) =22 e Ty 0 yrin (2.29)

T
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where G = e¢*Y_ T, /7 is the Landauer conductance of the mesoscopic circuit. In the
opposite limit the bias larger than the temperature, (|ur, — pugr| >> kgf), we get a shot
noise (which is also called reduced shot noise or quantum shot noise)

ST (w=0)=2eF(I), (2.30)
with /' is the Fano factor with transmission is energy independent or in the linear regime

_ Za Ta(l B Ta)
F= ST, .

The same results were discussed by Landauer and Martin [53, 55] appealing to wave
packets.

In the practically important case, when the scale of the energy dependence of trans-
mission coefficients T,,(F) is much larger than both the temperature and applied voltage,
the quantities in Eq. (2.28) may be replaced by their values taken at the Fermi energy.
Then we obtain

(2.31)

2 2
ST(w=0)= =< ZkBQZTngchoth(
s

eV

T.1-T,)] , 2.32
) LT T (2.32)
In the case all the transmission coefficients are small compared to 1, terms proportional
to T2 are neglected, then

S*(w = 0) = 2¢(I) coth (QZZ 9) | (2.33)

This formula describes the shot noise-thermal noise crossover.

2.3 Finite frequency noise in quantum point contact

2.3.1 Quantum point contacts

A point contact is usually defined as a constriction between two metallic reservoirs. The
conductance of quantum point contact displays a stepwise increase as a function of the
gate voltage [13].

There are different ways of fabricating a point contact. It can be realized for instance in
a break-junction by pulling apart a piece of conductor until it breaks. In a more controlled
way, point contacts are formed in 2-dimensional electron gases, e.g. in GaAs/AlGaAs
hetero-structures. By applying a voltage to suitably-shaped gate electrodes, the electron
gas can be locally depleted and a point contact can be defined locally. Another means of
creating a point contact is by positioning an STM-tip close to the surface of a conductor.

All the sizes of the constriction are assumed to be shorter than the mean free path
due to any type of scattering, and thus transport through the point contact is ballistic.
In a quantum point contact, the width of the constriction is comparable to the Fermi
wavelength. Quantum point contact is a simple conductor which is used to test our noise
measurement setup.
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2.3.2 Finite frequency noise

Concerning the finite frequency noise, performing the integral of F in Eq. (2.27) with the
notice that [~ dEf(E)[1 — f(E + z)] = /(1 — e ?"), we obtain the nonsymmetrized
noise spectrum for electron system as [20]

Np,
) = 2oy
T 1 — efw
2¢? N eV +w w—eV
T ZTQ(l —Ta) L — eBeV+w) T 1 — eBlw—eV) | ~ (2.34)

«

where N, is the number of channel, V' is the applied voltage. Eq. (2.34) is not symmetric
for positive and negative frequencies.

In equilibrium (V' = 0), we recover the fluctuation-dissipation theorem at finite fre-
quencies [56]
2(—w)
1—efw’

St (w) = 2G (2.35)

In the zero temperature limiting case, we recover the quantum noise, which is discussed
in Ref. [20] and shown in Eq. (3.28) in the next chapter of this thesis. If the reservoirs
have one channel, the results are illustrated as [57, 58|

S*w) = (2e2/m)T(1 —=T)(eV —w)O(eV — w), if w >0,
(2e?/m)[-2T%*w —T(1 = T)(eV +w)O(—eV —w) +T(1 = T)(eV —w)], ifw <0,
(2.36)

where O(z) is the Heaviside function and T is the transmission probability. In fact, we
obtain Eq. (2.36) by using the relation S*(w) = S;(—w). The plot of S*(w) is shown in
the upper panel in Figure 2.3.

2.3.3 Excess noise

Measuring the non-symmetrized noise means being able to distinguish between emission
(w > 0, energy flows to the detector) and absorption (w < 0, energy flows from the
detector) of the device under test. However, experimentally it is difficult to distinguish
unambiguously between symmetrized and non-symmetrized noise, partly because what is
often measured is the excess noise.

Often, two such measurements are performed on the same system: the first while it is
driven out of equilibrium (e.g., by applying a dc voltage) and the second in equilibrium
(the voltage source is turn off). The excess noise is defined as the difference in the noise
between the first and the second measurement:

SM,excess(w) = SM,noneq(w) - SM,eq(W)- (237)

In most cases mesoscopic samples are driven out of equilibrium by an external dc voltage
V, so that
SM@ICQSS((A)) = SM<CU, \% 7A O) - SM(U.), V= 0) (238)

The excess noise is useful when we are interested in looking into the change in the system
which are due to driving out of equilibrium. It is also useful when a particular setup
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Figure 2.3: The quantum noise spectral density of quantum point contact S as a function of frequency
fw/eV (in units of 4e3V/h) with T = 0.5 is ploted in the upper panel. The excess noise S, .. .(w)
(in units of 4¢*V/h, T = 0.5) is ploted in the lower one.

affects the measurement by introducing an additional noise which is independent of the
sample state, so by taking the difference between the two noise powers we can get rid of
the instrumentation-dependent noise power.
Now, we apply Eq. (2.38) to calculate the excess noise of quantum point contact at
zero temperature corresponding to its spectrum of noise S in Eq. (2.36):
S+

EXCESS

(w) = (22 /7)T(1 = T)(eV — |w|)O(eV — |w|) . (2.39)

The spectral density of excess noise bears most of its weight near zero frequencies, but the
noise decreases linearly to zero over a range [0, +eV] for both positive and negative fre-
quencies, and vanishes beyond the points w = eV (see the lower panel in Figure 2.3). The
excess noise therefore contains a singularity: its derivative diverges at this point. We find
that the spectral density of the excess non-symmetrized noise S, ... (w) is an even function
of the frequency (S ...(w) = SI ...s(—w)). Consequently, the excess symmetrized noise
Sevm (w) = SHess(W) + S5 o(—w) differs only by a factor two (measured in Ref. [21])
from the excess non-symmetrized noise. Thus excess noise experiments in the quantum
regime can usually indifferently be explained by using non-symmetrized or symmetrized
noise expression. So, to know precisely what quantity is measured in such experiments
where the excess non-symmetrized noise is symmetric, we need a good understanding of

the detection process.
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Chapter 3

Noise detection

Finite frequency noise is the subject of a debate. What is actually measured in finite
frequency noise measurements? As we have discussed in the section of quantum noise, it
is important to specify a measurement procedure in order to decide which noise correlator
is measured. Recently, theoretical efforts have been made to describe the high frequency
noise measurement process based on the dynamical Coulomb blockade theory.

In this chapter, I first discuss the single electron tunneling in a ultra-small tunnel
junction, which are known as dynamical Coulomb blockade. This theory is a basis for
detecting noise in a mesoscopic device by coupling it capacitively to a junction in a
nearby detector circuit, which is also discussed in this chapter. Some experiments of noise
detection are pointed out in the last section.

3.1 Dynamical Coulomb blockade

Coulomb blockade is the increased resistance at small bias voltages of an electronic de-
vice comprising at least one low-capacitance tunnel junction. Coulomb blockade was first
observed and understood within the framework of single electron tunneling in small ca-
pacitance metallic tunnel junctions with a large number of weakly transmitting channels.

3.1.1 Electron tunneling through a tunnel junction

A tunnel junction, in its simplest form can be described for example, as a thin insulator
barrier between two normal conducting electrodes (see Figure 3.1). According to the law
of classical electrodynamics, no current can flow through an insulating barrier. According
to the law of quantum mechanics, however, there is a non-vanishing probability for an
electron on one side of the barrier to reach the other side. When a bias voltage is applied,
this means that there will be a current flow.

Due to the discreteness of electrical charge, current flows through a tunnel junction
is a series of events in which exactly one electron passes (tunnels) through the barrier.
At zero temperature a tunneling process leading from @) to  — e is only possible if the
difference of charging energies before and after the tunneling process is positive

N @@y

=56 20 >0. (3.1)

This condition is satisfied if Q) > e/2 (or the voltage across the junction U > U, = e/2C).
If we assume that starting at a charge |Q| < e/2, the junction is charged by the ideal
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Normal metal Insulator  Normal metal

Figure 3.1: Schematic drawing of a metal tunnel junction and the symbol for an ultra-small normal
metal tunnel junction.

external current /. When |@Q)| > /2 an electron may tunnel thereby decreasing the charge
on the junction below the threshold e/2. This process occurs with a frequency f = [/e
and is called single electron tunneling oscillation [59, 60]. We may also use an ideal voltage
source and feed a current to the junction through a large resistor. Its resistance is assumed
to be smaller than the tunneling resistance of the junction but large enough to inhibit a fast
recharging of the capacitor after a tunneling event. There will be no current if the external
voltage is smaller than e/2C. So we find that at zero temperature, the average current in
the current-voltage characteristic is shifted in voltage by e/2C. This shift in the current-
voltage characteristic is called the Coulomb gap and the phenomenon of suppression of
the current below U, is referred to as Coulomb blockade.

The Coulomb blockade is also observable when the temperature is low enough so that
the charging energy (the energy E. = ¢?/2C that is required to charge the junction with
one elementary charge) is larger than the thermal energy of the charge carrier k6. For
capacitances below 107!°F, the temperature must be below about 1K.

In fact, the single junction cannot be decoupled from the rest of the world or replacing
its surroundings by ideal current or voltage sources. We have to consider the junction
embedded in the electrical circuit [61, 62, 63]. Dynamical Coulomb blockade is a quantum
effect which appears when a quantum coherent conductor is connected in series with an
electromagnetic impedance [64].

3.1.2 Hamiltonian of a tunnel junction embedded in an electro-
magnetic environment

We follow Ingold and Nazarov [64] deriving the expression of tunneling rate through a
junction. The quasi-particles in the two metal electrodes are described by the Hamiltonian

H, = Z ekczgckg + Z eqc:;acqo , (3.2)

ko qo

where €, and ¢, are the energies of quasi-particles with wave vector k and ¢ while o
denotes their spin. The first and the second sum correspond to the left and right electrode,
respectively.

19



Tunneling is introduced by the Hamiltonian [62, 65, 66]

Hr = Z T,ygqcfmc;we_i(Zb + h.c. (3.3)

kqo

with ¢ is the phase ¢(t) = effoo dt'U(t') where U = @Q/C is the voltage across the
junction. With the purpose of studying the effect of environment to the changing of
charge on the junction electrodes by the operator e, we consider only the fluctuations
around the mean value determined by the external voltage V. That induces us to consider
qg(t) = ¢(t)—eVt and Q = Q — CV. Introducing ¢ into Hy, we perform a time-dependent
unitary transformation H = UTHU — iUt0U /0t with

U= Hexp [ithC;Tkaa} ) (3.4)
ko

The new tunneling Hamiltonian then reads

Hp = Z qucgockae’i‘{’ + h.c. (3.5)

kqo

and the new Hamiltonian of the electrodes is

H, = Z(ek + eV)chc;w + Z EqC,JSnga , (3.6)

ko qo

with eV shifted energy levels between the leads.
In the following, we will use the tunneling Hamiltonian in the form (3.5), and now the
total Hamiltonian of the system is

H = Hyy+ Hepy + Hy | (3.7)

where H.,, describing the environment. In our case, the environment is represented by
the device where we would like to measure noise and the junction is used as a detector.

3.1.3 Calculation of tunneling rates in the tunnel junction

Before calculating the tunneling rates through the junction by using perturbation theory,
we make two important assumptions. First, the tunneling resistance Ry is large com-
pared to the resistance quantum Ry = 27/e?. This implies that the states on the two
electrodes only mix very weakly so that the Hamiltonian (3.6) is a good description of the
quasi-particles in the electrodes. We then may consider the tunneling Hamiltonian Hy
as a perturbation. The second assumption is charge equilibrium being established before
a tunneling event occurs so that the states to be used in the perturbation theoretical
calculation are equilibrium states.
The tunneling rate is given by the Fermi golden rule

Doy = 2 l{fl i) 20(E: — E) (3.8)
This is the rate of transitions between the initial state |¢) and the final state |f). Specif-

ically, we set |i) = |F)|R) and |f) = |E")|R’) where |E), |E’) are quasi-particle states of
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respective energy E, E’, and |R), |R’) are reservoir states (charge states) with energies
Eg, E}. The matrix element in (3.8) then becomes

(flHzli) = (E'|Hg | EY(R'|e | R) + (E'|H! E) (R |R) | (3.9)

with Hy = >, T kqClsCro acts in the quasiparticle space. The term (E'|Tycl co|E)
gives the non-zero contribution only when the initial and final states are of the form
|E) = |...;1koy ooy 0goy ...) and |E') = |..., Oko, ...y Lyo, ...) respectively. This means that in
the initial state an electron is occupying the state (k, o) in the left electrode, whereas the
state (g,o0) is unoccupied in the right electrode, leading to P3(E) as a combination of
Fle)lt = Fe,).

If the applied voltage eV is much smaller than the Fermi energy, we may assume
that all quasi-particle states involved have energies close to the Fermi energy. Taking
the tunneling matrix element to be approximately independent of ¢, €,, we may replace
> kg0 | Tkel* by an averaged matrix element |T'|?, which accounts for the density of states
at the Fermi energy. All constant terms are collected in the tunneling resistance Rr. The
total rate for electron tunneling from left to right is

V) = op [ dBAETE)L - f(B)
<> R |RY2Ps(R)d(ex + eV + En — e, — Ef) . (3.10)
R,R!

Now we trace out the environment states. The probability of finding the initial reservoir
state | R) is P3(R) = (R|pg|R) with the equilibrium density matrix pg = Z;" exp(—3Heno).
Here Z3 = Tr{exp(—(3Hny)} is the partition function of the environment.

Rewriting the delta function in (3.10) in term of its Fourier transform and using the
Heisenberg presentation, we obtain

r_(V) = 62;% /Oo dEdE' /OO s—; exp (i(E — E' + eV)t) f(E)[1 — f(E")]
x Y Ps(R)(Rle WO\ RV (R |e " *O|R) . (3.11)
R,R’

3.1.4 Phase-phase correlation and distribution functions

We define the equilibrium correlation function

<6i¢3(t)e—i¢3(0)> — ZPﬁ R|el¢ ¢3(0)|R>

1 . =
= Y (R|e W0 et | R) (3.12)
Z3 =
so that we get
1 o
r-(v) = dEdE'f(E)[1 — f(E'
V) = o | dBaEEL - £
°° dt
x/ ﬁexp( i(E — E' + eV)t) (90 e=i90)y (3.13)
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If the noise is Gaussian, the correlation function defined in (3.12) can be simplified by
applying the generalized Wick theorem as (also see Appendix A [Egs. (5.54) and (5.57)])

(€900 = exp(([a(t) — $(0)]4(0))) - (3.14)

For latter convenience we introduce the abbreviation called phase-phase correlation func-
tion:

I () = {[6() = &(0)]$(0)) . (315)
and the Fourier transform of the correlation function (3.14):
P(E) = 5 / " dtexp [J(1) +iBH] (3.16)

which is called the distribution function.
The integral over energy of P(F) is normalized to 1, which confirms P(F) as a prob-
ability density

/OO P(EYdE = ¢’ =1 . (3.17)

[e o]

Another property of P(E) is the so-called detailed balance symmetry
P(—E)=¢"PP(E) , (3.18)

which means that the probability to excite the environment is larger than the probability
to absorb energy from the environment by a Boltzmann factor. Consequently, no energy
can be absorbed from the environment at zero temperature, and P(E) then vanishes for
negative energies.

3.1.5 Tunneling rate

Using the definition of P(E), we can rewrite the forward tunneling rate in (3.13) as

ro(V) = 62;@ / " ABAE J(E)[1 - f(E' + V)| P(E - E) . (3.19)

—00

The expression (3.19) takes into account the possibility of energy exchange between the
tunneling electron and the environment. We may interpret P(FE) as the possibility to
emit the energy E to the external circuit. Correspondingly, P(FE) for negative energies
describes the absorption of energy by the tunneling electron. Integrating over variable £’
we obtain the final formula for forward tunneling rate being

1 o E
r-(v)= dE PeV — F) . 3.20

") e? Ry /oo 1 — exp(—SE) (€ ) (3:20)
Similarly, we calculate the backward tunneling rate. However, it is rather obvious from
the symmetry of a voltage biased single junction as

T_(V)=T_(-V). (3.21)

In conclusion, the consideration of current—voltage characteristic of a single tunnel junc-
tion reduces to the determination of P(F) or the phase correlation function .J(¢). In the
next section, we will present an example for special impedance which relates the fluctua-
tions of the voltage across the junction and the current fluctuations in a nearby mesoscopic
device [20].
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3.2 Detection of high-frequency quantum noise in meso-
scopic conductors by double quantum dot junction

In Ref. [20], the authors propose a measurement setup for detecting quantum noise over a
wide frequency range using a tunable two-level system as a detector. The detector consists
of a double quantum dot (DQD) which is capacitively coupled to the leads of a nearby
mesoscopic conductor. The scheme of the system is shown in Figure 3.2.
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Figure 3.2: a) Energy diagram of a DQD in the regime of high bias voltage. b) Circuit for capacitively
coupling the DQD to a second mesoscopic device [20].

3.2.1 The inelastic current

A double quantum dot is a fully controllable two level system with the separation between
levels ¢ = E, — Ei controlled by gate voltage, a dc inelastic current can circulate in the
detection circuit only if the frequency w = € is provided by the mesoscopic device. The
tunnel rate between the dots is assumed much smaller than the tunnel rates across the
left and right barriers so that the inelastic current is given by

Linei(€) = €T P(e) , (3.22)

where T, is the tunnel coupling between the dots. The formula (3.15) can be rewritten
as J(t) = ([6¢(t) — 66(0)]65(0)), where now the fluctuating phase d¢(t) relates to the
fluctuating voltage across the DQD junction dVpgop(t) = V(t) — (V(t)) by the relation
5o(t) = e ffoo dt'0Vpop(t'). We calculate the first part in the phase correlator and take
into account the definition for the non-symmetrized power spectral density of the voltage
fluctuations across the junction

Sv(w> =2 /Oo dt@th <5VDQD(t>(5VDQD(O)> y (323)

—00
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then we obtain

(6p(t)0 / dt’ / dt” / dwe™ ) Sy (w) . (3.24)

Performing the integrals over the time ¢’ and ¢”, and noting that the fluctuations of the
voltage across the DQD junction relate to the current fluctuations through the mesoscopic
device as Sy (w) = |Z(w )|ZSI( ), with Z(w) is the transimpedance connecting detector
and device circuits and Sy(w) =2 [°°_dte™*(AI(t)AI(0)) appears in a non-symmetrized
form, we have
m |Z(w)P? it
J(t) = RK/ TSI(w)(e -1), (3.25)

with Ry = 27 /e? is the quantum of resistance.

In the limit of small fluctuations of voltage across the junction, J(t) is not diverging
for long times, we expand ¢’/® ~ 14 J(¢) in Eq. (3.16) and derive

Pe) ~ {1 -= [ dw7|Zc(:Z)|251(w)} s+ s, (s20)

RK K €

The first part renormalizes the elastic current when ¢ = 0. In fact, by controlling the gate
voltage in the detector circuit to control € # 0, we do not consider further this term. If the
impedance Zg is small enough (Zg = 0.1 R ), the coupling of the noise into the detector is
sufficiently effective but the transimpedance is approximatively independent of frequency:
|Z(w)]? ~ |Z(0)|* = k?R%. The last formula we obtain for the inelastic current through
the DQD is

2 2T_c251 (¢)

Linei(€) >~ 27°K >

(3.27)

e €
We find that the current fluctuations at frequency w result in the inelastic current at
level difference ¢ = w. That means we can study the properties of current noise in the
mesoscopic device by investigating the inelastic current of detector.

This interesting theoretical idea has so far eluded experimental verification, possibly
because in the double dot system, additional (unwanted) sources of inelastic scattering
render a precise noise measurement quite difficult. It is therefore necessary to look for
detection circuits which are less vulnerable to dissipation, as is the case of superconducting
circuits, because of the presence of the superconducting gap.

3.2.2 Quantum point contact as a source of noise

As an application, we study the current noise spectrum of a quantum point contact. In
Ref. [20], noise of quantum point contact (see Eq. (2.34) in chapter 2) is considered as a
function of renormalized frequency v = w/|eVye,| (for simplicity, we take eV, > 0), with
N = 2 and different values of the total transmission 7" = Eg T,

2Ty ifr>1,
26Vaeo | S Ta(1 =T +v)+ >, T?2v if0<v <1,
S == S0 =T (1 +v) if-1<v<o, (2
0 ifv<-—1,

Iiner(v) with values of the total transmission are plotted in Figure 3.3. The asymmetry
of noise determines the main feature of ;,,(v). In the absorption side, for open channels
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Figure 3.3: ;e (v) (in units of 1672k2T2/hVy,,) for some values of the total transmission T =
1,1.5,2 corresponding to the continuous line, the dashed line and the line with stars. Insets: transmis-
sion dependence of I;,.; for a fixed value of the frequency; v = —0.25 for absorption and v = 0.25
for emission [20].

(which have T, close to 1, in this case T'= 1 and T' = 2), the non-equilibrium part of
the noise is zero and no energy can be absorbed by detector, while for non-open chan-
nels the non-equilibrium noise is finite and the detector can absorb energy even at zero
temperature. Emission is possible for both open and non-open channels due to zero-point
fluctuations so the inelastic current for v > 0 is always finite.

The inelastic current depending on the transmission is shown in the insets to Figure3.3
with a fixed value of the frequency. In the absorption case, I;,.;(v) oscillates as a function
of T' (left inset) whereas it is an increasing function with plateau-like features in the
emission case (right inset).

In conclusion, the inelastic current through a DQD at low temperature can be a
probe of noise in a nearby mesoscopic conductor. The asymmetry between absorption
and emission processes gives a clear measurement of the non-equilibrium quantum noise.

3.3 Noise detection in experiments

We know that noise is not only an unwanted signal. It contains a wealth of information
not presented in averaged observable quantities. The most important question is how we
actually detect the noise? In principle, we can measure time-resolved, that is continuously
obtain values of the fluctuating quantity and later do statistics on the data, calculating
for instance the noise power. It also is the basic definition of the noise. However, noise
measurements in experiment are done alternatively following the sources of noise.

3.3.1 Noise reduction measurements

The shot noise is usually tested following the Schottky formula (Eq. (2.6)) at zero tem-
perature or following the crossover as in Eq. (2.33) at non-zero temperature. The first
experimental shot noise measurements in semiconductor quantum point contacts were
done by Reznikov et al. [67] and Kumar et al. [68]. For a single channel sample, the noise
has a peak for transmission 1/2, and subsequent oscillations are observed as the number
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Figure 3.4: a) Atomic force micrograph of the sample consisting of a quantum dot connected to two
contacts S and D and a nearby quantum point contact. G1, G2, and P are related gates allowing the
tuning of the tunnel coupling to S, the coupling to D, and the conductance of the quantum point
contact. G1 and G2 are also used to tune the number of electrons in the quantum dot. A symmetric
bias voltage V is applied between S and D. b) Time trace of the current measured through the
quantum point contact (for more details, see Ref. [74]).

of channels increases [67]. The noise reduction factor is found to be in excellent agreement
with theoretical expectations, evolving from nearly unity at low electronic wave transmis-
sion to nearly zero on a conductance plateau [68]. The 1—T reduction of shot noise is most
explicit in point contact experiment and break junctions experiment because we can tune
the system in order to have the controlled opening of the first few conduction channels.
However, it can be also observed in various mesoscopic systems, other than ballistic such
as double barrier structures, diffusive conductors, or chaotic cavities.

The shot noise measurements were also focused on the quantum Hall regime [40, 41, 42]
where the carriers can be not electrons but quasiparticles (in the weak backscattering
limit). The fractional charges e/3, e/5 were observed at incompressible Landau level filling
(see also at intermediate filling [69]). These works will be discussed latter on in this thesis.
The hot-electron shot noise in a metallic resistor was observed by Steinbach et al. [70]
and the shot noise in a diffusive mesoscopic conductor is measured in the high frequency
regime by Schoelkopf et al. [71], who also studied noise in photo-assisted phase-coherent
mesoscopic transport [72].

3.3.2 Full counting statistics of current fluctuations

An alternative way to investigate current fluctuations, introduced by Levitov et al. [73], is
known as full counting statistics. This method relies on the evaluation of the probability
distribution function of the number of electrons transferred through a conductor within
a given time period (intuitively, it is counting electrons passing one by one). In Ref.[74],
based on the real-time detection of single electron tunneling through a quantum dot
using a quantum point contact as a charge detector, the authors can directly measure the
distribution function of current fluctuations in the quantum dot. The sample of the system,
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Figure 3.5: Quantum device and a detector as its environment. The current I(¢) fluctuating in time
gives rise to different types of noise. Energy exchange between the device and the detector (emission
or absorption).

fabricated on a GaAs-GaAlAs heterostructure containing a two-dimensional electron gas
34nm below the surface, is shown in Figure 3.4 a). From the time trace of the current
measured through the quantum point contact corresponding to fluctuations of the charge
of the dot between N and N + 1 electrons, we can count the number of electrons entering
the quantum dot from the source contact during a given time, then obtain the statistical
distribution (see Figure 3.4 b)). With this method, we can measure current, shot noise
(the second moment), and the higher moments.

3.3.3 On-chip detection of quantum noise

40 m

Figure 3.6: Optical image of a sample used to detect high-frequency current fluctuations of mesoscopic
devices. The source is capacitively coupled on-chip to the detector via coupling capacitances. Source
and detector are isolated from the external environment at high-frequency by resistance and isolation
capacitance [22].

However, this might be difficult to achieve if the typical time of fluctuations is very
small requiring an extremely fast detector. That is one of the reasons why experiments
on noise in quantum transport have remained a tricky subject. Noise measurements at
high frequencies benefit of an better sensitivity and allow the study of correlation in-
duced in transport or to access the internal energy scale of the system. In this case, it
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is important to consider the quantum system (the device) together with the surround-
ing environment (the detector) and the energy exchange between them as sketched in
Figure 3.5. Any kind of processes involving emission of energy from the device to the
environment are depicted by the upper arrow and contribute to S*(w), while processes
associated with absorption of energy from the environment are indicated by the lower ar-
row and contribute to ST(—w) (see Egs. (2.12) and (2.13) for definitions). In experiments
on mesoscopic systems, high-frequency noise is usually measured by coupling capacitively
with a detection circuit, which is developed from the basic idea of Ref.|20]. The detection
principle is based on the noise-induced photo-assisted tunneling of quasiparticles between
the two superconducting electrodes of a superconductor-insulator-superconductor (SIS)
junction. This allows frequency resolved measurements between few GHz and a few 100
GHz, depending on the superconducting gap. This kinds of experiment are performed in
the Quantum Transport group in Delft University and the Mesoscopic Physics group in
the Laboratory of Solid Physique at Paris-South University, Orsay. The sample used to
detect high-frequency current noise of mesoscopic devices are shown in Figure 3.6.

A good sensitivity is achieved by having both the device and the detector inserted in
an on-chip circuitry. In the Ref. [21], the mesoscopic device is another SIS junction due
to the AC Josephson effect where the non-symmetrized noise with frequency from 5 to 90
GHz is measured (up to 100 GHz, depending on the superconducting material). At higher
bias shot noise was measured due to the quasiparticle current. The emission part of the
noise is first measured using a sub-gap biased detector. The same scheme is used to detect
the current fluctuations arising from coherent charge oscillations in a two-level system,
a superconducting charge qubit. A narrow band peak is observed in the spectral noise
density at the frequency of the coherent charge oscillations. Indeed, as the detector is
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15 4
“’z 24 - Vg, 4 ; w = 8Vp- 24/
310 B 1 t a A
i 20GHz 2A ] I
3 v T 44GHz i
oF eVp< 2A
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(b) Vp wv)
—R I C. B——
C—— _ —C
—A Detector B—
o H—TSource = 1 &

Figure 3.7: (a) I(V) of the detector under monochromatic irradiation (black curve without irradiation),
with frequency indicated on the figure and high enough amplitude to have a visible PAT current, and
schematic pictures of the tunneling process involved in the PAT current through the detector. Left
: |Vp| < 2A/e, only emission by the source can lead to PAT. Right : |Vp| > 2A/e the detector is
mainly sensitive to absorption by the source. (b) Equivalent circuit of the sample [22].
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itself a mesoscopic device, the device under study and the detector need to be considered
on the same level. In Ref. [22], the photo-assisted tunneling quasiparticle current through
the detector due to the high frequency current fluctuations of the source, in the regime
GVD,W > ]CBQ, is

Ipar(Vp) = Iqp(Vp) — Igro(VD)
“+o00 e 2 w
= /O dw (;) SV(_W>[QP,O <VD —+ g)

e[ (9 svtan (vo-2)

— /+°° dw (E>2 Sv(w)lgpo (Vb) (3.29)

oo w

with Sy (w) the non-symmetrized spectral density of excess voltage fluctuations at fre-
quency w across the detector and Igpo(Vp) the I(V') characteristic of the detector when
the source is not polarized, Vp the detector voltage. Sy (w) is related to the current fluc-
tuations of the source S;(w,Vs) through the transimpedance Z(w) determined by the
on-chip circuitry [Sy (w) = |Z(w)|*S;(w, Vs)]. The different terms of Eq. (3.29) contribute
only when the argument of /opy is higher than 2A /e (i.e. Igpo # 0). This defines two
regimes of detection. When |eVp| < 2A only the first term in Eq. (3.29) contributes: we
are then measuring the emission of the source (Figure 3.7 (a), left). When |eVp| > 2A, all
the terms contribute but with a stronger weight for the absorption by the source (Figure
3.7 (a), right).

It has been shown that by measuring the photo-assisted tunneling current of a super-
conducting junction we are able to measure separately, and with comparable sensitivities,
the contribution of emission and absorption to the non-symmetrized current fluctuations
of the source. For this particular detection scheme, the symmetrized current fluctuations
are not relevant, because they mix emission and absorption. The current fluctuations due
to quasiparticle tunneling in a Josephson junction present a strong asymmetry between
emission and absorption, with singularities in emission or absorption depending on the
bias condition.

The SIS on-chip detection scheme is also used to detect noise generated by a quantum
dot formed in a single wall carbon nanotube [23]. Measurement of shot noise over a full
Coulomb diamond is reported with excited states and inelastic cotunneling clearly visible.
Super-Poissonian noise is detected in the case of inelastic cotunneling.

On the other hand, the experimental realization of a quantum dot operating as a
high-frequency noise detector is presented in Ref. [75]. Current fluctuations produced in
a nearby quantum point contact ionize the quantum dot and induce transport through
excited states. The resulting transient current through the quantum dot represents the
detector signal. Investigating its dependence on the quantum point contact transmission
and voltage bias, the authors observe and explain a quantum threshold feature and a
saturation in the detector signal. This experimental and theoretical study is relevant in
understanding the back-action of a quantum point contact used as a charge detector.
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Chapter 4

Andreev reflection

Before mesoscopic physics was born, superconductors already displayed a variety of phase
coherent phenomena, such as the Josephson effect. In recent years, scientists have been in-
terested in the problem: what would happen if a normal metal lead was put in contact with
a superconductor. For example, in the Figure 3.1, if one of two normal-conducting elec-
trodes is replaced by a superconducting electrode, we have a normal metal-superconductor
junction (NS junction). Much experimental and theoretical work on NS junctions has been
done recently since such junctions have advantages for certain practical applications.

In this chapter, the basic transition properties of NS junction, specially the Andreev
reflection will be introduced. This will be useful for the readers following the next chapter,
because we will describe a noise detector which exploits Andreev reflection.

4.1 Introduction

Andreev reflection is a special type of particle scattering which occurs at interfaces between
superconductors or normal metal-superconductor interfaces. In such a reflection process
an electron incident on the interface is retro-reflected and converted into a hole and vice
versa. The differences between normal reflection and Andreev reflection are illustrated in
Figure 4.1. This phenomenon is found by Alexander F. Andreev in 1963 [76].

The basic knowledge of Andreev reflection is usually described on an interface between
a normal metal and a s-wave conventional superconductor with the interface is assumed
to be transparent.

We know that superconductor has an energy gap of width 2A in the density of states at
the Fermi energy (called ps). Hence, there are no single particle states at those energies.
A normal metal, however, has all electron states filled up to the Fermi energy (called
pr). Connecting these two materials there will be electrons moving from the normal
metal towards the superconductor only if p; — ug > A following the normal reflection.
Single particle transmissions are therefore forbidden when u;, — us < A. However, higher-
order two-particle process is possible. By transferring two electrons at the same time, the
incident and another one, a Cooper pair can be formed in the superconductor. In view of
a single particle picture, the second additional electron corresponds to a reflected hole in
the normal metal.

The properties of the Andreev reflection comparing with the normal reflection are
discussed below:

e Charge is conserved in normal reflection but not in Andreev reflection. The reflected
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Figure 4.1: Normal reflection in the left panel: an electron is reflected as an electron. The right panel
indicate Andreev reflection: an electron is reflected as a hole whose momentum is exactly opposite of
that of the electron. A charge 2e¢ is absorbed in the superconductor as a Cooper pair.

particle (the hole) has the opposite charge as the incident particle (the electron).
The missing charge of 2e is absorbed into the superconductor as a Cooper pair.

e Momentum is conserved in Andreev reflection but not in normal reflection. The hole
travels along the same line as incident electron but in opposite direction, that means
all components of the velocity vector are reversed. The conservation of momentum
is an approximation, valid if the superconducting excitation gap A is much smaller
than the Fermi energy of the normal metal.

e FEnergy is conserved in both normal and Andreev reflection. The electron is at an
energy € above the Fermi level and the hole is at an energy e below it. Andreev
reflection is an elastic scattering process.

e Spin is conserved in both normal and Andreev reflection. To form a Cooper pair
which has zero total spin, the reflected hole should have the opposite spin as the
electron. For this reason, Andreev reflection is suppressed if the metal is a ferro-
magnet.

Besides the main properties of Andreev reflection, which are shown above, we find the
other properties such as: the Andreev reflection is suppressed when we increase barrier
strength between the materials; time reversal symmetry requires that there exists also
an Andreev reflection in which a hole is reflected into an electron. The phase difference
between the electron and hole in the Andreev reflection is —m/2 plus the phase of the su-
perconducting order parameter. Notice that Andreev reflection has an analogue in optics,
known as a phase—conjugating mirror [77].

As we have discussed above that the Andreev reflection happens at the interfaces of NS
junctions or superconductor-superconductor junctions. In the SNS junction for instance,
within the normal metal is surrounded by the superconductors, and a number of Andreev
reflections appear at the NS interfaces. This effect is called Multiple Andreev Reflection
(the related paper can be found in Ref. [78]).

4.2 Transition from metallic to tunneling regimes in su-
perconducting microconstrictions

In Ref. [79], the authors have discussed the transmission and reflection of particles at the
normal metal-superconductor interface.
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Figure 4.2: The excitation energies Ej, vs k in the superconducting state being expanded near +kr[79].

4.2.1 The Bogolubov-de Gennes equation

First, we consider the Bogolubov-de Gennes theory applied for the generalized semicon-
ductor model [80, 81].

We are now considering the general electron system, with an applied arbitrary external
potential V' (z). The effective Hamiltonian of this system is simply written as

Hyp = /dx{zajxpg(x)(—zzz

+ A@) @) (@) + A @) (@) (@) } (4.1)

-wm+V@0WA@

where the operators ¥, UT satisfying the anti-commutation rules. They can be decomposed
in terms of their Fourier components as

U, (z) = Z eFers ,
k

W) = S e, (42)
k

with ¢} (cky) is the creation (annihilation) operator for an electron, which has momentum
k and spin o in the BCS theory [81]. The first term in (4.1) destroys and creates one
electron and therefore conserves the number of particles. But the two last terms increase
or decrease two particles. The mean of the product ViU WV are non-vanishing and
these terms will play an important role. A(x) is called the pair potential. The effective
Hamiltonian (4.1) is diagonalized by the Bogolubov transformation

(o) = Y [wle)w — i)l | -

k

Wy (2) = > [unle)m + i@l - (4.3)

where 7, 7' are new operators still satisfying the fermion commutation relations. They
are called fermion quasi-particle operators. The state ug(x) (vx(z)) corresponds to the
wave function of a electron-like (hole-like) quasi-particle at position x. The corresponding
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Hamiltonian has a diagonal form
Hepp = Eg + Z Byl g ko (4.4)
ko

where £ is the ground state energy of H.;s and Ej, is the energy of the excitation n. This
Hamiltonian provides that the electron and hole wave functions satisfy the Bogolubov
equations

Bux) = [~o—— s+ Vin)u(x) + Aholz)
Bu(e) = [ s+ V() + A" () (4.5

In principle, these equations need to be solved self-consistently. The (Z:) are eigenfunctions
of a linear system with corresponding eigenvalues Fj:

o()-4()

The operator € is Hermitian so that the different eigenfunctions (zf) are orthogonal.

If (zj) is the solution for the eigenvalue F then (jﬂ*) is the solution for the eigenvalue
—F.

In what follows we will assume V(z) = 0. We find the eigenfunctions in the general

form (uéxg) = (uo e’ If we only consider energies £ > A !, there will be a pair of
v(x Vo

magnitudes of £ associated with each energy

Kt = v2m [pg & (B2 — A2)Y2)? (4.7)
with B, = (A2 4+ &)1/2, ¢, = % — pug. Moreover, because of the BCS pairing of & and

—k, we must consider both signs of k, so that there is a fourfold degeneracy of relevant
states for each E (see Figure 4.2) with the notice that the twofold spin degeneracy only
affects normalization since there is no spin-flip processes. Considering the relations of
operators in Bogolubov transformation, we find that the excitations at k% and £k~ are
predominantly electron-like and hole-like, correspondingly.

In general, we can introduce the electron/hole excitation operators with the energy
required to make an excitation with charge e is E., = u + Ej, while that to make an
excitation with charge —e differs by 2y and is Ep, = —pu + B = —(p — Ej). From the
conservation of charge and the conservation of energy, we find there are four possible
processes involving transfer of a single electronic charge in subsystems 1 and 2: electron
transfers from 1 to 2 (or reverse); hole transfers from 1 to 2 (or reverse); create electron
in 1 and hole in 2 (or destroy both); create hole in 1 and electron in 2 (or destroy both).
We find that these energetically allowed transitions occurs if both £Ej ; are symmetric
with each p; (see Figure 4.3).

4.2.2 Transmission and reflections of particles at the NS interface

We first consider the schematic diagram of energy vs momentum at NS interface which
is shown in Figure 4.4. One electron incident on the interface from the normal state

'We notice that hereafter A denotes the superconducting gap in BCS theory, which is in fact the
amplitude of pair potential A(z) when it varies spatially.
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Figure 4.4: Schematic diagram of energy vs momentum at N-S interface, describing an electron (at
0) transmitted (2, 4) or reflected (5, 6). The open circles denote holes, the closed circuits denote
electrons, and the arrows point in the directions of the group velocity [79].

with energy £ > A, as indicated by the arrow at the state labeled 0 in Figure 4.4 can
transfer through the interface with the wave vector on the same side of the Fermi surface
(g7 — kT, corresponding to the point 4) (with the probability C'(E)) or with the wave
vector crossing through the Fermi surface (¢© — —k~, corresponding to the point 2)(with
the probability D(F)). This electron can be reflected as an electron with the probability
B(E) (corresponding to the point 5), or as a hole on the other side of the Fermi surface
by Andreev reflection, with probability A(E) (corresponding to the point 6). The latter
process involves a transfer of a pair carrying charge 2e, while the other processes transfer
only a single electronic charge. The conservation of probability requires that

A(E) + B(E) + C(E) + D(E) =1 . (4.8)

When a voltage is applied to the NS junction, assuming ballistic acceleration of the
quasi-particles without scattering for the case of a small orifice connecting massive elec-
trodes, the distribution functions of all incoming particles are given by the equilibrium

34



Fermi functions, apart from the energy shift due to the acceleration potential. All incom-
ing electrons from the S side have the distribution function fy(F£), while those coming
from the N side are described by fo(E — eV'). The current is given as

[ = 2N(0)evp A /_ T AB[fL(B) - f(E)] (4.9)

where A is an effective-neck cross-section area, in the orifice model of a point contact,
A = ma®/4, with a is the radius of the orifice. N(0) refers to the one-spin density of states
at er. The last formula of the current can be expressed as

Is = 2N OcvrA [ T [fo(F— V)~ () [+ A(F)~ B(R)] . (4.10)

within the quantity [1 + A(E) — B(FE)] can be referred to as the “transmission coefficient
for electrical current”. This formula which describes both Andreev reflection processes and
quasiparticle transfer, shows that while ordinary reflection reduces the current, Andreev
reflection increases it by giving up to two transferred electrons (a Cooper pair) for one
incident one.

4.2.3 The conductance of a normal metal-superconductor junc-
tion

Figure 4.5: Model of a disordered normal region (the dashed region) adjacent to a superconductor
(S). N1 and N; are ideal normal leads [82].

In Ref. [82], a quantum transport theory for conduction through an NS interface has
been developed. The model considered is illustrated in Figure 4.5. It consists of a disor-
dered normal region inserted between two ideal normal leads /N; and Ny, and adjacent to a
superconductor. The only scattering in the superconductor consists of Andreev reflection
at the NS interface is assumed.

An electron incident in the lead N; is reflected either as an electron or as a hole. It is
similar for the hole, which can be reflected as a hole or an electron. The calculation for
the linear-response conductance G yg of the NS junction is applied at zero temperature
(the used scattering matrix is at the Fermi level) and no magnetic field (the scattering
matrix of the normal region is symmetric). The general formula of conductance, which is
developed from [79, 83, 84|, has been obtained as [82]

2e T2
Gns = 7 az m , (4.11)



where T, (o = 1,2, ..., N) are the eigenvalues of the Hermitian matrix t12t12- The trans-
mission matrix ¢ has dimension N, with NV is the number of propagating modes in leads
N; and N,. Eq. (4.11) holds for an arbitrary transmission matrix, i.e., for arbitrary dis-
order potential. It is the multichannel generalization of a formula for the single-channel
case|79, 85, 86]. The formula (4.11) is applied to a quantum point contact (yielding con-
ductance quantization at multiples 2¢?/7), to a quantum dot (yielding a non-Lorentzian
conductance resonance), and to quantum interference effects in a disordered NS junction
(enhanced weak-localization and reflectionless tunneling through a potential barrier)[82].
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Chapter 5

Photo-assisted Andreev reflection as a
probe of quantum noise

5.1 Introduction

As we have presented in the last section of chapter 3, in experiment, low frequency noise
in the kHz-MHz range is more accessible than high frequency (GHz-THz) noise: it can,
in principle, be measured using state of the art time acquisition techniques. For higher
frequency measurements, it is becoming necessary to build a noise detector on chip for a
specific range of high frequencies. In this chapter, we consider a detector circuit which is
capacitively coupled to the mesoscopic device. This circuit is composed of a NS junction.
Transport in this circuit occurs when the electrons tunneling between the normal metal
and the superconductor either tunnel elastically, or are able to gain or to lose energy
via photo-assisted Andreev reflections. The “photon” is provided or absorbed from the
mesoscopic circuit which is capacitively coupled to the NS detector. The measurement of
a dc current in the detector can thus provide information on the absorption and on the
emission component of the current noise correlator.

Several theoretical efforts have been made to describe the high frequency noise mea-
surement process. The theoretical idea in Ref. [20] has so far eluded experimental verifica-
tion, possibly because in the double dot system, additional (unwanted) sources of inelastic
scattering render a precise noise measurement quite difficult. It is therefore necessary to
look for detection circuits which are less vulnerable to dissipation, as is the case for super-
conducting circuits, because of the presence of the superconducting gap. More recently,
the noise of a carbon nanotube/quantum dot was also measured [23| using capacitive
coupling to an SIS detector, with the detection of super-Poissonian noise resulting from
inelastic cotunneling processes. The latter proposals, together with their successful exper-
imental implementations, indicate that superconducting detector circuits have advantages
over normal detection circuits.

The purpose of the present work is thus to analyze a similar situation, except that
the SIS junction is replaced by a NS circuit, which transfers two electrons using Andreev
reflection between a normal lead and a superconductor. The present scheme is similar in
spirit to the initial proposal of Ref. [20], in the sense that it exploits dynamical Coulomb
blockade physics |64]. However, here, two electrons need to be transferred from or to the
superconductor, and such transitions involve high lying virtual states which are less prone
to dissipation because of the superconducting gap, similarly to the SIS detector of Refs.
[21, 22, 23]. Andreev reflection [79] typically assumes a good contact between a normal
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Figure 5.1: Schematic description of the setup: The mesoscopic device to be measured is coupled
capacitively to the detector circuit. The latter consists of a NS junction with a dc bias.

metal and a superconductor, but in general it can be applied to tunneling contacts. It then
involves tunneling transitions via virtual states. Consequently, depending on the applied
dc bias, two successive “inelastic” electron jumps are required for a current to pass through
the measurement circuit. The amplitude of the dc current as a function of bias voltage in
the measurement circuit provides an effective readout of the noise power to be measured.

5.1.1 Detector consisting of a single NS junction

The detector circuit is depicted in Figure 5.1. Two capacitors are placed, respectively,
between each side of the mesoscopic device and each side of the NS tunnel junction. This
means that a current fluctuation in the mesoscopic device generates, via the capacitors, a
voltage fluctuation across the NS junction. In turn, the voltage fluctuations translate into
fluctuations of the phase around the junction. The presence of the neighboring mesoscopic
circuit acts as a specific electromagnetic environment for this tunnel junction, which is
described in the context of a dynamical Coulomb blockade [64] for this reason.
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Figure 5.2: Electronic tunneling in a NS junction: a) Quasiparticle electron tunneling. b) Andreev
reflection. ¢) Photo-assisted electron tunneling as a quasiparticle in the superconductor. d) Photo-
assisted Andreev reflection.
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Figure 5.2 depicts several scenarios for transport through a NS interface. An elastic
transfer of single electrons can occur if the voltage applied to the junction is larger than the
gap (Figure 5.2a). Below the gap, an elastic transport can only occur via Andreev reflec-
tion [79], effectively transferring two electrons with opposite energies with respect to the
superconductor chemical potential (Figure 5.2b). Single electron can be transferred with
an initial energy below the gap, provided that a photon is provided from the environment
in order to create a quasiparticle in the superconductor (Figure 5.2¢). Similarly, Andreev
reflection can be rendered inelastic by the environment: for instance, two electrons on the
normal side, with a total energy above the superconductor chemical potential, can give
away a photon to the environment, so that they can be absorbed as a Cooper pair in
the superconductor (Figure 5.2d). As we shall see, such inelastic Andreev processes are
particularly useful for noise detection.

5.1.2 Detector consisting of a NS junction separated by a quan-
tum dot

After studying the noise detection of the single NS junction, we will turn later to a double
junction consisting of a normal metal lead, a quantum dot operating in the Coulomb
blockade regime, and a superconductor connected to the latter (Figure 5.3). The charging
energy of the dot is assumed to be large enough that double occupancy is prohibited.
This setup has the advantage on the previous proposal that additional energy filtering is
provided by the quantum dot. Below, we refer to this system as the normal metal-dot—
superconductor (NDS) detector circuit. In Figure 5.4, the quantum dot level is located

DETECTOR Cc DEVICE
ZS S
[ —
MESOSCOPIC] I—
@ CVl DEVICE CS N
Gq C(:

Figure 5.3: Schematic description of the NDS setup: The mesoscopic device to be measured is cou-
pled capacitively to the detector circuit. The latter consists of a normal metal lead—quantum dot—
superconductor junction with a dc bias.

above the superconductor chemical potential, and placed well within the gap in order to
avoid quasiparticle processes. Because double occupancy is prohibited by the Coulomb
blockade, Andreev transport occurs via sequential tunneling of the two electrons. Yet,
because of energy conservation, the same energy requirements as in Figure 5.2b have to
be satisfied for the final states (electrons with opposite energies, see Figure 5.4a). In the
T-matrix terminology, for this transition to occur, virtual states corresponding to the
energy of the dot are required, which suppress the Andreev tunneling current because of
large energy denominators in the transition rate. Figures 5.4 b, ¢, d, describe the cases
where an environment is coupled to the same NDS circuit. Provided that this environment
can yield or give some of its energy to the NDS detector, electronic transitions via the dot
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can become much more likely because electron energies on the normal side can be close
to that of the dot level. Such transitions can thus occur even if the chemical potential
of the normal lead exceeds that of the superconductor. As we shall see later on, the bias
voltage can act as a valve for photo-assisted electron transitions. It is precisely these latter
situations which will be exploited in order to measure the noise of the measuring circuit
(the “environment”).
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Figure 5.4: Andreev reflection in the NDS junction: a) Andreev reflection in the elastic regime. b) and
c) Photo-assisted Andreev reflection, where a photon is provided to or provided by the environment.
d) Absorption of a Cooper pair with (reverse) photo-assisted Andreev reflection, where a photon is
provided by the environment. For cases b), c), d), which require passing through the dot, the tunneling
of electrons is sequential.

5.2 Tunneling current through the NS junction

5.2.1 Model Hamiltonian

The Hamiltonian which describes the decoupled normal metal lead—superconductor—environment
(mesoscopic circuit) system reads

HO - HOL + HOS + Henv ) (51)
where
Hy, = Z GkCLUCk,a , (5.2)
k,o

describes the energy states in the lead, with CL,J an electron creation operator. The su-
perconductor Hamiltonian has the diagonal form

HOS - ,LLSNS = Z Eq’}/;,onq,o ) (53)

q,0
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where ’Vq,g,”y;rvo are quasiparticle operators, which relate to the Fermi operators ¢, c:fm
by the Bogoliubov transformation

_ T
C—ql = UgV—ql = VgVgn >

c;T = “W;,T + VY=g s (5.4)
and E, = /A% + (2 is the quasiparticle energy, (, = €, — jis is the normal state single-
electron energy counted from the Fermi level g and A is the superconducting gap which
will be assumed to be the largest energy scale in these calculations. Hereafter, we also
define eV = up — pg and assume pg = 0.

Here, we do not specify the Hamiltonian of the environment because the environment
represents an open system: the mesoscopic circuit which represents the environment will
only manifest itself via the phase fluctuations (¢(¢)¢(0)), which are induced at the NS
junction (or later on for the NDS circuit, at the dot—superconductor junction) because
of the location of the capacitor plates. In what follows, we shall assume that the unsym-
metrized noise spectral density ST(w) as defined in Eq. (2.12) in chapter 2 corresponding
to photon emission (for positive frequency), or, alternatively, S;(w), the spectral density
of noise corresponding to photon absorption, is specified by the transport properties of
the mesoscopic circuit [18, 19, 87|. Here ((- - - )) stands for an irreducible noise correlator,
where the product of average currents has been subtracted out.

The tunneling Hamiltonian describing the electron transferring between the supercon-
ductor and the normal metal lead in the NS junction is

Hp = Tigcl scq0¢ (5.5)

k,q,0

where the indices k and q refer to the normal metal lead and superconductor. We consider
for simplicity that 7} , = 7. Note that the tunneling Hamiltonian contains a fluctuating
phase factor, which represents the coupling to the mesoscopic circuit. Indeed, because of
the capacitive coupling between the sides of the NS junction and the mesoscopic circuit, a
current fluctuation translates into a voltage fluctuation across the NS junction. Both are
related via the trans-impedance of the circuit [20] V(w) = Z(w)I(w). Next, the voltage
fluctuations translate into phase fluctuations across the junction, as the phase is the
canonical conjugate of the charge at the junctions [64]: the phase is thus considered as a
quantum mechanical operator. Given a specific circuit (capacitors, resistances, etc.) the
phase correlator is therefore expressed in terms of the trans-impedance of the circuit and
the spectral density of noise [20], which is shown in Eq. (3.25).

The present system bears similarities with the study of inelastic Andreev reflection
in the case where the superconductor contains phase fluctuations [88, 89]. Such phase
fluctuations destroy the symmetry between electrons and holes, and affect the current
voltage characteristics of the NS junction.

5.2.2 Tunneling current

The tunneling current associated with two electrons is given by the Fermi golden rule
I = 2el’;_, ¢, with the tunneling rate

iy =21y [(fITIi)[*8(e; — ¢5) (5.6)
!
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where ¢; and ¢; are the tunneling energies of the initial and final states, including the
environment, and 7' is the transition operator, which is expressed as

o 1 n
T = Hr+ HTnzl <mHT) : (5.7)
where 7 is positive infinitesimal.

Throughout this chapter, one considers the photo-assisted tunneling (PAT) current
due to the high frequency current fluctuations of the mesoscopic device, as the difference
|64]:

Ipar = I(environment) — /(no environment) , (5.8)

where, in general, the total current for tunneling of electrons through the junction is
I=1,—1_.

However, experimentally, it is difficult to couple capacitively and then to remove the
mesoscopic device circuit from the detector circuit [22]. What is, in fact, often measured
is the excess noise, i.e., the difference between current fluctuations at a given bias and
zero bias in the mesoscopic circuit. Later on, we will calculate the excess noise S, .. (w)
of ST(w). In this work, we thus measure the difference between the currents through the
detector when a bias voltage and a zero bias are applied to the device circuit, as a function

of detector bias voltage, which is defined as
Alpar(eV) =1(eVy#0,eV) —1(eVy=0,eV) . (5.9)

This also corresponds to the difference between the PAT currents through the detector
when a bias voltage and a zero bias are applied to the device circuit, Alpsp(eV) =
Ipar(eVy # 0,eV) — Ipar(eVy = 0,eV) because the contributions with no environment
cancel out. The difference between PAT currents thus provides crucial information on
the spectral density of excess noise of the mesoscopic device. Notice that our calculation
applies to the zero temperature case for convenience, but it can be generalized to finite
temperatures.

5.2.3 Single electron tunneling

Although our focus of interest concerns photo-assisted Andreev reflection, we need to
compute all possible contributions. The current associated with one electron tunneling is
given by the Fermi golden rule,

I=2meY |(fIHr|D)[*6(e; — €f) . (5.10)
f

The calculation of the current proceeds in the same way as that of a normal metal junction
[64], except that one has to take into account the superconducting density of states on
the right side of the junction, which is done by exploiting the Bogoliubov transformation.
For the case of electrons tunneling from the normal metal lead to the superconductor
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(eV > A), the current from left to right reads

o0

I o= e / e =)t (#)EE(0))

o0

= eT02 / dte—Hms—nr)t Z <C;r§’al () .03 (0)){Cqon (t)czpo (0)) <efi¢>(t)ei¢(0)>

o
kvk/7Q7q/70—1702

_ 2€T02/ dtz |uq‘2€fieq€iekteJ(t)

B[, 2m < 2@
el L

= dnel, NNNS/ de dE Sr(w)| d(E —¢)

RK w2
87r eTQNNNS/ dE E |Z (e —

VE? —A? (e—E)?
with Ny and Ns the density of states of the two leads (in the normal state). We notice
that this calculation is similar to the calculation of the tunneling rate of electrons in
the presence of an environment which is shown in sections 3.1.3 and 3.1.4 (following
the same steps). This current includes both an elastic and an inelastic contribution, the
former being renormalized by the presence of the environment [20]. Here, € is the energy
of an electron in the normal metal lead and F is the energy of a quasiparticle in the
superconductor lead. Changing variables in the inelastic term to Q = e— FE, § = ¢+ F, an
using [ dz(z +a)/\/(x +a)? — b2 = \/(z + a)? — b2/2, after computing the current from
right to left in a similar way, we obtain

>’25,<e _E). (5.11)

o Z
AIPAT = _Cle |:/ dw| (,(d )| S:mcess( ) Kleé(ev)
v-a |Z( )| + inel
_'_Cle e dQ—=— 02 Sea:cess( Q>Kle <Q7€V> ’ (512)

where the transmission coefficient of the NS junction in the normal state is defined as
T = Am*NyNsTg, Ci. = €T / Rk. The weight functions are defined as

K (eV) = /(eV)2 — A? (5.13)
Kel(Q,eV) = /(2 —eV)2 — A2, (5.14)
Similarly, we obtain the formula of Alpar for the case eV < —A,

Z 2
A]'PAT = _Cle |:/ | (E.))‘ S:xcess< ) Kfé(GV)

+C h L( ) St e (Q K, eV 5.15

le 02 emcess( ) le ( , € ) : ( : )
eV+A

For the case —A < eV < A, there are no elastic transitions because electrons cannot enter

the superconducting gap. Nevertheless, due to the presence of the environment, electrons

can absorb or emit energy from or to the environment so that an inelastic quasiparticle

current flows,

eV—A
Z(Q ,
AIPAT = Cle/ dQ| 52)| Set:cess( Q)K%Zel<97€‘/>
[ 7 ]
—Che / MS;mss( Q) K (Q, eV) . (5.16)
eV+A Q
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5.2.4 Two electrons tunneling as two quasiparticles

The single electron (quasiparticle) tunneling current is of first order in the tunneling
amplitude. We now turn to processes which invoke the tunneling of two electrons through
the NS interface. Indeed, because our aim is to show that Andreev reflection can be used
to measure noise, we need to examine all two electron processes, we start with the transfer
of two electrons as quasiparticles above the gap. Calculations of the matrix element in
Eq. (5.6) are then carried out to second order in the tunneling Hamiltonian using the T’

matrix,

1 A2
I = 47762 |<f|HTmHT|Z>| o(er —er) - (5.17)
f K

The initial state is a product,
1) = [GL) ® |Gs) ® |R) (5.18)

where |G) denotes a ground state, which corresponds to a filled Fermi sea for the normal
electrode. |Gg) is the BCS ground state in the superconductor lead. | R) denotes the initial
state of the environment. On the other hand, our guess for the final state should read

1) = cholh ool o |GL) @ 1Gs) @ | R') (5.19)

when two electrons are emitted from the superconductor. The “guess” of Eq. (5.19) is an
informed one: an electron pair is broken in the superconductor, and one electron tunnels
to the normal metal lead, while the other becomes a quasiparticle in the superconductor;
the same process is true for the second electron which tunnels to the normal metal lead.
When the superconductor lead absorbs two electrons,

If) = ck7ack/,alv;r’a'y;/7a/|GL> ® |Gs) ® |R) . (5.20)

The “guess” of Eq. (5.20) is that two electrons can tunnel from the normal metal lead and
become quasiparticles in the superconductor. Here, |R’) is the final state of the environ-
ment.

We are first considering the case of two electrons tunneling from the superconduc-
tor lead to the normal metal lead. Introducing the closure relation for the eigenstates
of the nonconnected system {|v;)}, and using the fact that (v|(e; — Hy & in) o) =
Fi [, dte'“iv*Mt one can exponentiate all the energy denominators. We have

I = 2 ) / dt/ dt’/ dt" e+ gie (=) (G T Loy, )

fru1,02

xe'? (v | HE| fye™ (| Hrlvs)e™ 2" (vy| Hyli) . (5.21)

Then, by transforming the time dependent phases into a time dependence of the tunneling
Hamiltonian, we can integrate out all final and virtual states. This allows us to rewrite
the tunneling current in terms of tunneling operators in the interaction representation to
lowest order O(T). The current reads

== 26/ o / dt’ / dt’ e+ gilps —pur)(2t—t'—t")

t")HI.(t)Hy (1) Hr (0)) | (5.22)
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where the time dependence of the operators is governed by

HT(t) — 6i(KL+KS+Henv)tHT6—’i(KL+K5+Henv)t

)

with K, = Hy, —ur Ny, and Kg = Hy, — pusNs. The interaction presentation in Eq. (5.22)
has the advantage that we only have to calculate statistical averages of (time-dependent)
correlation functions. We express the tunneling Hamiltonian in the creation/annihilation
operators in the normal- and super-conducting leads. Because there is not any interaction
between particles in two leads, we obtain

26T2/ dt/ dt’ / At e +t") gilps —pr)(2t—t'—t")

<C/€101 (t —t )Ck202 (t)clt:gag (t/)clz4o4 (0»

k1. k47Q1 .q4,01..04

X (o0 (=), (1) () a (0)) (17Dt m9(0) - (5.23)

Eq. (5.23) is true for two electrons tunneling as quasiparticles and as Andreev reflection.
For the correlation of operators in the normal metal lead, using the Wick’s theorem, we
obtain

<Ck510'1 (t - t”)ckf2a2 (t)cl";;;gag (t,)c1/;,‘40'4 (O)> = _e_i(Ekl _ML)(t_t”_t/)(;kil k‘3 _i(5k2 _ML)t5k27k,‘4
4o ieny —uL)(t=t") 5k17k e~ iery—hr) (= t’)5k27k4 )

(5.24)

Here, we consider quasiparticle tunneling, so

<CT101 (t t”)CTMQ(t)CqBUS(t,)Cq4J4(0)> |UQ1| |'UQ2| Py (=17 tl)élh#la Z q2t5Q27Q4
q q
|UQ1‘ |UQQ‘ P (1 t”)éq17q4€ Ea t/)éqz,% :

(5.25)

The exponentials of phase operators are calculated as in the Appendix A (see Eq. 5.58),
and the phase-phase correlation function is defined in Eq. (3.15), so that [92, 93]

<ei¢(t7t”)eid)(t)efm(t’)efi(b(O)> _ eJ(t—t”—t’)+J(t7t”)+J(t7t/)+J(t)—J(—t”)—J(t/). (5.26)

Following Eq. (3.25), we further assume that J(¢) < 1, which means a low trans-
impedance approximation, together with the fact that J(¢) is well behaved at large times.
This allows us to expand the exponential of phase correlators e’/*) ~ 1+ J(t). The result
for the current contains both an elastic and an inelastic contribution /.. = I¢ + [,
where

a. T 2r [~ 1Z(W)P el
~— Wy — — K 9
— 167T3RK |: 0 RK w2 S ( ) 26<—<w7 6‘/, 77) ) (5 7)
with Wo_ and K§!_ (w,eV,n) defined as in Eqs. (5.59) and (5.60) in Appendix B, and
A N G Ul
finel o © / dQ Si(=Q) K (Q, eV, 5.28
— 1672 RK N 02 1( ) 28(7( , € 777) , ( )

where Ki(Q,eV,n) is defined in Eq. (5.61) in Appendix B. The elastic contribution

2e—

exists only if eV < —A. For —A < eV only the inelastic part contributes to /..
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Similarly we calculate for I .. There is a symmetry between the magnitude between
the right and left moving current upon bias reversal: the expression for /. is the same as
I_., if we replace —eV by eV.

So, in the interval |eV| < A, we obtain

excess 2e—

A
AIPAT(GV) — CQe / MS"‘ (Q)Kznel (Q, BV, 77)
A—2eV 02

A
o [T aollBs ompi@enn. 629
2A+2eV

with K (eV) = Kin¢l (—eV) and Cy, = ¢T?%/16m2R.

2e— 2e—

5.2.5 Two electron tunneling as a Cooper pair: Andreev reflection

In this case, we also need to carry out calculations of the matrix element in Eq. (5.6) to
second order in the tunneling Hamiltonian. Typically, the initial state will be as shown in
Eq. (5.18). On the other hand, our guess for the final state reads

‘f> =27 1/2<Cl<; o‘clt;’ -0 Clt;’ Ck; O’)‘GL> |GS> ® |R/> ) (530)
when a Cooper pair is emitted from the superconductor, or
|f> == 2_1/2[0;3,00;9/7_0 — ck/7ack7_a]|GL> & |G5’> X |R/> , (531)

when the superconductor lead absorbs a Cooper pair. Here, |R’) is the final state of the
environment. The “guess” of Egs. (5.30) and (5.31) is again an informed one: indeed,
the s-wave symmetry of the superconductor imposes that only singlet pairs of electrons
can be emitted or absorbed. This phenomenon has been described in the early work on
entanglement in mesoscopic physics [90, 91|, and the resulting final state can, in principle,
be detected through a violation of Bell inequalities [134].

Because we are also considering the tunneling process of two electrons from the su-
perconductor to the normal metal lead, the current is expressed as in Eq. (5.22). In this
case, the physical interpretation of Eq. (5.22) is a hopping process of two electrons with
opposite spins from the superconductor, thereby removing a Cooper pair in the super-
conductor, and back again. The delay times between the two tunneling processes of the
electrons within a pair is given by ¢’ and t” respectively, whereas the time between de-
stroying and creating a Cooper pair is given by t. Following Eq. (5.23) and considering
only the Andreev process, we can now write the tunneling current as a function of the
normal (and anomalous) Green’s functions of the normal metal lead, G'1,, the quantum
dot, G p,, and the superconductor, F, (see Appendix C), which is the same as in Ref. [92]

I = 2@T4/ dt/ dt’/ dt" et +t7) gilus —pr) (2t —t'—=t")

X Z{_GLO' kat —t' =t ) L—o(kla )Fo*(q T ”)F—G(q’ t/)

k,k".q,q' 0
+ Gkt —t"GT_ (Kt —t)Fi(d, —t")F,(q,t')}
XeJ(tft”ft/)JrJ(tft”)JrJ(tft/)JrJ(t)fJ(ft”)fJ(t’) ) (5.32)

The result for the current contains both an elastic and an inelastic contribution:

I =TI 41t (5.33)

46



where the elastic contribution reads

7eV AQ
el /
s g [ ae fan [ V- ANE - &
© Z(w)P L_Q_W/ |Z( )? S1(w)
><{[1 = /_ } RN o | a2

(5.34)
The inelastic contribution to /. is
el 672
I _WQRK/dE/dE/dE/dE/
—(e+&))|*Si(—(e +¢€))
T Nuev i =
(5.35)

where the denominators are specified in Appendix D. [_, is derived in a similar manner, but
its expression is omitted here. Nevertheless, its effects will be displayed in the measurement
of the noise of a point contact.

The above expressions constitute the central result of this work: we understand now
how the current fluctuations in the neighboring mesoscopic circuit give rise to inelastic
and elastic contributions in the current between a normal metal and a superconductor.
We find that both current contributions have the same form, and the current fluctuations
of the mesoscopic device affect the current in the detector at the energy corresponding to
the total energy of two electrons in the normal lead. Andreev reflection therefore acts as
an energy filter.

Next, we can change variables as in the previous sections. With an arbitrary bias eV,
we obtain

Z(w
Mpartev) = s [ PPz ot evin
2eV 2
G [l se L comgg@evn
Z(—Q
CNS dQ%S:mcess(Q)Kznel(Qvevz 77) ) (536)
2eV

with Cyg = eT?A?/1?Ry. The kernel functions K¢ and K¢ are shown in Appendix
D.

5.2.6 Quantum point contact as a source of noise

In this section, we illustrate the present results with a simple example. We consider for
this purpose a quantum point contact, which is a device whose noise spectral density
is well characterized by using the scattering theory[58, 57]. Here, however, we consider
unsymmetrized noise correlators, which have been shown in Eq. (2.36).

As pointed out above, we are computing the difference of the PAT currents in the
presence and in the absence of the dc bias. This means that we insert the spectral density
of excess noise of the mesoscopic device, which for a point contact bears most of its weight
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Figure 5.5: Alpar plotted as a function of the dc bias voltage, for a mesoscopic device voltage bias
eVy: 0.3 (continuous line), 0.5 (dashed line) and 0.8 (dotted line). The left, center, and right panels
depict single quasiparticle tunneling, two quasiparticle tunneling, and Andreev reflection. Alp 47 is in
units of Coe, with 7 = 0.6 (see text).

near zero frequencies. Excess noise decreases linearly to zero over a range [0, £eVy] for
positive and negative frequencies (here we rewrite Eq. (2.39) with the notice hereafter,
we use the notation Vj instead of V' to show the voltage of mesoscopic device)

2¢?

Sereess(W)=—T(1 = T)(eVa = [w])O(eVa — |w). (5-37)

We choose a generic form for the transimpedance, similar in spirit to that chosen in
Ref. [20]. Considering the circuit in Figures 5.1 and 5.3, at w = 0, the device and detector
are not coupled and the transimpedence should therefore vanish. On the other hand, the
transimpedance is predicted to have a constant behavior at large frequencies. We therefore
choose the following generic form for the transimpedance

2 (Rw)?

[Z(w)]" = ot (5.38)
where R is the typical high frequency impedance and the crossover frequency wy is esti-
mated from the experimental data of Ref. [22]; choosing a finite cutoff frequency wy means
that at frequencies w < wy, the mesoscopic circuit has no influence on the detector circuit
because low frequencies do not propagate through a capacitor.

We calculate numerically the PAT currents in the above three cases: single and two
quasiparticle tunneling and Andreev reflection. All energies are measured with respect to
the superconducting gap A. In these units, we chose wy = 0.3 and 1 = 0.001. Currents are
typically plotted as a function of the dc bias voltage eV of the detector for several values
of the mesoscopic bias voltage eV (the environment). Our motivation is to consider the
PAT currents with the condition |eV| < 1 (JeV| < A), where the effect of the environment
on the PAT current is most pronounced, and we shall predict that two electrons tunneling
as a Cooper pair (Andreev processes) contributes the most to the PAT current, except
close to eV = A. Because of the symmetry between negative el and positive eV, we
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display the results for eV > 0. The PAT currents for the above three processes are plotted
next to one another in Figure 5.5 for comparison.

We find in Figure 5.5 that if the chemical potential of the normal metal lead is close
to the potential of the superconductor lead (¢V < A), the PAT currents in the three
cases are suppressed. For the two cases of quasiparticle tunneling, the PAT currents are
equal to zero below a certain threshold. The single quasiparticle current differs from
zero at a threshold, which is identified as A — eVj; that is, quasiparticles are able to
tunnel above that superconductor gap only if they can borrow the necessary energy from
the mesoscopic device. This explains why the curves associated with different values of
the mesoscopic device bias voltage are shifted to the right as eV, decreases. For two
quasiparticle tunneling, we observe that the PAT current has a similar threshold, which,
compared to Figure 5.5a, is pushed toward the right in Figure 5.5b, because more energy
is needed to transfer two electrons above the gap, compared to a single electron. Not
surprisingly the corresponding curves are once again shifted to the right with decreasing
eVy. These curves all have a sharp maximum at eV = A.

We turn now to the Andreev PAT difference current, which dominates the above two
processes at small and moderate biases. Note that the total Andreev current contains
an elastic contribution as well as an inelastic contribution below the gap, contrary to
quasiparticle tunneling which has contributions below the gap only because these processes
are photo-assisted. Because we are computing the difference between PAT currents with
and without the mesoscopic bias voltage, we expect that the elastic contribution cancels
out. However, the first term of Eq. (5.36) tells us that the presence of the environment
also gives rise to an effective elastic contribution to the PAT Andreev difference current.
Unfortunately, this elastic correction is not small compared to the true Andreev current.

Looking at Figure 5.5, we note that the PAT curve for Andreev processes is shifted
to the left when the bias of the mesoscopic device is increased. The environment provides
energy to or absorbs energy from pairs of electrons whose energies are not symmetrical
with respect to the superconducting chemical potential. At very weak eV, the elastic
correction is small compared to the true Andreev current. We expect the PAT current
contributions to originate from pairs of electrons in the normal metal below the super-
conducting chemical potential, which can extract a photon from the environment. At the
same time, Cooper pairs can be ejected in the normal metal as a reverse Andreev process
provided they borrow a photon to the environment. There is a balance between the right
and left currents at a very weak bias.

As the bias is increased, electron pairs whose energies are above this chemical potential
will now be able to yield a photon to the environment, giving rise to an increase of
the inelastic PAT current. Also, the reverse Andreev process mentioned above becomes
more restricted because the available empty states for electrons in the leads lie higher
at a positive bias. The elastic PAT current (not shown in the figures) increases when we
increase the detector bias but it is always smaller than the inelastic contribution. The
total PAT current increases gradually (Figure 5.5, right panel).

A zoom of this Andreev contribution is made in the region of small biases. There is, in
fact, no threshold for the PAT Andreev current: for a small bias, it has a linear behavior
(Figure 5.6). According to Eq. (5.36), when eV > eV,/2, the inelastic difference current
of a Cooper pair tunneling from superconductor to metal lead by absorbing energy from
a mesoscopic device vanishes. The PAT current now describes two electrons tunneling
from metal to superconductor elastically or inelastically. In this intermediate bias regime,
the elastic and inelastic contributions now have a tendency to cancel each other. The
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Figure 5.6: Andreev reflection contribution to Alpr plotted as a function of the dc bias voltage
for a mesoscopic device voltage bias eVj;: 0.3 (continuous line), 0.5 (dashed line), and 0.8 (dotted
line). Same units as in Figure 5.5. The inside panel is a zoom of the same contribution at small eV,
displaying a linear behavior.
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Figure 5.7: Crossover between Andreev reflection (crossed line) and two quasiparticle tunneling current
(uncrossed line) close to the gap for a mesoscopic device voltage bias eVy: 0.3 (continuous line), 0.5
(dashed line), and 0.8 (dotted line). Same units as in Figure 5.5.

current reaches a maximum close to the gap, and then it decreases dramatically at the
gap. This is consistent with the fact that for a positive bias, the initial state for two
quasiparticle tunneling processes and for Andreev reflection is precisely the same: close
to the gap, two quasiparticle tunneling takes over the Andreev process. It becomes more
efficient for electrons to be activated above the gap than to be converted into a Cooper
pair because the energy loss needed for the latter is quite large. Unlike a conventional
NS junction with elastic scattering only, where the relative importance of quasiparticle
tunneling and Andreev reflection are interchanged precisely at the gap, here the dominance
of quasiparticle tunneling manifests itself before the voltage bias reaches the gap. Note
also in Figure 5.5 that the magnitude of the Andreev current before the two quasiparticle
threshold is precisely the same as the magnitude of the two quasiparticles at eV = A,
which confirms this conversion scenario. A comparison of the two processes is displayed
in Figure 5.7.

In practice, the different contributions to the PAT current cannot be separated: we
measure the sum of the three contributions which are plotted in Figure 5.5. However, we
claim that for a broad voltage range (from eV = 0 to the two quasiparticle threshold),
the main contribution to the current comes from photo-assisted Andreev processes. The
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confrontation of Eq. (5.36) with an experimental measurement of the PAT current be-
low the gap could thus serve as an effective noise measurement, as the weight functions
K¢4(w,eV,n) and K¥E(Q,eV,n) are known.

Notice that in all our numerical results, the PAT currents are plotted in units of
SR2T?*T(1 — T)A/873h?Ry. We put some tentative numbers in these quantities. Here,
T = 0.6 is the effective transmission coefficient of the NS interface, A = 240 ueV, T = 0.5
is the transmission of the quantum point contact to be measured, and R = 0.03Rx (R is
the resistance quantum) is the resistance which enters the transimpedance. This implies,
e.g., for the PAT current in Figure 5.6 at the top of the peak that Alpsr ~ 107°A with
the device bias V; = 0.8A/e = 48 V', which seems an acceptable value compatible with
current measurement techniques.

5.3 Tunneling current through a NDS junction

We now turn to a different setup for noise detection where electrons in a normal metal
lead transit through a quantum dot in the Coulomb blockade regime before going into the
superconductor. The essential ingredients are the same as in the previous section, except
that additional energy filtering occurs because of the dot. In this section, we choose the
parameters of the device so that only Andreev processes are relevant.

5.3.1 Model Hamiltonian

The Hamiltonian which describes the decoupled normal metal lead—dot—superconductor—
environment (mesoscopic circuit) system reads

HO — HOL —|— HOD + HOS —|— Henv y (539)

where the Hamiltonian of the normal metal lead and the superconductor lead are described
as above.
The Hamiltonian for the quantum dot reads

Hy, = ZEDC}),UCDW' +Unin, , (5.40)

g

where U will be assumed to be infinite, assuming a small capacitance of the dot. We
consider that the dot possesses only a single energy level for simplicity.

The tunneling Hamiltonian includes the electron tunneling between the superconduc-
tor and the dot, as well as the tunneling between the dot and the normal metal lead,

Hy = (Hp+ Hrp) +He,
HTl = ZTDgCJE)’UCq’UeiM) s

q,0
HT2 = ZTk7DCL7UCD,J, (541)
k,o

where the indices k, D, and ¢ refer to the normal metal lead, quantum dot, and super-
conductor. We consider the simple case T , = 17, and T}, p = T5.

For photo-assisted Andreev processes, we need to carry out calculations of the matrix
element in Eq. (5.6) to fourth order in the tunneling Hamiltonian. In what follows, we
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assume that the dot is initially empty, owing to the asymmetry between the two tunnel
barriers. The barrier between the normal metal lead and the dot is supposed to be opaque
compared to that between the dot and the superconductor. As a result, the rate of escape
of electrons from the dot to the superconductor is substantially larger than the tunneling
rate of electrons from the normal lead to the dot (see below for actual numbers).

There are two possibilities for charge transfer processes: a Cooper pair in the super-
conductor is transmitted to the normal lead or vice versa. The first process involves the
electron from a Cooper pair tunneling onto the dot; next, this electron escapes in the lead;
the other electron from the same Cooper pair then undergoes the same two tunneling pro-
cesses. Similar transitions, in the opposite direction, are necessary for two electrons from
the normal lead to end up as a Cooper pair in the superconductor. Note that this de-
scription of events assumes implicity that the superconductor lead remains in the ground
state in the initial and final states (Andreev process). On the other hand, if the normal
metal lead is initially in the ground state (filled Fermi sea), it is left in an excited state
with two electrons having energies above Fermi energy Er in the final state. The extra
energy has been provided by the environment. Typically,

1) = |GL) ®|Gs) ©[0gp) @ [R) (5.42)

where |G ) denotes a ground state, which corresponds to a filled Fermi sea for the normal
electrode. |Ogp) is the vacuum of the quantum dot and |R) denotes the initial state of
the environment. On the other hand our guess for the final state should read

1) =2712[e o0l o = Chroh,_olIGL) ® |Gs) @ 0gp) ® |R') (5.43)
when a Cooper pair is emitted from superconductor, or
1) =27 [Chotr o — i oCr—o]|GL) @ |Gs) @ [0gp) @ |R) (5.44)

when the superconductor lead absorbs a Cooper pair. Here, |R') is the final state of the
environment. The justification for the choice of Eqgs. (5.43) and (5.44) is the same as in
section 5.2.5.

5.3.2 General formula for the photo-assisted Andreev current

The technique we use to calculate the current through the NDS junction is the same as
the way we obtain the Eq. (5.22). Although we also consider the tunneling process of two
electrons but the electrons must have virtual states on quantum dot, then the calculation
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of the matrix element in Eq. (5.6) to fourth order in the tunneling Hamiltonian gives
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(5.45)

Eq. (5.45) describes evidently the tunneling of two electrons from the superconductor to
the normal metal lead via a quantum dot, and back again, with the delay times between
two hopping steps are given by ti, to, 3, t3, t5, 1], respectively, and the time between the
destroying and creating a Cooper pair is given by t. This tunneling process makes the
corresponding current being as

== 26/ dt/ dt / dt / dts / dt} / dt, / dthe~ Mtttz ttatty Hy+)

Z/J,S(Qt t/ 7t/ 2t/ —t1— t2 7Z/JL 2t t/ t/ —2t1—to— tg

X <H}1(t — 1) —th — ts)H}za — 1ty — t3)H}1<t - ts)H}za)
X Hro(ty + to + t3)Hyri(t + to) Hrao(t1) Hr1(0)) . (5.46)

The problem is thus reduced to the calculation of correlators of the tunneling Hamilto-
nian in the ground state. Using Wick’s theorem, these can be expressed in terms of a
single particle Green’s function because the Hamiltonian of the isolated components is
quadratic (except maybe for the environment, which is dealt separately). The detail of
this calculation is shown in Appendix E. We can now write the tunneling current as a
function of the normal (and anomalous) Green’s functions of the normal metal lead, G,
the quantum dot, Gp,, and the superconductor, F, (which are shown in Appendix C),

—2€T4T4/ dt/ dtl/ dtz/ dt3/ dtl/ dt//dt3e’7 (t14to+ta+t] +th+t5)

Xelug(?t t/ t/ 2t/ —t1— t2 7@/.111(215 t/ t/ —2t1—to— tg

X Y [=FHd, —th — ) Fp(q ty + )G (kt =t — thy — t — ty — t3)GT_ (Kt — 1)

k.k'.q,q' 0
X Gy (—t1) G (—t5) Gy (t3) Gl (11) + Fi(q', —t) — th) Fy (g, th + t2)
X G7y(kyt —th —th — t)G7_ (Kt —ty — ta — )Gl (—t)) Gl ()Gl (t3) Gl (1)

w o (t=ty =ty —t3)+J (t—t5)+J (t—t] —ty—ty—t1—t2)+J (-t —t1 —t2) = J (=) —t5) —J (t1 +t2) (5 47)
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The result for the current contains both an elastic and an inelastic contribution. The
elastic contribution reads

el eiys eV ' A?
It~ L dE 0E
2m A VEZZA2VE? - A
A | Z (w)? 1 2 J|Z@)P S1(w)
1— kSl — - .
XH RK/ do =5 51w) DY  Rg /_oo w2 DA  (548)

where DY _is the original denominator which is not affected by the environment, which is
defined by Eq. (5.75), and D¢ is the denominator product affected by the environment
(see Eq. (5.76) of Appendix F). The inelastic contribution reads

I o 63%?2 / / de / dE / dE'
(ara’e

—(e+€)))?Si(—(e +€))
i AQ\/E’Q A2 (e+e) Dzt

where D¢ is the denominator product attributed to the inelastic current, which is defined
in Eq. (5.77) of Appendix F.

Here, v, = 2rNsT? and ~y, = 2nNyT7 define the tunneling rates between the super-
conductor and the dot and between the dot and the normal metal lead, respectively, with
Ng and Ny as the density of states per spin of the two metals in the normal state at
the chemical potentials g and puy, respectively. All contributions to the current contain
denominators where the infinitesimal 1 (adiabatic switching parameter) is included in
order to avoid divergences. In fact, it has been shown in Refs. [90] and [95] that a proper
resummation of the perturbation series, including all round trips from the dot to the nor-
mal leads, leads to a broadening of the dot level. We take into account this broadening by
replacing n by /2, with v = ; + 72 into our calculations (including only a broadening
due to the superconductor). As mentioned above, we have assumed that 71 > ~,. In order
to avoid the excitation of quasiparticles above the gap, these rates also need to fulfill the
condition e€p +~ < A. In what follows, we keep the notation 7 in our expressions, bearing
in mind that it represents the linewidth associated with the leads. For numerical purposes,
it will be sufficient to assume that 7 is kept very small compared to the superconducting
gap, as well as all the relevant level energies (dot level position, bias voltages, etc.).

The above expressions constitute the second main result of this work: we understand
now how the current fluctuations in the neighboring mesoscopic circuit give rise to inelastic
and elastic contributions in the current in the NDS device.

We find that both right and left current contributions have the same form. The current-
current fluctuations of the mesoscopic device affect the detector current at the energy
corresponding to the total energy of two electrons exiting in (or entering from) the normal
lead. Therefore, we proceed to the same change of variables a for the single NS junction.

For eV > 0, elastic current contributions in /_, are present but the same contribu-
tions in /. vanish (the opposite is true for the case of eV < 0). Changing variables
in the inelastic contributions and defining the kernel functions K¢ q(w, eV, ep,n) and

(5.49)
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Figure 5.8: The weight function K, as a function of frequency ; left

panel |eV| < ep.

K (Q, eV, ep,n) as in Appendix F, for eV > 0 and eV < 0, we obtain

Z(w
Alpar(eV) = —CNDS/ o) C(d)| S s (—W) KN ps(w, eV, e, n)
2eV 7 '
_CNQDS / 40! 52 st (oK, eV, epn)

_M/ MS‘F (Q)K]Z\?E)ZS(Q76‘/7 GDan) ) (550)
2 %V Q exrcess
with Cyps = e?v3A?/7? R

The first term in Eq. (5.50) describes the elastic contribution in the PAT current.
Although we are less interested in this contribution, we cannot ignore it in practice because
it contributes to the total Alpsr. The environment affects this current contribution, but
at the end of the tunneling processes, there is no energy exchange between the device
and the detector circuit. The second term in Eq. (5.50) describes the tunneling of a
Cooper pair from the normal lead to the superconductor via the quantum dot, with energy
exchange. The electrons can absorb energy (in case their total energy is smaller than the
superconductor chemical potential pg) or emit energy (if their total energy is bigger than
is). The last term in Eq. (5.50) describes the inverse tunneling process: a Cooper pair
absorbs energy from the neighboring device; its constituent electrons then tunnel to the
normal lead. In this event, the total energy of the outgoing electrons is positive. If, on the
contrary, this total energy is negative, then the Cooper pair has emitted energy to the
device.

In order to understand how the detector circuit affects the behavior of the current (in
the presence of the environment), we investigate the weight functions K¢, ¢(w, eV, ep,n)
and K¢ (Q, eV, ep,n) separately. The weight function K¢, ¢(w,eV,ep,n) is plotted in
Figure 5.8 as a function of frequency w for two values of the bias voltage and two values
of the dot level position. This elastic kernel is symmetric under a bias voltage reversal
[K¢po(—eV) = —Kg,s(eV)]. From the right panel of this figure, where we consider
leV| > ep, we find that there is a small step at w = A — ep and a sharp peak at
w = —A + €p. The peak is asymmetric, and its height is much larger than that of the
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Figure 5.9: the weight function K%‘f,ls as a function of frequency Q. Left panel, eV < 0; center panel
0 < eV < ep; right panel eV > ep (the same is true for eV > €p.

step. When w < —A + ep, K¢, changes sign and becomes negative. The voltage bias
eV mainly affects the amplitude of the peak and of the step in K. The left panel of
Figure 5.8 describes K¢ s when |eV| < ep. The peak height decreases quite fast as a
function of eV, and its location is shifted at w = —A + eV. The peak is symmetric for a
large bias.

We turn now to the truly photo-assisted processes, which involve either absorption or
emission of energy. The kernel K4 (Q), eV, ep,n) is plotted in Figure 5.9 as a function
of frequency (2, which corresponds to the total energy of two electrons, for ep > 0. In the
left panel, eV is negative, and in the center panel, eV is positive but eV < €p, and finally
the right panel of Figure 5.9 describes eV > ep. We find that when eV < €p, there is a
step at ) = ep + eV. When we increase eV close to ep, the step still dominates K¢,
but there is a small peak at Q2 = —A 4 eV. When eV > ¢p this, (inverted) peak is very
sharp. This is explicit in the right panel. The inverted peak, which has a large amplitude,
makes it now difficult to observe the step. The (inverted) peak is located at 2 = —A+¢€p.
Again, eV mostly affects the amplitude of K. For ep < 0 (not shown), the result is
similar to that of ep > 0 with opposite eV, but the amplitude of the peak is doubled
compared to that of ep > 0 when |eV| > |ep].

Note that understanding the behavior of the two weight functions as a function of the
different parameters (eV and ep) of the detector is crucial. It allows us to control the
effect of the device voltage bias eV}; on the dc current of the detector, and it is therefore
the key for extracting the noise from the measurement of this dc current.

5.3.3 Application to a quantum point contact

We now calculate Alp,r from Eq. (5.50) with the spectral density of excess noise of a
quantum point contact, given by Eq. (5.37). We consider the PAT current as a function
of the detector voltage eV for several values of the device voltage eV, which are shown in
Figure 5.10. We find that there are two values of eV at which Alp4r changes drastically.
First, there is a step located at eV = e¢p and second, a Fano-like peak appears at el =
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Figure 5.10: Alpar plotted as a function of the detector bias voltage for dot energy level: ep = 0.4
(left panel) and 0.6 (right panel) and for several values of device bias eV.

—ep. The (negative) derivative at €V’ = —ep seems to diverge. The height of both the peak
and the step increases in a monotonous manner as a function of the ratio of the device
voltage eV divided by the dot level ep. When eV, is small, the peak is much higher
than the step. Increasing eV, the peak further increases, but the step height increases
faster, starting from the threshold device voltage eV; = A — ep. In Figure 5.10, we find
that for ep = 0.4 and eV; = 0.8, the peak height is still higher than the step, but with
ep = 0.6 and eV,; = 0.6, the step becomes higher than the peak. Here, for specificity, we
only consider the case where ¢ > 0, but results for ¢, < 0 can be obtained in a similar
manner, exploiting electron hole symmetry.

In order to further understand the behavior of Alp47, we consider the different contri-
butions of this photo-assisted current, which are shown in Figure 5.11. Specifically, we plot
the elastic current renormalized by the environment, as well as the right and left inelastic
currents. We find that the elastic part is symmetric between eV positive and negative.
It is almost equal to zero when |eV| < ep. It shows a step at |eV| = ep. This can be
understood from the fact that at the threshold eV = ¢p, electrons tunnel from the normal
metal lead to the superconductor predominantly by making resonant transitions through
the dot. Electrons easily tunnel to the quantum dot, in a sequential manner becoming a
Cooper pair in the superconductor. For eV = —e¢p, the same reasoning can be made for
incoming holes or, equivalently, for electrons exiting the superconductor: a Cooper pair
in the superconductor is split into two electrons, which tunnel to the quantum dot and
then to the normal metal lead. Because of the energy conservation condition, it is then
necessary to have eV < —ep.

Turning now to the inelastic current, we consider the contribution of two electrons
being transferred inelastically from the normal metal lead to the superconductor, which is
called the 7! in Figure 5.11. When eV < €p, electrons tunnel through the quantum dot
to the superconductor by absorbing or emitting energy to the environment. However, as
in the elastic case, the transfer from the normal metal to the dot is more favorable when
eV > ep, which explains the presence of the step in 2 at this bias voltage.
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Figure 5.11: Elastic and inelastic contributions to Alp 47, as a function of detector bias voltage. The
dot energy level is fixed at ep = 0.6. The mesoscopic device bias eV is 0.8 (left panel), 0.4 (center
panel), and 0.3 (right panel).

Next, we consider the contribution of two electrons tunneling from the superconductor
to the normal metal lead, which is called Ii"® in Figure 5.11. When eV is positive, [i"¢
is nonzero only when eV, > 2eV/, this case corresponds to the process of the Cooper pair
absorbing energy from the environment to tunnel to the normal metal lead. If 2¢p < eV,
a small step occurs (not shown) at eV = ep corresponding to the activation of the two
Cooper pair electrons on the dot: this small feature can only be seen by zooming in the
picture. When eV is negative, the absorption of energy from the environment becomes
much more favorable. Because of this, the analog of the step corresponding to eV = —ep
in the elastic current is smoothed out, and it saturates around eV = —ep. Nevertheless,
Iinel also contains contributions where electrons emit energy to the environment. Starting
from eV < 0, the process of the Cooper pair tunneling to the normal metal lead and
emitting energy to the environment has, first, a small contribution to 7¢*¢| but it really
becomes noticeable below eV = —ep and eventually saturates for a lower bias voltage
(not shown). As the voltage of the mesoscopic device is lowered (left to right panels of
Figure 5.11), two things occur: first, the amplitude of all current contributions decreases;
second, the smoothing of the ¢ is reduced because the range of energies available to
absorption and emission is reduced.

In brief, the sum of the contributions for emission and absorption in 7i"* has a tendency
to compensate the elastic current at voltages where saturation is reached. From the above
considerations, we can therefore interpret the curve of Alp,7, and we understand when
the detector circuit absorbs or emits energy from or to the mesoscopic device: when eV
is negative, the PAT current is mainly due to absorption for |eV| < ¢p and emission for
‘€V| > €p.

Note that in all our numerical results, the PAT current is in units of 2e3R?7?~v3T(1 —
T)/m3h?A3Ry. To check the observability of these predictions we estimate y; = 0.2A,
12 = 0.02A, A = 240 peV, R = 0.03Rk, and T = 0.5 (see also Refs. [20, 21, 22, 92]).
This implies, e.g., for the PAT current in Figure 5.10 when the detector bias is close to
+ep that Ipar ~ 5 — 10 pA with the device bias V; = 0.8A/e = 48 uV. This value is
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acceptable if we compare it with the value of current which has been estimated in Ref.
[20]. Tt is also acceptable with present day detection techniques.

5.4 Conclusion

In conclusion, we have presented a capacitive coupling scheme to study the high frequency
spectral density of noise of a mesoscopic device. As in the initial proposal of Ref. [20], the
effect of the noise originating from a mesoscopic device triggers an inelastic dc current in
the detector circuit. This inelastic contribution can be thought as a dynamical Coulomb
blockade effect where the phase fluctuations at a specific junction in the detector circuit
junction are related to voltage fluctuations in the same junction. In turn, such voltage fluc-
tuations originate from the current fluctuations in the nearby mesoscopic device, and both
are related by a trans-impedance. The novelty is that here, because the junction contains
a superconducting element, in the subgap regime, two electrons need to be transferred
as the elementary charge tunneling process. In a conventional elastic tunneling situation,
the two electrons injected from (ejected in) the normal metal lead need to have exactly
opposite energies in order to combine as a Cooper pair in the superconductor. Here, this
energy conservation can be violated in a controlled manner because a photon originating
from the mesoscopic circuit can be provided to or from the constituent electrons of the
Cooper pair in the tunneling process.

We have computed the dc current in the detector circuit for two different situations.
In a first step, we considered a single NS junction, and we computed all lowest order
inelastic charge transfer processes which can be involved in the measurement of noise: the
photo-assisted transfer of single (and pairs of) electrons (with energies within the gap)
into quasiparticle(s) above the gap and the photo-assisted Andreev transfer of electrons
as a Cooper pair in the subgap regime. It was shown that the latter process dominates
when the source drain bias is kept well within the gap. Close but below the gap, the
absorption of quasiparticle dominates, and we observe a crossover in the current between
the Andreev and quasiparticle contributions. For the above processes, we demonstrated
the dependence of the dc current on the voltage bias of the mesoscopic device, chosen here
to be a quantum point contact. When this bias eV} is increased, the overall amplitude of
the spectral density and its width scale as V;, so that the phase space (the energy range) of
electrons, which can contribute to the Andreev processes is magnified. We have therefore
gained an understanding about how the measurement of the dc current can provide useful
information on the noise of the mesoscopic device. Nevertheless, we should point out
that with this NS setup, it is difficult to isolate the contribution of the photo-assisted
current which involves, respectively, the absorption and the emission of photons from the
mesoscopic device. For biases close to the chemical potential of the superconductor, both
will typically contribute to the photo-assisted current.

Next, we considered a more complex detector circuit where the normal metal and the
superconductor are separated by a quantum dot which can only accommodate a single
electron at a given time. There, the dot acts as an additional energy filtering device, with
the aim of achieving a selection between photon emission and absorption processes. We
decided to restrict ourselves to the photo-assisted Andreev (subgap) regime, assuming
that the dot level is well within the gap. By computing the total excess photo-assisted
current as well as its different contributions for absorption and emission, and right and left
currents, we found that for dc bias voltages comparable to eV = —e¢p it is possible to make
such a distinction. The NDS detection setup could therefore provide more information
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on the spectral density of noise than the NS setup, but its diagnosis would involve the
measurement of smaller currents than the NS setup, because of the presence of two tunnel
barriers instead of one.

Note that the normal metal lead—quantum dot—superconductor setups have already
been investigated theoretically [96] and experimentally recently [97|. In such works, the
emphasis was to study how the physics of Andreev reflection affected the Kondo anomaly
in the current voltage characteristics. In Ref. [97], the quantum dot consisted of a carbon
nanotube making the junction between a normal metal lead and a superconductor. Here,
we did not consider the quantum dot in the Kondo regime, and we included interactions
on the dot in the Coulomb blockade regime.

A central point of this study is the fact that all contributions to the photo-assisted
current, for both the NS and NDS setups, can be cast in the same form,

AT % dQ|Z(Q)|QS+ +O K Q. eV, 5.51
PAT(e )OC 02 ( ) process( , € 7) . ( )

eExrcess

Where Kjpocess 18 a kernel which depends on the nature (elastic or inelastic) as well as
the mechanism (single quasi-particle or pair tunneling) of the charge transfer process.
When dealing with an elastic process, we understand that the environment renormalizes
the dc current even when no photon is exchanged between the two circuits. In the case
of inelastic tunneling only, the frequency {2 corresponds to the total energy of the two
electrons which enter (exit) the superconductor from (to) the normal metal lead. Finally,
the sign of the frequency (and thus the bound of the integral in Eq. (5.51), which are left
“blank” here) decides whether a given contribution corresponds to the absorption or to
the emission of a photon from the mesoscopic circuit.

The present proposal has been tested using a quantum point contact as a noise source
because the spectral density of excess noise is well characterized and because it has a
simple form. It would be useful to test the present model to situations where the noise
spectrum exhibits cusps or singularities. Cusps are known to occur in the high frequency
(close to the gap) noise of normal superconducting junctions. Singularities in the noise are
known to occur in chiral Luttinger liquid, tested in the context of the fractional quantum
Hall effect|[98]. Such singularities or cusps should be easy to recognize in our proposed
measurement of the photo-assisted current.

On general grounds, we have proposed a mechanism which couples a normal metal—
superconductor circuit to a mesoscopic device with the goal of understanding the noise of
the latter. The present setup suggests that it is plausible to extract information about high
frequency noise. High frequency noise detection now constitutes an important subfield
of nanoscopic or mesoscopic physics. Measurement setup schemes which can be placed
“onchip” next to the circuit to be measured are useful for a further understanding of high
frequency current moments.

5.5 Appendix

5.5.1 Appendix A

In this appendix, we consider the average of exponents of the phase at different time.
Following the theorem in quantum mechanic for operators, if C' = [A, B] satisfies
[A,C] = [B,C] =0, then
eAeB = ATBO2 (5.52)
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and if A is linear in Bose creation and annihilation operators, we have

(ed) = A2 (5.53)
From these two properties, if C' is a C-number then C' = (C) = (AB) — (BA), we easily
obtain
A? + B?
(e?eB) = exp {<AB + _5 >] . (5.54)

Similar, for a four-point correlation function,

<6A16A26A36A4> _ <6A1+A26A3+A4>e[Al,AQ]/Qe[Aa,A4]/2 ) (555)

Since A; + Aj, (i,7 = 1,2,3,4) is also linear in Bose creation and annihilation operators,
we can perform the average of the exponents as

(eMHAzpdatday — oy [<(A1 + Ag)(As + Ay) +

exp KZ AA; + % > A§>

1<j %

(A1 + Ar)? —5 (A5 + Ag)? >]

(5.56)

We apply these results to our calculations with the phase ¢(t) = e ffoo ar'v(t'), V(t)
voltage of the mesoscopic device where we would like to measure noise. If noise is Gaussian,
¢(t) is linear in bosons. We also find that [¢(t), ¢(t')] = 0. These properties of ¢(t) satisfy
the conditions to apply Eqs. (5.54) and (5.56). Indeed, (¢*(t)) = (¢*(0)), we have

(e =100y = ) (5.57)

and
(e9(83) i0(12) o =i0(t1) o =i0(O)y — oxp[J(t3) + J (o) + J(ts —ty) + J(ty —t1) — J(ts — o) — J (t1)]
(5.58)

where we recall here J(t) = ([¢(t) — ¢(0)]¢(0)).

5.5.2 Appendix B

In this appendix, we define ¥y, K& _(w,eV,n), and K" (Q,eV,n) in Egs. (5.27) and

2e— 2e—
(5.28) as
\p /_A_evdams V) =A% /(5+ V) — AT ( ! ! ) (5.59)
0 AdeV d+im \d+in &—1in
—A—eV
Ksl eV = [ d5y/E= eV = B/ eV - A7
A+eV
< (3 1 n 1 1 _ 1 n 1 1 _ 1
o04+in d+w+in) \d+in J—in d+m\d—w+in +w—1n ’

(5.60)

Q—2A—2eV
K (Q,eV,n) = / Ao/ (1 0 — 2eV)2 — 4A2\/(Q — 6 — 2eV)2 — 4A?
2

2e—
A+2eV —-Q
o 1 1 1 n 1 1 1 (561)
i HP—in ) \UP - fP—in B4 HPP4an )
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5.5.3 Appendix C

In this appendix, we recall the definition of Keldysh Green’s functions|99].
First, we define the anomalous Green’s function, describing the pairing of electrons
with opposite spins in the superconductor,

Folq,t =1') = =(Tc g o (t)cgo(t))

Fi(qt —t") = (Treh ,(t)ch, (1) .

If both ¢ and ¢’ are in the upper branch, and ¢ > ¢’ or both ¢ and ¢ are in the lower
branch, and ¢’ > ¢ then F,(q,t; —t,) = F(q,t- —t_) = sgn(o)u,v,e Falt=") These
Green’s functions enter the description of the Andreev process. If we consider the single
quasiparticle tunneling in the superconductor, we use the conventional definition of the
Green’s function as for normal metals.

Secondly, we define the Green’s function of the one level QD

Gpolt —t') = (Txepo(t)eh, (1)) . (5.62)

Simplifications occur because the quantum dot has a singly occupied level with energy €.
The first electron is transferred to the lead before the second hops on the quantum dot so
that in our work, we only consider the QD Green’s function where both time quantities ¢
and t’ are in the upper or lower branch, and the Green’s function values only when ¢ > ¢/
if £, ¢' in the upper branch G%,_ (t —t') = e7*»®~*) and ¢’ > t if t, ¢’ in the lower branch,
then G _(t —t') = e~ ier(t=),

The Green’s function in the normal metal lead reads

Gro(k,t —t") = (Tero(t)ch () . (5.63)

In our work, we consider the cases where two electrons tunneling from or to the normal
metal lead, so that we only consider normal metal Green’s functions where ¢ and t' are in
the different branches. For the case of electrons tunneling from the superconductor to the
normal metal, we use the greater Green’s function G7_(k,t —t') = e i #)(=)  with
€r > pur- For the case of electrons tunneling from the normal metal to the superconductor,
we use the lesser Green’s function G5 (k, t—t') = —(cl_(t')cro(t)) = —e {s—r)(=1) with
€ < L.

5.5.4 Appendix D

In this part, we present the denominator products which appear in the tunneling current
through the NS junction as a Cooper pair. Such denominators come from the energy
denominators of the transition operator 7"

D)t (5 o) (5:60)

B +etin E—e—in+E+e—i77

1 1 1
(D)™t = , — + .
EF+e+w+m\E—e—in E+e—y

1 1 1
5.65
+E’+e+in(E—e+w—in+E+e+w—in)’ (5.65)
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, 1 1
Dznel -1 _
(D7) (E’—e’+i77+E’+e+i77)

« I S S (5.66)
E+é¢—in E+e—in E—-e—in E—¢—in)

We change variables in 1!, [i¢l a5

Q=c+¢,
0=e¢—¢€ .
We define
o 1 1 T+ 2 arcsm(”m)
z,n)= [ dE — = A’ 5.67
then, we define the weight functions as
eV
KN w,eV,n) = / de {[2x (=€, =n) + x(—€ — w, =n)] [x(e,n) + x(—€,7)]
—eV
+ x(—¢,—n) [x(e —w,n) + x(—e —w, )]} , (5.68)
: Q=2eVr g § Q+6
K™Q,eV,n) = / do | x(—5—>—n) + x(=——,—n)
2eV—-Q 2 2
Q-0 Q+90 Q+9 Q-9
TR T ) g )| (500

5.5.5 Appendix E

In this appendix, we compute the product of tunneling Hamiltonian operators in the
(initial) ground state, which is shown in Eq. (5.46).

(HEy (8 — 1) — ty — th) HYy(t — th — £5) HE, (¢ — 1) HIo (t)
XHT2<t1 + tz -+ tg)HTl (tl + tz)HTg(tl)HTl (0)>
= T14T24 Z <Cj]10'1 (t - tll - t2 t3) q20'3 (t - té)cq30'6 (tl + t2)cq40'8 (O)>

k1..k4,q91..q4,01..08
Xy (t = Ty — t5) Chors (t)c;m (t + to + t3)ch,,. (1))
X (Cpoy (t — 1) — th — th)eh,, (t = th — th)epo, (t — th)ch,, (1)
XCpos (t1 + ta + t3)ch, (B + t2)Cpes (t1)chy, (0))
x (et~ —15) i lt—ts) o —ib(titt2) —id(0)) (5.70)

Simplifications occur because the quantum dot has a singly occupied level with energy
ep- As in Ref. [90], the first electron is transferred to the lead before the second hops on
the quantum dot. Therefore,

(Cpoy (t =t — th — th)ch, (t — th — th)cpa, (t — t5)ch,, (1)
XCpos (1 + ta + t3)ch,. (B + t2)cpes (t1)chy, (0))
= (cpo, (t =t — thy — th)ch,, (t — th — 15)) (cpay (t — th))ch,, (1)
X (Cpos (t + ta + t3)Chy. (t1 + t2)) (Cpos (£1)Chy, (0))
= G (110510, G0, (—1)0,0, Gy (13) 30306 Gy (£1) G (5.71)
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Describing the Andreev process, we assume

Z <C:;101 (t - tll - tl2 - té)cjpag (t - té)cq;we (tl + t2)6q408 (O)>

q1--94

= > el (t =t =ty = th)ch, . (F = 15)) (Cason (t1 + 12)Cuos (0))
q1-.94

= Z F;1 <q17 _tll - té)éog,folFog ((J47 tl + t2)506,708 ) (572)
q1,94

For the correlation of operators in normal metal lead, using the Wick’s theorem, we
obtain

Z <Ck102 (t - tl2 - té)cbm (t)c;rcg% (tl +1ia + t3)cJIrc4a7 (tl»
k1..ka

= Z [_<C/€102 (t - tl2 - tg)clzgas (tl + 12+ t3)><ck204 (t)CJIrc4o7 (t1)>
k1..kq
+<Ck102 (t - tl2 - té)c;rmm (t1)><ck‘204 (t)c;r%% (tl +itr+ t3)>]
= —Gf@ (t - tl2 - tg —t —ty — t3>502705 504(15 - t1>504707
+G 7, (t =ty —ts — 11)00y .0, Gy, (t —t1 — ta — 13)00, 05 (5.73)

Concerning the phase fluctuations, the four-point correlator, which is implicit in the
expression of the tunneling current is written as a time ordered product. Once ordered,
the product of the exponential gives the exponential of the sum of all pairings between
phase operators as shown in Appendix A. As a result, with the definition of Eq. (3.15),
from Eq. (5.58), we get

<ei¢(t7t/1ftéftg)em(tftg)efi(b(h +t2)6—i¢>(0)>
eJ(t—t/l —th—th)+J (t—th )+ J (t—t) —th—th—t1 —t2)+J (t—th —t1 —t2)

_ . (5.74)

eJ (=t —ty)+J (t1+t2)

5.5.6 Appendix F

In this appendix, we present the denominator products which appear in the tunneling
current through the NDS junction.
DY is the original denominator which is not affected by the environment
1
(E"+ e +in)(E' + ep + in)(e + ep +in)(E + ep — in)
1 1
X { ( + ] , (5.75)

—€e+ep—in)(E—e—in) (e+ep—in)(E+e—in)

(D0)™" =

and D is the denominator product affected by the environment,

1

Del -1 _
(DZ) (B'+e+w+in)(E' +ep+w+in)(e+ep +in)(E + ep —in)

1 1
X . — + . .
[(—HED—m)(E—E—m) (6+6D—277)(E+6—m)]
1
+ - . . .
(E'+e+in)(E' +ep+in)(e+ep +in)(E+ ep + w —in)
[ 1 1
X . — + . .
(—e+ep—in)(E—e+w—1in) (e+ep—in)(E+e+w—1in)

] (5.76)

64



where D is the denominator product attributed to the inelastic current (affected by

environment) and is defined as
1

1

Dinel -1 _
(D7) [(E’+6D—e—e’+in)(E’—e’

|

— + : :
+ian) - (E'+ep +in)(E' + e +in)

1 1
X{<eD—e'+m><eD—e—m> [<E+ep—e—e'—m><E—e—m>
1 1
+ , , }‘F , :
(E+ep—in)(E+e —in)| (ep—€+in)(ep — € —in)
1 1
(B.TT
X{(E%—el)—e—e’—in)(E—e’—in)+(E—i-eD—i?])(E—i-e—i??)}} (5.77)
We define
1 1
ey, 29,0 = [ dE , . 5.78
(1, 22,1) A VE2Z—A2(E—xy—in)(E —xy—in) ( )

If 21 # x5, then

).

1 T+ 2arcsin(2£1) 7 + 2 arcsin(22E1)
(z1, 2,m) = 5 5 —5 5 —
(21— @2) \ VA2 — (21 +in)? /A2 — (23 +1n)
or else, 4
(x1 +in) (7 + 2 arcsin(ZE1)) 1
H('Tlax%n) = >

2(A? — (zq +in)
Then, we define

2)3/2 + A2 — (z;+in)?

\I]?—(E? €D7?7>
—/OOdE OOdE’ ! 1
L B e DY
TI(e, - T(—e, —
(e4+ep+in)(—e+ep—in) (e+ep—+in)(e+ep —in)
(5.79)
\I[?—l(E? GD,C(),?])
= /OOdE OOdE' ! !
L o A DY
(e —w,—ep —w,—n)I(e, —ep,n) + (e —w, —ep — w,n)l(—€, —€p, —n)
(e+ep+in)(—e+ep —1in)
+H(—e —w,—€ep —w, —n)(—€, —ep,n) + (—€ —w, —ep — w,n)I(—€, —€p, —n)
(e+ep+in)(e+ep —in) ’
(5.80)

\I[fﬁel(g 6/7 €D, ?7)

o oo 1 1
= [ dE | dF' _
/A A VERZA/E? - A2 DR

(Il(e + € — ep, €', —n) + I(—€p, —€,—7))

(e + € —ep,€,n)+(—ep, —€,m)

% {H(G + 6/ — €D, €, 7]) + H(_EDv _6/777)
(ep — € +1in)(ep — € —in)
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Since D° (¢) = D (—¢) and D% (¢) = D% (—¢), U0 (¢) = U0 (—¢) and ¥ (¢) = V¥ (—¢).
However, in fact, if we change the name of variable ¢ — ¢’ then change variable ¢ = —¢,
we will obtain the same formula for both cases eV > 0 and eV < 0. Since € and € are
independently equivalent, it is evident that U/ (¢, ¢, ep, n) = ¥i"(¢, ¢ ep,n). Hereafter,
we neglect the < or — index in these functions.

If eV > 0, the elastic current contributions in I_, exist but the elastic current contri-
butions in /. vanish (in contrast to the case of eV’ < 0).

We change variables in inelastic contributions as

Q=c+¢€,
0=€e—¢,
and define ;
Kfps(w, eV, ep,n)= / deU* (e, ep,m) | (5.82)
—eV

. ooV Q2+ Q=6
K2 (Q, eV, ep, ) = / dppina(0 20

,€D, M), 5.83
2eV—-Q 2 2 ) ( )

with Uttt (e ep, w,n) = 2U0e, ep,n) + U (e, ep,w, ).
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Part 11

Dephasing of a quantum dot level in
the presence of a fluctuating current
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Chapter 6

Introduction to the quantum Hall effect

6.1 Hall effect

6.1.1 The classical Hall effect

The Hall effect, discovered by Edwin Hall in 1879, happens when an electric current flows
through a conducting plate in a magnetic field perpendicular to the plane. The magnetic
field exerts a Lorentz force on the moving charge carriers which tends to push them to
one side of the conductor. A buildup of charge at the sides of the conductors will balance
this magnetic influence, producing a measurable voltage Vy between two sides of the
conductor (see Figure 6.1). The Hall resistivity is proportional to the amplitude of the
magnetic field.

6.1.2 Integer quantum Hall effect

In 1980, Klaus von Klitzing et al. [100]| found that at temperatures of only a few Kelvin
and high magnetic field (3 - 10 Tesla), the Hall resistance did not vary linearly with
the field. It varied in a stepwise fashion (see Figure 6.2). It was also found that where
the Hall resistance was flat, the longitudinal resistance disappeared. The field at which
the plateaus appeared, or where the longitudinal resistance vanished, was independent of
the material, temperature, or other variables of the experiment, but only depended on
a combination of fundamental constants h/e?. This phenomenon can be understood in
terms of the Landau levels formed in a magnetic field.

The Hamiltonian for a particle subjected to a magnetic field perpendicular to its
direction of motion can be written down as

N b — eA(r;)?
H= Z % , (6.1)
with the vector potential A(r) chosen in the following gauge
Alr) = %B(yi, _+) ,B=B:. (6.2)
The energy eigenvalues of the above Hamiltonian are

Eng, = (n+1/2)w, (6.3)
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Figure 6.1: The Hall effect occurs when an electrical current is subjected to a transverse magnetic
field. Due to the Lorentz force, the Hall voltage is produced between two sides of the conductors.

with w. = eB/mc is the cyclotron frequency, n = 0,1, 2, .... Each value of n corresponds
to a Landau level. Since the Landau levels do not depend on the quantum number £,
they are highly degenerate. This degeneracy, defined as the number of states per unit
area, may be quantified by the relation pgp = eB/hc. It is useful to describe the integer
quantum Hall effect (IQHE) by the filling factor

v=p/pp , (6.4)

which is the number of electrons per Landau level and acts as a measure of the applied
magnetic field.

In Figure 6.2, the plateaus occur at each integer value of the filling factor v. This can
be understood that when each of the degenerate states of a Landau level is filled, the
resistivity increases because fewer and fewer states remain unoccupied within that energy
level. When the Landau level is completely full, a gap exists requiring a finite jump in
energy to reach the next set of degenerate energy states (i.e., the next Landau level).

However, due to impurities in a sample, the density of states will evolve from sharp
Landau levels to a broader spectrum of levels (see Figure 6.3). There are two kinds of
levels, localized and extended, in the new spectrum, and it is expected that the extended
states occupy a core near the original Landau level while the localized states trigger a
broadening of the density of states. Only the extended states can carry current at zero
temperature. The existence of the localized states can explain the appearance of plateaus.
As the density is increased the localized states gradually fill up without any change in
occupation of the extended states, thus without any change in the Hall resistance. In these
cases, the Hall resistance is on a step and the longitudinal resistance vanishes (at zero
temperature).

6.1.3 Fractional quantum Hall effect

In 1982, D. C. Tsui et al. [101] repeated Klitzing’s earlier experiments with higher mobility
semiconductor hetero-structures and higher magnetic field. Their goal was to minimize the
role of impurities and to enhance the effects of electron-electron interactions. They have
found that the plateaus at integer filling factors are much narrower, and between them
more plateaus are seen at fractional filling factor, especially 1/3 and 2/3 (see Figure 6.4).
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Figure 6.2: The stepwise behavior of the transverse resistivity (p,,) and the longitudinal resistivity
(pzz) as a function of magnetic field. The plateaus of the transverse resistivity coincide with the
dissipationless behavior of the longitudinal resistivity at each integer value of v.

These observations could not be explained by the non-interacting quantum mechanical
theory. They are realized to be a result of the many-body effects on interacting electrons.
That means now, we need to include the effects of interactions in the Hamiltonian (6.1),

then
pi —
Z Z |rl — rj| (6.5)

1<j

In this Hamiltonian, the potential energy is no longer a small term compared with the
kinetic term. It induces the fractional quantum Hall effect (FQHE) being one of the strong
correlation problems.

The Laughlin variational wave function

In 1983, Robert Laughlin [102] proposed his ansatz for a variational wave function which
contained no free parameters:

w H 2p+1 exp (_ Z |Z}‘2 ) : (66)

1<j

where 2z, = x; + iy; is the complex coordinate of the ¥ particle and [? = he/eB is the
magnetic length. The Laughlin wave function gave an accurate description of all filling
fractions v = 1/(2p + 1) and was shown to almost exactly match numerical ground state
wave functions found for small FQHE systems. However, the Laughlin wave function can
not be used to explain the remaining filling fractions, such as 2/5, 3/7, ...

The Laughling approach allowed to make predictions about the excitations of a frac-
tional quantum Hall system. These excitations were shown to carry anomalous fractional
charge ve, and to have fractional statistics. On general grounds, the Laughlin approach
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Figure 6.3: Diagram of Landau levels due to impurities in the sample.

can be understood in terms of electrons adjusting to the magnetic field, which is repre-
sented by flux tubes threading the two dimensional plane. Electrons adjust their location
in order to minimize the ground state energy with these magnetic field constrains.

Composite fermions and Chern-Simons theory

In 1989, Jainendra Jain [103] identified a suitable set of quasi-particles for the FQHE
system, calling them “composite fermions™ electrons with 2n flux quanta attached to
each of them. When each of the composite fermion Landau levels is filled there exists an
energy gap separating it from the next composite Landau level. The FQHE of Jain states
can be understood as an IQHE of composite fermions at an effective integer filling: p =
number of composite fermion/number of unattached flux quanta = v/(1—2nv). Then the
relation between the filling factor v and integers n and p for Jain states is v = p/(2np+1).
This composite fermion picture is able to explain both the Laughlin fractions (p = 1) as
well as many of the remaining fractions (p # 1).

The quasi-particles in the composite fermion system are composed of both particles
(the electrons) and field (the flux quanta). It requires a gauge transformation to move
particles to quasi-particles, which is known as the Chern-Simons theory [104].

6.2 Edge states

In the thermodynamic limit a noninteracting two-dimensional electron gas has an in-
compressible ground state whenever an integral number of Landau levels is full, i.e., the
chemical potential jumps from w.(n + 1/2) to w.(n + 3/2) after the n'* Landau level is
filled. It follows that for a finite sample all single-particle states which occurs at energies in
these gaps must be localized at the edge of the sample. The quantum Hall edge states are
chiral (see Figure 6.5). They constitute the quantized analogue of the classical skipping
orbits of charged particles in a magnetic field subject to electrostatic confinement.
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Figure 6.5: The chirality of the quantum Hall edge states is due to the Lorentz force.

6.2.1 The integer quantum Hall edge states

Halperin [105] first introduced a simple picture of the integer quantum Hall edge states
of non-interacting electrons in a filled Landau level and found that the edge excitations
can be represented by a one dimensional chiral Fermi liquid. In this picture, the bulk of
Landau levels with an energy spacing of w,. are bent upward near the edge of the sample
by the confining potential with an electric field E (see Figure 6.6). For a macroscopically
large sample, there are many edge states near the Fermi energy Er of electrons even when
there are no states near Er in the bulk.

Following Stone [106] we consider the v = 1 quantum Hall ground state with a single
particle wave function for each k, eigenstate 1 (z,y) = e*“e=¢Bu~k/<B)*/2 in the linear
gauge A, = —By. If a linear confining potential V(y) = Fy is put in, the degeneracy is
lifted, the energy of a state with k, = k becomes e(k) = Ek/B, and each state carries
a Hall current. Further, the physical surface of the two dimensional electron gas is at
y = 0 then the states to the left are full and those at the right are empty (see Figure 6.6).
The physical edge of the droplet in y space can be identified with the “Fermi surface” at
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Figure 6.6: Landau levels and the edge states for a non-interacting two dimensional electron gas at
v =1 in a confining potential with Fermi energy Er and cyclotron frequency w..

Figure 6.7: The gapless edge excitations are surface waves of edge distortions, i.e., a displacement
h(z) at point x along the edge propagating with velocity v.

k = 0 with a “Fermi velocity” being the drift velocity F/B. Since all the states move in
the same direction, the excitations can be described by a Dirac equation. This edge state
description has allowed to explain in a rather intuitive manner the physics of the IQHE
[107, 108], as they provide a direct representation of the Landauer-Biittiker formula of a
mesoscopic conductor.

6.2.2 The fractional quantum Hall edge states

In the FQHE, the Landau level is filled partially. In the absence of electron-electron inter-
actions there would then be an enormous ground state degeneracy, but this degeneracy
is lifted by the interactions. At special filling factors, such as v = 1/3, the system is
expected to condense into a correlated liquid state. This liquid state is incompressible,
and has a gap for all excitations. In the presence of edges we anticipate low lying edge
excitations, as in the IQHE. There are several ways to describe the fractional quantum
Hall edge states. But the first and simplest way to understand the dynamics of fractional
quantum Hall edge excitations is to use the hydrodynamic picture introduced by Wen
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Figure 6.8: Parabolic band structure of metallic wire and linearization.

[109] in which the neutral edge excitation is a deformation of the edge as shown as wavy
solid line in the Figure 6.7. The electrostatic potential can be expressed in terms of the
local displacement (or height) of the fluid h at a point x along the edge. The author
showed that the dynamical properties of the edge excitations are described by the U(1)
Kac-Moody algebras. These edge excitations are shown to form a new kind of state which
is called the chiral Luttinger liquid (see also Ref. [30]). This theory will be discussed in
the next section.

6.3 Luttinger liquid theory

Electrons in one-dimensional (1D) systems form a quantum liquid which can not be de-
scribed with the Fermi liquid theory since there are no single electron quasi-particles.
It is due to the presence of the Coulomb electron-electron interactions. To describe the
dynamic of electrons in 1D systems, we must use the Luttinger liquid theory [110, 111]
in which the excitations consist of collective electron-hole excitations of the whole Fermi
sea.

6.3.1 Non-chiral Luttinger liquid theory

We consider a 1D metallic wire with parabolic dispersion band as shown in Figure 6.8.
The kinetic part of the Hamiltonian reads:

Hy =Y E(k)aja , (6.7)
k

with E(k) = k2/2m and a, (a;) is the creation (annihilation) operator of one electron
in state with momentum k. Notice that we do not include spin degree of freedom here.
In the Tomonaga model [110] the dispersion relation E(k) is linearized in the vicinity of
Fermi energy Fr: E, (k) = Er + vp(k — kp) for k = kr and F_(k) = Er —vp(k + kp)
for k ~ —kp. In the Luttinger model [111], the linearization is extended to all values
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of k. An infinite number of fictive states are added which have no physical signification.
However, Luttinger model has an important advantage over the Tomonaga model: it is
exactly solvable using the bosonization technique.
We rewrite the electron creation operator after linearization as
al, = al ,0(k) +d' ,O(-F) , (6.8)
where O(k) is the Heaviside function and a;k (with » = %) is the creation operator for
right or left moving electrons corresponding to the dispersion relation F, (k) or E_(k),
which obeys to the anti-commutation relations.
Neglecting the constant terms in energy, the kinetic Hamiltonian can be simply written
as
Hy =vp Z Tka;ka,n,k ) (6.9)
r.k
On the other hand, this non-interacting Hamiltonian can be expressed in term of
electron density operator as

Hy = mop Z/ dzp?(z) (6.10)

L)2

with p.(z) = ¢! (z),(z), where ¥(x) and ,(z) are the Fourier transform of a;k and
ar,k:

Yla) = fZ “al (6.11)
Ur(z) = ﬁzeilmar,k, (6.12)

and L is the length of wire.
We define the non-chiral bosonic field:

00(@) = == 3" T jp, (e — p, (—k)ejeelbl2 (6.13)

where o — 0 is a distance cutoff which is introduced in Luttinger liquid theory to insure
the convergence of the integrals.
The fermionic operator 1), is written in the bosonized form as
M,

wr(«r) — %eirkprrir(br(x) ) (614)

The factor M, /v/2ma allows to obtain the adequate anticommutation relations, and kg
in the exponent is needed to describe correctly the energy band.

Taking the derivative of Eq. (6.13), we have 0,¢,(x) = 27p,(x), then we can rewrite
the non-interacting Hamiltonian given by Eq. (6.10) as

Up L/2 )
:7Z[mm@wm. (6.15)
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If we define the total field

B) = 04(0)+6-(2) (6.16)
pla) = 64(0) = 6-(2) (617)
then
ve ("7 2 2
Hy= g [ drl(ono) + @uet)] (615)

We include now the Coulomb interactions between the electrons. The total Hamilto-
nian is H = Hy + H;,; with

L/2 L2
Hipt = / dx/ dx' p(z)U(x — 2")p(2') | (6.19)
2 Jorp

where the electron density operator p(x) contains a slow variation p. (z)+ p_(z) and fast
2kp oscillations with a non-linear dependence on ¢.. If we neglect these fast oscillations,
the interaction Hamiltonian becomes quadratic in the bosonic field. U is the Coulomb
interaction potential. If the Coulomb potential is shot range U(x — z’) = Upd(x — '), it
leads to

Hpy = Yo /m dz(0,¢())? (6.20)
m 47_[_2 7L/2 X bl N
and the total Hamiltonian reads
vp L2 1 , ,
= [ a0+ ooue@)] | (6:21)
g9J-L/2 g

where g = 1/4/(1 + 2Uy/7vr) is the Coulomb interaction parameter. We find that Eq.
(6.21) is quadratic, then the total Hamiltonian is exactly solvable and its eigenstates are
similar to the eigenstates of hamonic oscillator.

6.3.2 Chiral Luttinger liquid in the fractional quantum Hall effect

The Hamiltonian which describes the edge modes is simply an electrostatic term [33]:

H = %/0 dxV (z)ep(x) , (6.22)

where z is a curvilinear coordinate along the edge, L is the length of the edge and V()
is the confining potential related to the applied electric field E [30, 87]: V(z) = Eh(x) =
vpBp(x)/ns with ng is the two dimensional electron density. The Hamiltonian can be
rewritten as

L
H= @/ dzp?(z)dx | (6.23)
v-Jo
and in the Fourier space it is transformed as
TV
H = TF PkP—k 5 (6.24)
k

with py is the Fourier transform of p(z): p(z) = 1/VLY, e **p;. The continuity equa-
tion for this chiral density reads gy = ivpkpy. By comparing Eq. (6.24) with the classical
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Hamiltonian equation of motion, we find that we can identify p; as the canonical “coordi-
nate” g, and the corresponding canonical “momenta” can be identified as p, = —i27py /vk.
Thus, after quantization, we have

vk
1 = —— I __ . .2
[Pk Pir] 2ﬂ_5k K (6.25)

This is the Kac-Moody commutation relation and it is obtained due to the chirality of
edge wave determined by magnetic field. The electron creation operator satisfies

[p(2), ¥¥(2)] = 0(x — 2 )'(2) , (6.26)

which implies that the measurement of the electronic density on a state on which 1 (x)
is acting tells us that an electron has been added.
We introduce the chiral Luttinger bosonic field

o—alkl/2

TT ik
= ——F e "y . 6.27

Here the small factor « is a spacial cutoff which is introduced in Luttinger liquid theory to
insure the convergence of the integrals. The derivative of ¢ is proportional to the density:

0,6() = %p(m) . (6.28)

This allows to re-express the Hamiltonian in term of ¢ [30]

¢(x)

L
=t / (0u0(x))2dz . (6.29)
T Jo
The form of the electron operator ¢ (x) is found by an analogy with the properties of
canonical conjugate variables: p(x) and ¢(z), which are identified as p(z) and ¢(z)/+/v:
1 oo
W(r) = — i@V (6.30)
2ma
This operator obviously depends on the filling factor. Fermion operators are known to anti-
commute, so what is the condition for filling factor in order to insure anti-commutation
relations {¢(x),¢(2’)} = 07 This anti-commutator can be computed using the Baker-
Campbell-Hausdorff formula e4e® = eA+B-I4Bl/2 if [A B] is a c-number. The bosonic
field needs to satisfy the commutation relation

[6(x), ¢(2')] = —imsgn(z — 2) (6.31)

which induces to
Y(2)p(a’) = () () - (6.32)
From the Eq. (6.32), we find that to insure the anti-commutation relations for electron
operators, we need to set v = 1/m with m is an odd integer. This conclusion is consistent
with the assumption that in the bulk, we deal with a fractional quantum Hall fluid.
In order to obtain information on the dynamics of electrons (or of fractional quasi-

particles), we need to specify the bosonic Green’s function. The Euclidean action for this
bosonic field is [87]

S = —%/dT/dx[axgb(x,T)(UF@x +1i0,)p(x, T)] . (6.33)
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Figure 6.9: Quantum transport in a quantum Hall bar: a) in the case of weak backscattering, the
quantum Hall fluid stays as a whole (dashed area) and only quasiparticles tunnel between the two
edges. b) in the case of strong backscattering, the quantum Hall fluid is split into two and only
electrons tunnel between the two fluids.

The operator which is implicit in this quadratic action allows to define the Green’s function
G(z,7) = (Trp(x,7)9(0,0)) — the correlation function of the bosonic field. This Green’s
function is defined by the differential equation

(107 + vp0,)0.G(x, T) = 27 (2)d(T) . (6.34)

The thermal Green’s function is obtained as

Glz,7) = —1In {sinh (WW%)} | (6.35)

6.4 Transport between two quantum Hall edges

We consider now a point contact in the fractional quantum Hall regime, which is typically
achieved by placing metallic gates on top of the two dimensional electron gas in a high
perpendicular magnetic field. We apply a voltage between the two gates, which are placed
on two edges of fractional quantum Hall fluid (Figure 6.9). By varying the gate voltage,
we can switch from a weak backscattering situation to a strong backscattering situation.
In the former case, the Hall liquid remains in one piece, the entities which tunnel are
edge quasiparticle excitations. In the latter case, the Hall fluid is split into two pieces and
between these two fluids, only electrons can tunnel.

Hereafter we will discuss for the weak backscattering case, where the physics of FQHE
quasiparticle is most obvious. The description of the strong backscattering case can be
readily obtained using a duality transformation. Because the transport between two edges
is out of equilibrium, it is necessary to resume the Keldysh formulation in the next part.

6.4.1 Keldysh digest for tunneling

Let us consider a system represented by the time-independent Hamiltonian H = Hy+ H;,,,,
where Hj represents free particles and Hj;,; describes an interaction which is “difficult”
to address. In many body physics [112, 113], it is convenient to work with a Wick’s
theorem (or one of its generalizations) in order to compute products of fermion and boson
operators where the operators are time-dependent: Ay (t) = 7' Ae~*#t in the Heisenberg
picture. The problem with the Heisenberg representation is that the operators contains
the “difficult” part (the interaction part) of the Hamiltonian. It induce the problem of
translating these products into interaction representation products where the operators
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Figure 6.10: The groundstates of the system which is out of equilibrium. The groundstate at ¢ = +o00
is no longer related to the groundstate at ¢ = —oo by a phase factor.

bl

develop under the influence of the “easy” non-interacting Hamiltonian H, only: A(t) =

eiHotAe—iHot.
Consider the ground state average of a time-ordered product of Heisenberg operators:

<AH(t0)BH(t1)CH(tQ)DH(tg) .. > with to >t >ty >t3> ... (636)

When translating to the interaction representation, the evolution operator reads:

t
t/
The product of ordered operators then becomes:

where 7' is the time ordering operator.

The central quantity to compute the product in Eq. (6.38) by using Wick’s theorem is
the S-matrix S(+o00, —oc). When the system is at zero temperature or in equilibrium, the
ground state (or thermal) expectation of this S—matrix is just a phase factor, because we
assume that the perturbation is turned on adiabatically. This means that (S(400, —00)) =
e™. Therefore the T-product is easily computed with the help of Wick’s theorem.
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However, if the system is out of equilibrium, there is no guarantee that the system
return to its initial state for asymptotically large time. For example, in Figure 6.10 we
illustrate this phenomenon with a hydrodynamical picture. Two reservoirs, having different
levels, are not connected at t = —oo (the faucet is switched off). We switch (adiabatically)
the faucet on between the two reservoirs, and a stationary flow is established. If at later
time ¢t = 400, we switch off the faucet again, we notice that the two reservoirs are now
at the same level but different from the levels in the state at ¢ = —oo. We understand
in this picture that the water flow through the faucet means the tunneling of particles
from one reservoir to the other, which is described in the tunneling Hamiltonian Hj,;.
Now, the ground state at ¢ = +o00 is no longer related to the ground state at t = —oo
by the phase factor: S(+o00, —00)|G) = |G’) # ¢"|G). To remedy this problem, Keldysh
proposed a new contour, which is shown in Figure 6.11. This contour, corresponding new
time ordering operator Tk, goes from ¢ = —oo to t = +o0 and back to t = —oo [114].
Because times on the lower contour are “larger” than times on the upper contour, the
product of operators can be written as:

<TK(A[(tQ)B](t1)C[(tQ)D](tg) e SK(—OO, —OO))> R (639)

where the integral over the Keldysh contour K goes from —oo to +o0o and then back to
—o0. In this case, we have

SK(—OO,—OO) = TKGXp{—Z/dtlHlnt(tl)}
K
+o0
n=£ Y7

Note that in general, the times appearing in the operator product A;(to) B;(t1)Cr(t2) D (t3)
can be located either on the upper or on the lower contour.

The Green’s function is an example of a time ordered product. The Green’s function
associated with the two-branches Keldysh contour is therefore a 2 x 2 matrix because
there are four possible orderings:

/ Gt —t) Gt (t—1t) Go(lt —t'|) Go(t' —1t)
Gt —t) = ( G(t—t) G—(t—1) ):( Golt — 1)) Go(—|t—t')) ) (6.41)

where G (t) can be computed from the thermal Green’s function using a Wick rotation.
Note that the use of Keldysh Green’s function allows us to write directly the operators
like the current, by choosing appropriately the times on the contour. For example,

e (6) = (Tic {0t ud(E-)Sic(—00, —00) }) - (6.42)

In this equation, the operators in left hand side are in the Heisenberg presentation and
ones in the right hand side are in the interaction presentation with the time order follows
the Keldysh contour. The average of operators product on the right hand side is a time
ordered quantity, which can be calculated by using Wick’s theorem.

6.4.2 Backscattering current

In this section, we consider the stationary current flowing between two edge states which
is called backscattering current. The edge states is in the fractional quantum Hall regime.
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Figure 6.11: The two-branches of the Keldysh contour.

The Hamiltonian which describes the system is H = H,+ Hy+ Hp with H,/, describes the
left /right edge states Hy/» = (vp/m) fOL(ﬁxgbl/g(a:, t))*dx, with ¢1,, are the chiral bosonic
fields for excitations with charge ve, and the tunneling Hamiltonian Hp describing the
coupling between the two edges 1 and 2:

Hp = T(6)93 ()¢ (1) + T (0] (£)4ha(t) | (6.43)

where
Mo

ivVd1/2(t) 6.44
e , )
V2ra ( )

U1y2(t) =
within M, , is a Klein factor, which will be omitted hereafter by noticing that Mlz/2 =1.
Upon the gauge transformation the tunneling amplitude between the edge states is I'(t) =
e " X(M/e where e* = ve is the fractional charge. The gauge function y depends only on
time for a constant dc bias Vj, imposed between two edges: x(t) = cVyt , so that in this
case ['(t) = [pe™°! with wy = e*Vj.

The backscattering current operator can be derived from the Heisenberg equation of
motion for the density operator, or alternatively by calculating Iz = —cOHpg /0y, then

In(t) = ie” (T — T Ol (1)) (6.45)

The average backscattering current is expressed using Keldysh contour which allows to
treat nonequilibrium situation:

1 ‘
(Is(1)) = 5 S Tk {IB(t")eﬂfK dt1HB(t1)}> _ (6.46)
n
To lowest order in the tunneling amplitude I'y, we have
e*I'2 : ,
<[B<t>> — 2 0 Z €nleleu}0t+261u}0t1

x <ijl[¢;<t">m<t">] U]y ean

The correlator is different from zero only when ¢; = —e¢, that means the quasiparticles are
conserved in the tunneling process. In the calculation, we are led to introduce the chiral
Green’s function of the bosonic field at position x = 0, which does not depend on the
chirality 1/2:

(1 1) = {Tic {660t }) = 5 (T {62 }) — 3 (T {6206}
(6.48)
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This Green’s function is associated with the two-branches Keldysh contour as we have
discussed before. The average current can now be expressed as an integral over time of
Keldysh Green’s function

ie"I'g I 206G ()
(Ip(t)) = Z dr sin(wgT)e : (6.49)

47202

where 7 = ¢ —t;. At finite temperatures, the Green’s function is given by (see Eq. (6.35)):
sinh <%(n7‘ + i70)>
sinh (23 ) ’

where 79 = a/vp. Applying this Green’s function, we can obtain the analytical expression
for the average current as

G" (1) =—In (6.50)

e*I'2 a ¥ 27\ ! wo 8 wo 3
Igt)) = ——2— | — = inh ( — | T — 6.51
)= gy () (5) s (P () o
where I' is the gamma function. At zero temperature, the average current is
e*['2 a\%
In(t))= ———0 (=2 =l .52
(15(0) = 5ol () ssnlealea (6.52)

6.4.3 Backscattering current noise

In this section we consider the symmetrized noise because latter on noise at w = 0 is
considered, so the issue of symmetrized versus asymmetrized does not matter. Using the
symmetric combination of current — current correlators

St.t) = (Ist)Is(t) + (Ist)I5(t)) — 2{Ip(t)) (1))
-y <TK {IB(t")JB(t’—")e—ifK dtlHB<t1>}> —2Ip)? (6.53)

n

to lowest order in the tunneling amplitude Iy, it is not necessary to expand the Keldysh
evolution operator because the current itself contain I',.

S(t, t/) _ —(6*)21—% Z eeleiswot—i—ielwot’
(€) (e1)
<(1e{ [w$<t">wl<t">} [w;@’*")wl@'*")] b
2#22;(2) Zcos wo(t G — St — ) (6.54)

From this expression, the spectral density of backscattering current noise is obtained by
calculating the Fourier transform. At finite temperature, the noise at zero-frequency is

e ONORSIC )
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Figure 6.12: Tunneling current noise at v = 1/3 (v, = 2/3) versus backscattering current I (filled
circles) from Ref. [40]. The slopes for ¢/3 quasiparticles (dashed line) and electrons (dotted line) are
shown. The temperature §=25mK. Inset: data in the same units, electrons tunnel in the IQHE regime
(v, = 4). The temperature §=42mK.

and in the limit zero temperature

S(w=0) = ()°TG (3)2y w21 . (6.56)

T’ (2v) \vp

In conclusion, at zero temperature, we recover the Schottky-like relation with the
fractional charge e* = ve:

S(w = 0) = 2e*(Ip(t)) . (6.57)

At finite temperature, the shot/thermal noise crossover is recovered
S(w=0)=2e*(Ig(t)) coth(we[/2) . (6.58)

These results are consistent with the results shown in Ref. [32] in the general framework for
treating nonequilibrium transport phenomena in Luttinger liquids. The Schottky relation
in the fractional quantum Hall effect allows the direct observation of a fractional charge
which we discuss in the next section.

6.4.4 The direct observation of a fractional charge

Can fractional charge carry the current? The first proposal of fractionally charged exci-
tations above the gap was shown by R. Laughlin [102]. Soon after D. C. Tsui suggested
that shot noise could reveal the charge of these unusual excitations [101], and X. G. Wen
extended this concept of fractional excitations to the gapless modes carrying the current
at the edge of clean samples using a Luttinger liquid model [30]. In this frame, C. Kane
and M. Fisher [32]| proposed to detect the quasiparticles using the shot noise associated
with a weak tunnel current between fractional edges through the FQHE fluid. Thereafter,
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in Refs. [33, 115], it was shown that a Poissonian quasiparticle shot noise must be recov-
ered for weak coupling and that its measurement should give a direct determination of
the fractional charge.

These theoretical predictions of current—noise characteristics in fractional quantum
Hall effect have been verified in remarkable point contact experiments at filling factor
v = 1/3 in Weizmann institute and in Saclay at the same time [40, 41]. Ref. [40] was
performed at low temperature in the shot noise dominated regime, while Ref. [41] used a fit
to the thermal-shot noise crossover curve to identify the fractional charge. The data of Ref.
|40] is displayed in Figure 6.12. This experiment showed that for very low tunnel coupling,
tunneling is coherent, and the 1/3 noise reduction is a direct evidence of fractional charge
e/3. Subsequently, the group in Weizmann also measured the fractional charge e/5 in the
v = 2/5 fractional state [42].
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Chapter 7

Dephasing in a quantum dot

7.1 Phase measurement in a quantum dot via a double-
slit interference

B
R
— // '(‘_)I‘i' v P

B

Figure 7.1: Schematic description of the double-path interference experiment with a quantum dot
replacing one path. Reflector gates (R) are drawn in white. The excitation voltage Vi is applied
between emitter E and base B. The collector voltage Vg is measured between the base B and
collector C. A voltage Vp on the plunger gate P changes the occupation of the quantum dot [27].

The transport properties of electronic devices are usually characterized on the ba-
sic of conductance measurements. Such measurements are adequate for device in which
transport occurs incoherently, but for very small devices, such as quantum dots, the wave
nature of electrons plays an important role. Because the phase of an electron’s wave
function changes as it passes through such a device, phase measurements are required to
characterize the transport properties fully.

In an interference experiment with a quantum dot imbedded in one arm of the Aharonov-
Bohm ring [25, 26, 27, 116], the conductance was shown to depend not only on the mag-
nitude of the transmission through the quantum dot, but also on the phase acquired by
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electrons traversing the quantum dot. For instance, we consider here a four-terminal con-
figuration to measure directly the magnitude and the phase of transmission coefficient
through a quantum dot in the Coulomb blockade regime which is experimentally investi-
gated in Ref. [27] (see Figure 7.1). The configuration consists of emitter E and collector
C constrictions, and a base region B in between. The base contacts serve as draining
reservoirs with a chemical potential 1z = 0. The voltage difference between E and B is
Veg, and between C and B is V. The E and C constrictions are separated by a barrier
with two openings: one opening consists of the quantum dot whose behavior we want to
measure, and the other is a reference opening in a form of another quantum point contact.
At low temperatures both the phase coherent length and the elastic mean free path exceed
the entire sample size. Using the multiprobe conductance formula [107]|, we found that
the current at the collector is given by

2
e
Ic = ?(TECVEB +7cVen) , (7.1)

where 7o and 7¢ are the transmission probabilities from emitter to collector and through
the collector quantum point contact respectively. When the collector circuit is open (I =
0), we can measure directly the transmission probability 7z by measuring the collector
voltage VCB = (VEB/TC)TEC-

In fact the transmission probability 7z¢ is a coherent sum over all path amplitudes
from emitter to collector. In the two-path case Tpc = |tpc|?, where tpc = top + ta, top
is the transmission amplitude associated with the path transversing the quantum dot,
and t, refers to the transmission through the other path. When a magnetic field was
applied, a magnetic flux ®, threading the area A, enclosed by these two paths results
in an Aharonov-Bohm phase difference A¢p = 27d/Py (Py = h/e is the flux quantum)
between the two interfering paths. For single-channel transmission:

oo = |top + €t . (7.2)

Assuming fully coherent transport through the quantum dot, the interference term is
proportional to |ty||top| cos|Ad+6(ts) —0(top)], where 6(ty) and 0(tgp) account for the
phase accumulated in the two corresponding paths. As the () is a good approximation
constant, a change in the phase of {op leads to a similar change in the phase of the
collector signal.

In the experiment of Yacoby et al. [25]|, the Aharonov-Bohm phase could take only
two values 0 and 7 as a consequence of microreversibility in a two-terminal configuration
[26, 117]. The results of this four-terminal configuration are shown experimentally in Ref.
[27], allowing a determination of the continuous phase shift of the transmission amplitude
through the quantum dot. The success of these experiments gave rise to a number of other
works. Hereafter, we will consider the problem of decoherence of electron propagation
through the quantum dot due to the effect of environment.

7.2 Dephasing in quantum dot due to coupling with a
quantum point contact

Transport through a quantum dot is typically affected by the environment which surrounds
it: the level of such a dot acquires a finite linewidth if this environment has strong charge
fluctuations. The environment of the quantum dot can be a wire containing a quantum
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Figure 7.2: Scheme of the “which path” interferometer. A quantum point contact is in the proximity
of the quantum dot which is built in the lower arm of an Aharonov-Bohm ring [29].

point contact, which is close or coupled capacitively to the quantum dot [28, 29]. This
proposal setup is shown in Figure 7.2. Charge fluctuations in the quantum point contact
create a fluctuating potential at the dot, modulate the electron levels in the dot, and
destroy the coherence of the transmission through the dot. In this case, the amplitude
top has to be replaced by its average (tgp) with respect to effect of the environment. The
destruction of coherence is not necessary related to inelastic scattering and this is why we
call it “dephasing”.

On the other hand, the electrostatic field of an extra electron on the quantum dot
changes the transmission probability 7" of the nearby quantum point contact, and hence
changes the conductance of the wire. The change in the current in the wire “measures”
which path the electron took around the ring. To estimate the dephasing rate, we consider
the following argument: An electron entering the quantum dot changes the transmission
probability of the quantum point contact by AT. The rate at which particles probe the
quantum point contact at zero temperature is 2eV//h, where V' is the bias voltage in the
wire. During the time 7, of the electron in the quantum dot, the number of particles
probing the quantum point contact is N = 7,2eV/h (see also Figure 3.4). Detection of
an electron in the quantum dot requires that the change in this number of particles N
exceeds the typical quantum shot noise

2 2
Tg,eTVAT > \/@,%VT@ ~T). (7.3)

The dephasing rate, therefore, depends on both the bias across the quantum point contact
and its transmission coefficient:

eV (AT)?
(rp) " Tﬁ : (7.4)
The formula (7.4) has been obtained by Aleiner et al. in Ref. [29]. They showed that the
presence of the wire suppresses the Aharonov-Bohm oscillations in two ways. First, real
electron-hole-pair creation in the wire measures which path the electron took around the
ring, and so causes the paths to decoherence. Second, virtual electron-hole-pair creation in
the wire decreases the transmission amplitude through the quantum dot, leading to power-
law dependence of the Aharonov-Bohm oscillations on the temperature or the current

87



through the wire. This result also was obtained in experiment [118] where the sensitivity
of the quantum point contact affects the visibility of the oscillatory interference signal.

At the same time, Levinson has calculated independently dephasing rate of a state in
quantum dot induced by its capacitive coupling to a quantum point contact and interested
mainly in the additional contribution to the dephasing rate which is due to the current
in the quantum point contact [28|.

The quantum dot is assumed to be isolated from the leads and only one state existing
with energy €. The Hamiltonian of the quantum dot is Hop = €ycfc, where ¢ is an
operator removing one electron from the quantum dot state. The interaction between
the quantum dot and the quantum point contact, assumed to be weak, is describes by
hamiltonian: H;,; = c'c¢WW. We can see that W is the change of the quantum dot state
energy ¢y due to the interaction of the electron in the quantum dot with the electron
density in the point contact.

The coherence of the quantum dot state is described by the average amplitude (c),
which contains information about the phase of the quantum dot wave function. The
quantum dot has a coherent part if (¢) # 0. The time evolution of the coherence is given
by (c(t)), where c(t) = e'ce~*H! in Heisenberg representation with the total Hamiltonian
H = Hgpc+ Hgp + Hipe with Hope and Hgp are Hamiltonian of quantum point contact
and quantum dot, respectively. The Hamiltonian H;,; describing the interaction between
quantum dot and quantum point contact is assumed to be weak. The motion equation of
the operator gives

de(t)
dt

with W (t) = e'WWeH! is demonstrated in this case as the time depending modulation
of the energy level €. Eq. (7.5) gives the expression of ¢(t), whose average amplitude can
be written as

— i[H, c(t)] = —ileo + W ()c(t) , (7.5)

(c(t)) = {e(0)e " Tre o W) (7.6)

where 7; means time ordering. By assuming that the level modulation is a Gaussian
process described by a quantum correlator K(t) = [(W ()W (0)) + (W (0)W(¢))]/2, we
can decouple the average in Eq. (7.6) as

(e(t)) = {e(0))e~"0%e ™, (7.7)

with . .
@@:/W/mww4w. (7.8)
0 0

Assuming that the quantum dot does not perturb the quantum point contact, the average
in (W ()W (")) reduces to the average with respect to the state of the point contact. The
correlator K (t) decays in time with some time scale 7 which is the correlation time of
the quantum dot state energy modulation. For ¢ > 7, the second integral over " will
saturate to a constant, we have

(c(t)) = (c(0))e*te™tme (7.9)

with assuming that, for long times, we can replace the second integral of ¢ over the whole
time domain:

mﬁg%ﬁk@. (7.10)

—00
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The decay of (c(t)) with the time constant 7, is dephasing, not energy relaxation or escape
from the quantum dot [28]. The author showed that the contribution to the dephasing
rate due to the bias depends on temperature 6 and bias eV in the same way as shot noise
in the point contact at zero-frequency, but do not follow the 7'(1 — T') suppression. The
nonequilibrium contribution to dephasing rate is estimated as

(T;l)v ~ MXeV for high bias eV >0 | (7.11)
(r,")v =~ AeV)?/0 for low bias eV <0, (7.12)

where A is the coupling constant which describes the interaction between the quantum
dot and the quantum point contact.

The problem of dephasing rate of an electron state in a pinched quantum dot also
studied with a nearby voltage-biased ballistic nanostructure [119]. In this work, the author
presented a generalization of the theory given in Ref. [28] that takes into account the
specific effects appearing due to the complicated geometry, and the chirality of the states
in the nanostructure.
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Chapter 8

Quantum dot dephasing by fractional
quantum Hall edge states

8.1 Introduction

As we have introduced in the previous chapter, the decoherence of the electron transport
through the quantum dot is due to the charge fluctuations in the quantum point contact
[28, 29, 119, 120]. In these results, the dephasing rate typically increases when the voltage
bias of the quantum point contact is increased.

The purpose of the present work is to discuss the case of dephasing from a quantum
point contact in the fractional quantum Hall effect regime [102]. Quantum point contact
transmission can then be described by tunneling between edge states [30], the quantized
analog of classical skipping orbits of electrons. In this strongly correlated electron regime,
edge states represent collective excitations of the quantum Hall fluid: depending on the
pinching of the quantum point contact, it is either fractional quantum Hall quasiparticles
or electrons which tunnel. It is particularly interesting because the current—voltage and
the noise characteristics deviate strongly from the case of normal conductors [31, 32, 33]:
for the weak backscattering case, the current at zero temperature may increase when
the voltage bias is lowered, while in the strong backscattering case the I(V') is highly
nonlinear. It is thus important to address the issue of dephasing from a Luttinger liquid.
Here, we consider the case of simple Laughlin fractions, with filling factor v = 1/m (m
odd integer). As in Ref. [28], the dephasing of a state in the dot is induced by its capacitive
coupling to the biased quantum point contact, assuming that the level modulation in the
dot is a Gaussian process and neglecting back-action effects.

In this chapter, we will first compute the dephasing rate in the weak and strong
backscattering limit with the assumption that the Coulomb interaction is screened by
nearby metallic gate: the Coulomb interaction is then reduced to a delta function potential.
Next, we will extend our results to the case of arbitrary backscattering, using the exact
solution of the boundary Sine Gorden model developed by Fendley, Ludwig, and Saleur
[115]. Finally, we will show that these results can be extended to the case of arbitrary
screening.
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Figure 8.1: Schematic description of the setup: the quantum dot (top) is coupled capacitively to
a quantum point contact in the FQHE regime: a) Case of weak backscattering, b) Case of strong
backscattering.

8.2 Model setup and Hamiltonian

In Figure 8.1, a gate voltage controls the transmission in the fractional quantum Hall fluid
through the quantum point contact. The single level Hamiltonian for the dot reads

HQD = EOCTC 5 (81)

where ¢ creates an electron. This dot is coupled capacitively to the nanostructure—a point
contact in the FQHE. The Hamiltonian which describes the edge modes in the absence of
tunneling is

Hy =" / d[(9u61)? + (Dut)?] | (8.2)

with ¢;(x) (i = 1,2) the Luttinger bosonic field, which relates to the electron density
operator p;(z) by du¢i(x) = Z=pi(x).

By varying the gate potential of quantum point contact, one can switch from a weak
backscattering situation, where the Hall liquid remains in one piece (Figure 8.1a), to a
strong backscattering situation where the Hall liquid is split in two (Figure 8.1b). In the
former case, the entities which tunnel are edge quasiparticle excitations. In the latter
case, between the two fluids, only electrons can tunnel. Here, we consider first the weak
backscattering case, and then we use a duality transformation[31, 98] to describe the
strong backscattering case. The tunneling Hamiltonian between edges 1 and 2 reads:

H, = o' Tipd(0)101(0) + Hee. | (8.3)

where we have used the Peierls substitution to include the voltage: for the weak backscat-
tering, wy = e*V, (e* = ve is the effective charge and v the filling factor), while wy = eV for
the strong backscattering case. The quasiparticle operator in the case of weak backscat-
tering is v;(z) = eV*%@ /\/2ra (the spatial cutoff is & = vp7, with 7y the temporal
cutoff), and in the strong backscattering case the electron operator is obtained with the
substitution v — 1/v.

The Hamiltonian describing the interaction, assumed to be weak, between the dot and
quantum point contact reads

Hipy = cleW = cTc/dxf(m)pl(x) : (8.4)
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with f(x) is a Coulomb interaction kernel, which is assumed to include screening by the

nearby gates
e—17l/2s

flz) ~e \/:]CQjerz , (8.5)

where d is the distance from the dot to the edge and A is the screening length. We can
see that 1 is the change of the quantum dot state energy ¢, due to the interaction of the
electron in the quantum dot with the electron density in the quantum point contact.

8.3 Dephasing rate

The dephasing of an electron state in a dot coupled to a fluctuating current is caused
by the electron density fluctuations, which generate a fluctuating potential in the dot,
resulting in a blurring of the energy level €.

The dephasing rate, expressed in terms of irreducible charge fluctuations in the adja-
cent wire in the fractional quantum Hall effect, is written as [28, 119]

= i /_ Cczf / duf(x) / da' f (") ((p1(z, ) pr (', 0) + pr (2, 0)pyr (2, 1)) . (8.6)

In normal and superconducting systems, the dephasing rate can be calculated using the
scattering approach. For Luttinger liquids and in particular for the FQHE, because of
the electronic interaction, it is convenient to use the Keldysh approach|33, 87]. It in-
duces to generate the symmetrized charge density-density correlator, taking into account
backscattering

((p1(@, )1 (2", 1)) ) sym = Z(TKpl(l‘,tn)m(x/,t,_")e_ifK Hedir
n==+

1 N
_5 Z <TK/)1 («T, tn)efsz Hidt1 >]

n=+

S (Tp (o, tm)e ety | (8.7)

n=+

Here a tunneling event (at x = 0) creates an excitation which needs to propagate to
the location of the dot. The equilibrium (zero point) contribution to the dephasing rate
corresponds to the zero order in the tunneling amplitude Iy [it is labeled (7. 1 ©O)]. There
is no contribution to first order in the tunneling Hamiltonian since we assume (p(x)) =0,
while the nonequilibrium contribution corresponding to the second order in I'y exists,

T;l _ (7_;1)(0) + (72;1)(2) 4+ (88)

The dephasing rate contributions in the weak backscattering case are calculated as follow:
For the zero-order contribution, we have

v
<TKp1(x7tn)pl(x/7tlin)> = _<TKam¢1<x tn)am/(bl(x/atlin»

- = " ,aix (T e @ g (8.9)

In this formula we find 4 = —~ following the quasiparticle conservation, thus the equi-

librium dephasing rate is obtained as|121]:
(Tgl)(o) = 4L7r2/ dt /dxf(x) /d:c f(z 282 GT =2 1) . (8.10)
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The bosonic Green’s function of edge i (i = 1,2) is G (z—a', t1—t2) = (@i (x, t1") i (2, t3*)—
¢7). The coefficients 7,1, » = + identify the upper and lower branches of the Keldysh con-
tour.

For second order contribution to the dephasing rate, since 1, are independent in
the absence of tunneling, we obtain

> <TKp1(x,t")p (/™) /dt1 /dtth t1) Hy( t2)>

n==
Fg i ( t1+ t2)
== —? Z <TKp1 (ZL‘ tn)pl (ZL‘ t 77 dtl dt 62 €1wot1meawot2

n=d=;e1,e2==%

Wz(tl)@bl (1)) [ (t2) 1 (£2)]2)

— 27T2 27Ta Z dt/ dtye 61wot1+ezwot2)n s

7777177727617
x <TK8x¢>1(x, t") Oy (2, t’_")eiﬁ61¢1(0’t¥1)eiﬁ52¢1(0’t32)>
<T e—z ve1¢2(0, tnl) —1 V52¢2(0,t32)> ) (811)
Quasiparticle conservation imposes €; = —ey = €, SO
-2 _ v
(,7)" = RrDT 27ra / dt/d:cf /d:c f(x Z mne

7:11,72,€

X/ dtl / dthiewo(tl_tQ)engln2 (O,tl—tg)eyG;]l’?Q (0,t1—t2) {aile;]—n ($ _ ZL'/, t)
—00 oo

V[0,GT™(x,t — t1) — 0,GT™(x,t — 12)][0w Gy "™ (2, —t1) — 0w G "™ (2, —12)]} .
(8.12)

The dephasing rate depends on the geometry of the setup via the length scales d, A,
and «. The equivalent result for strong backscattering is obtained by replacing v — 1/v
next to the Green’s function (duality).

The Green’s function at finite temperature is given as

sinh (% [(x/vp —t) (%’fsgn( ) — 77_) + ZTOD

sinh ()

In the zero temperature limit, we expand the sinh(---) function into a Taylor series and
takes into account only the lowest order contribution, we obtain the Green’s function at
zero-temperature as in Ref. [33]:

G (z,t) = —In (8.13)

G (2,8) = —1In |7+ i(t — 2 /vp) (n;n,sgn(t) _ ”‘2”/)} . (8.14)

8.3.1 Dephasing rate for the case of weak and strong backscat-
tering and strong screening

The assumption of strong screening A\, ~ o = vp7y is made, that means the Coulomb
interaction f(x) as we have chosen above acts in very short range. Regarding the formula
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of f(z) in Eq. (8.5) with A, ~ «, we find that e~1*l/® decreasing fast to zero with the
value of z is non-infinitesimal. In this case, it turns out x < d and thus vx2 + d? ~ d.
The Coulomb interaction is reduced to the delta function,

f(z) =~ 262%5(1‘) : (8.15)
However, we find that this assumption is not necessary, and it will be relaxed later on.
Inserting the Green’s function in Eq. (8.13) in the dephasing rate [Eq. (8.10) and Eq.
(8.12)] gives

4erriy
SHO = —0 8.16
()0 = (5.16)
and with the change of variables 7 = t; — t5, 7, =t — t1, and 75 = t5, we obtain:
sinh® (%ir()) sinh? (%im)

2F2
(T;H)@ = /dT cos|woT] +
4 4527r2 432m202 42 Z sth”[ (nT + 27-0)} sth”[ (—nT + ZTO)]

x / dn [sgn(ﬁ) coth (%[—nsgn(ﬁ)ﬁ + iTO]) + coth ( Slm + zro])]

— 00

« / i [—sgn(rg)coth (%[nsgn(@)@ +i¢0]) + coth (ﬁm +m)])] - (8.17)

— 00

In the integral over 7, we change variables to t = —7Fi1y+i3/2 for the first (second) term,
and the integral now runs in the complex plane form —oo F ity + 3/2 to +o0 F it £ 5/2.
We bring it back to (—oo, +00) by deforming the contour because there are no poles in
the integrand. For 7y < wy 1.3, we obtain

'l v (2m vl wo 8 wo 3
“H@) = 0_ (= h( 220 padlles 8.18
0 = et (7)< (5))] <“2w (8:18)
In the zero temperature limit, we have (7 H©® =0 and
A2 2720
—1\(2) _ 0 0 w-1 8.19
(Tcp ) ﬂ_deng( )| 0| ( )

Comparing the formula of nonequilibrium dephasing rate in Eq. (8.18) with the backscat-
tering current noise in Eq. (6.55) [also comparing Eq.(8.19) with Eq. (6.56)], we find

) = () s0) (8.20)

Eq. (8.20) shows that the nonequilibrium dephasing rate is proportional to the backscat-
tering current noise, which can be understood by noticing the continuity equation with
assumption that the edge current without backscattering does not fluctuate in time. This
interesting result suggest us to extend our problem to the case of arbitrary backscattering
which is considered latter on.

Using duality, we readily obtain results for the strong backscattering case: the equilib-
rium contribution in the dephasing rate is the same as in the weak backscattering case.
The nonequilibrium contribution can be obtained from the weak backscattering case by
replacing v — 1/v (recall that wy is defined in a different manner in the two limits).
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Figure 8.2: Dependance of the nonequilibrium contribution of the dephasing rate on the filling factor
for both case weak (full line) and strong (dashed line) backscattering at 5 = 5,10,50 and quantum
point contact bias ¢V = 0.1. The star, diamond and circle points correspond to the Laughlin fractions
v =1/m, m odd integer.

Numerical results and discussion

The nonequilibrium contribution of the dephasing rate is proportional to the zero-frequency
noise in the quantum Hall liquid, which is computed in Refs. [32, 33, 87, 98]. The the-
oretical predictions of noise in the weak and strong backscattering limits have been ver-
ified in point contact experiments at filling factor v = 1/3,1/5 [40, 41, 42]|. This is un-
derstood from the continuity equation, which relates the current operator to the den-
sity operator[120]. At zero temperature, the nonequilibrium dephasing rate of Eq. (8.19)
for weak backscattering depends on the quantum point contact bias with the exponent
2v — 1 < 0. This is in sharp contrast with Ref. [28|, where the quantum point contact
bias dependence is linear. We also calculate numerically this contribution at finite tem-
peratures and consider it as a function of the filling factor or the quantum point contact
voltage bias. In our numerical calculations, we choose the inverse cutoff 7, * as the energy
scale and the nonequilibrium contribution for the dephasing rate is plotted in units of
e*T27o/ (w2t d?).

In Figure 8.2, we plot the dependence of this contribution on the filling factor v for
both weak and strong backscattering cases for several temperatures (5 = 5,10,50) at
fixed quantum point contact bias. v is considered here as a continuous variable, while it
has physical meaning only at Laughlin fractions[102]. For the strong backscattering case,
the dephasing rate increases when the filling factor increases. At small v, it is zero; then,
it increases rapidly. The higher the temperature, the faster the increase. For the weak
backscattering case, the shape of the dephasing rate depends on the ratio of quantum
point contact bias and temperature. At low temperature (1/5 < eV'), the dephasing rate
function has a local maximum at v < 1/2, the position of which depends on temperature:
when the temperature increases, it gets closer to v = 1/2 and its height decreases, the
rate at ¥ = 1 is smaller than that at v = 1/3. This result demonstrates that for two
different filling factors, we can have comparable dephasing rates. Around the crossover
in temperature (feV ~ 1), the local maximum in the dephasing rate broadens. At high
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Figure 8.3: Nonequilibrium contribution in the dephasing rate as a function of quantum point contact
bias with the filling factor v = 1/3 at some values of temperature 3 = 10, 50, 100 for the weak and
strong backscattering cases (correspond to the solid and the dashed lines). The inset is the ratio of
nonequilibrium contribution in the dephasing rate between the arbitrary screening and strong screening
multiplied by (a/d)? as a function of d/).

temperature (1/3 > eV'), the dephasing rate increases when the filling factor increases.
We find that the dephasing rates evaluated at different temperatures coincide at the
(unphysical) value v = 1/2, because the hyperbolic cosine multiplied by the squared
modulus of the Gamma function in Eq. (8.18) does not depend on temperature, while at
the same time the exponent (2v — 1) is zero: this is known for perturbative calculations
of the backscattering current and noise.

In Figure 8.3, the dependence of the nonequilibrium contribution of the dephasing rate
on the quantum point contact bias voltage is plotted for several temperatures. In the case
of strong backscattering, the dephasing rate increases when the bias eV increases. When
the temperature is low enough (1/4 < eV'), the dephasing rate saturates. In the case of
high temperatures (1/3 > eV'), the dephasing rate also increases when eV increases, but
it increases from a finite value (not shown), which is proportional to the temperature.
Things are quite different at weak backscattering. At high temperatures, the dephasing
rate decreases when we increase eV: this behavior is symptomatic of current and noise
characteristic in a Luttinger liquid. In the low-temperature case 1/3 < eV, for small eV,
the lower the temperature, the larger the dephasing rate and the faster it decreases when
we increase eV. At 6 = 0, the dephasing rate is “infinite” at eV = 0. This Luttinger liquid
behavior is in sharp contrast with the result of Ref. [28].

8.3.2 General expression of dephasing rate for arbitrary backscat-
tering

As we have seen before, the dephasing rate is proportional to the zero-frequency tunneling

current noise (see Eq. (8.20)). This is because the charge fluctuations are directly related

to the current fluctuations along the edges following the continuity equation. The conti-
nuity equation relates the current operator to the density operator as it holds in second
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quantized form:
1
plr,w) = Z,—V.J(x,w) : (8.21)
w

From Eq. (8.21), we can write a connection formula between the edge current noise cor-
relator and the density-density correlator at finite frequency as

T e, 0, (10)1(0) (822)

w

(p1,w)p(a, —w))) = /

— 00

In our case, the density-density correlations is considered with w = 0. Taking the deriva-
tive with respect to the positions, the w? term in the denominator is canceled, for all bias
regimes, giving a finite contribution to the density fluctuations. in a perturbative calcu-
lation of the tunneling Hamiltonian. Note that at zero temperature, the current along
the edge without backscattering does not make a shot noise, then the fluctuations of the
currents along the edges are also identical to the fluctuations of the tunneling current.
The tunneling current fluctuations were computed non perturbatively using Bethe-ansatz
techniques|[115, 122, 123].

Here, before showing the relation between the dephasing rate and the current noise
for arbitrary backscattering, I will rederive the general expression of the current noise as
shown in Ref. [115]. In this work, the authors consider the fractional quantum Hall model
in terms of even and odd left-moving bosons ¢“°(z + t) = [¢1(z,t) + ¢o(—x,1)]/v/2. The
even and odd charges are thus related to the charges of the original left- and right-moving
edges by AQ = Q1 — Q2 = v2Q° and Q1 + Q, = v/2Q°. Q¢ is the total charge on both
edges and is conserved even in the presence of the interaction. The backscattering current
thus depends only on the odd boson theory. The description of our model in terms of
quasiparticles allows us to calculate exact transport properties. Integrability ensures the
existence of a quasiparticle basis where the scattering is one by one. These results are
known in Refs. [124, 125, 126]. For any v, the spectrum containing a kink and an antikink
with the charges Q° = 1/v/2 and —1/v/2 respectively, is characterized by the rapidity 6
defined by E = —pvp = Me?/2, where M is an arbitrary scale.

When a positive voltage is turned on, the positively charged quasiparticles (the kinks)
fill the sea. If they do not interact, the kinks will fill all momentum states with vpp <
eV/2 at zero temperature. The position of the Fermi level is shifted and the density of
quasiparticles is changed due to the interaction. If we define p(f) is the density then
p(0) =0 for # > A with A is the shift of the Fermi level.

Without backscattering interaction, the current at zero temperature arises from the
kinks moving to the left at the Fermi velocity

A 2

I(V) = evp / dop(0) :yg—v. (8.23)

oo T

The backscattering current is the rate at which the charge of the left-moving edge is de-
pleted Iz = 0,[eAQ/2] = 9,[(e/v/2)Q°]. In the quasiparticle basis, tunneling corresponds
to the process of a kink scattering off the contact into an antikink.

We consider the impurity S matrix element S, (p/7Ts) which describes a single quasi-
particle of type 7 and momentum p scattering elastically of the point contact into a
quasiparticle of type k. The energy T characterizes the contact T oc A\Y/(1=¥) (pertur-
bative argument of the renormalization group, see Ref. [127]) and the rapidity 65 can be
defined by the relation Tz = Me?2 /2 so that the impurity S matrix elements are functions
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of § — 0p. The Bethe-ansatz technique gives the tunneling probability as [124]

1
Si_(0—0p))* = 8.24
50005 = o (8.20)
and |S,|* =1— ]S, _|%. So that at zero temperature, we have
A
Ip(V,Tg) = —evp/ dfp(0)|S;_ (0 — 0p)|? (8.25)

The total current I: I(V,Tg) = Io(V) + I(V,Tg) does not depend on time since the
system is in a steady state. In fact, this current is I = (j(¢)) where the current operator
j(t) includes the current with its fluctuations. The current fluctuations are characterized

by the correlator )
Cw) = 5 [ dee (1), 50N - (8.26)

In this quasiparticle picture, the quasiparticles are correlated but at zero temperature,
all the kink states with rapidity less than A are filled, and the remaining kink states,
as well as all antikink states, are empty. Shot noise occurs when the backscattering is
included. We can describe the dc shot noise from the quasiparticle approach because the
scattering off the point contact is elastic and one by one. A left mover backscatters into
a right mover corresponds to an odd-boson kink scattering into an antikink. If we define
f = 1 when a kink of momentum p scatters into an antikink, and f = 0 if it scatters
into a kink then the average over many events is (f) = |S,_(p/T)|?. In the quasiparticle
approach, the noise is then proportional to the fluctuation of f: C'(0) oc ((f?) — (f)?).
Since f is either 0 or 1, (f?) = (f) [53, 54], we have

C(0) = eva/ dop(0)[S+—(0 — 0p)"[1 — |S+—(0 — 0p)[] - (8.27)

Following the form of the transmission amplitude in Eq. (8.24), we can write

v 0S|

211 2] _
ScPl1 = 18] = g7

(8.28)

Since neither p nor A depends on fp, we can pull the dy, out of the integral. Using the
expressions (8.23) and (8.25) for I(V,Tp) and noticing that Tgdr, = Jy,, we have

ev

€)= 21—

Tpdr, I(V,Ts) . (8.29)
We notice that I(V,Tp)/V is the function of only V/Tp (see Egs. (9) and (10) of Ref.

[115]), that means
o IV,Ty) V2O I(V,Tp)

V— i e S Rk SR 8.30
alg V TgoV V7 (8:30)
then we find another formula for zero-frequency noise [115]
C0)= —L (VGass — 1) (8.31)
T2 —w) T ’ '

where Gg;rp = Oy 1 is the differential conductance.
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We can therefore invoke current conservation at the point contact to derive a general
formula for the decoherence rate, which describes the crossover from the weak to the
strong backscattering regime,

3.2
@ =20 Y (yGyy - 8.32
Equation (8.32) allows us to describe the crossover in the dephasing rate from the weak
to the strong backscattering regime at zero temperature. It is more difficult to derive a
general result at finite temperature because the current in the absence of backscattering

fluctuates at finite temperature.

8.3.3 Dephasing rate in the case of arbitrary screening

We now consider again the pertubative calculation of the dephasing rate. Remarkably,
for the weak and strong backscattering regimes, it is possible to go beyond the strong
screening limit, and we can compute Eq. (8.12) for an arbitrary Coulomb kernel f(z):

(771 B=— a dr | dx' f(x
v 432720202 vEa?

oo sinh® (—ZTQ) sinh® <£i70>
XZ / dT cos|woT] i + ’
n — 0o

sinh? [%(m‘ + iTo)] sinh® [%(—777’ + iTO)]

< / i {Sgn(ﬁ) coth (%[—nsgn(ﬁ)(x/vp _ )+ iTO]) 4 coth (E

(—afefer =) +im) )]

oo B
« /_ ETQ [—sgn(TQ) coth (%[nsgn(@)(x/ + 1) + m]) + coth <%[n(x//vp e ifo])] |
(8.33)

The triple-time integral in the second order contribution to the dephasing rate is computed
analytically as

2 2 (—q)2222 T wo3 wo3
—1\(2) _ 0 . v . B wo 0
<T“" )7 = 45m3v%a2 I'(2v) sinh <BZTO> cosh <WOTO 2 ) < T 2T )

2

h
x Z / dof(z) |i(2m +nB) + 2 n o [ e fer t ZTO)}
nm sinh [%(—nx/vp + 2'7'0)]

(8.34)

We also consider the dephasing rate in Eq. (8.34) for 7y < wy !, 3 with regarding the prop-
erties of function In <smh [ (nz/ve + ZTO)] / sinh [%(—nx Jvp + iTO)D and further simpli-
fying that f(x) even, we obtain

BN 4F2 V222 o\ 2l wo3 wo3 2
- S (5 (D (i [

The result can be displayed in terms of the ratio between the arbitrary screening dephasing
rate and the strong screening dephasing rate (both nonequilibrium contributions):

F= (T¢1()2()2) = & 5 {/Ooodxf(x)r , (8.36)

(o) (ecr)
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where the integral is a function of d/\; and we recall that « is the spatial cutoff. If
the Coulomb interaction kernel f(z) is chosen as suggested before [see Eq. (8.5)], the
dephasing rate at arbitrary A\, has an analytical expression

@O e

where Ey(d/\,) and Ny(d/)s) are the Weber and Neumann functions[128], both of zero
order. F is plotted in the inset of Figure 8.3, and («//d)? is taken to be a small constant. F
is infinite in the absence of screening, but in practical situations, the presence of metallic
gates always imposes a finite screening length. F' decreases with d/)\s and approaches 1
when ) is close to the spatial cutoff « (strong screening). The dephasing rate increases
when the screening decreases.

8.4 Conclusion

To summarize, we have established a general formula for the dephasing rate of a quantum
dot located in the proximity of a fluctuating fractional edge current. In the case where
screening is strong, we have shown that the dephasing rate is given by the tunneling
current noise, regardless of the regime (weak or strong backscattering) which is considered.
For weaker screening, the spatial dependence of the density-density correlation function
has to be taken into account, but we have shown explicitly that the long-range nature of
the Coulomb interaction can be included as a trivial multiplicative factor.

We conjecture that in order to describe the crossover in the dephasing rate between
weak and strong backscattering cases for arbitrary screening, it is sufficient to use the
strong screening crossover result of Eq. (8.32) and to insert it into Eq. (8.36). We note
that this is clear at zero temperature. However, our result is also applied for the finite
temperature and because the continuity equation is general, we expect that we can also
describe the dephasing rate (or noise) for the arbitrary backscattering at finite temperature
by investigating noise (or dephasing rate) in the corresponding case. It turns out to suggest
another way to measure noise at zero-frequency.

On the one hand, the fact that the dephasing rate decreases with increasing voltage can
be reconciled with the fact that the charge noise is directly related to the backscattering
current noise in the FQHE. There it is known, and seen experimentally, that when the
bias voltage dominates over the temperature, both the tunneling current and noise bear
a power-law dependence ~ V*~! with a negative exponent. On the other hand, the fact
that at low temperatures, the dephasing rate for filling factors can be lower than that of
the integer quantum Hall effect comes as a surprise, which is contained in the temperature-
voltage crossover formula of Eq. (8.18). It is yet another consequence of chiral Luttinger
liquid theory.

The present results could be tested with gated heterostructures as in Ref. [129] (see
Figure 4a of this work), provided that the electron mobility and the magnetic field are
further increased in order to achieve the FQHE regime and provided that the quantum
dot is placed next to the quantum point contact as in Figure 8.1.
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Conclusion

In this thesis, we have described situations where two mesoscopic devices are coupled to
each other. One of these constitutes the “detector” while the other one is the “source”
— the device on which a measurement is performed. The source was subjected to an
applied dc bias, resulting in a current which fluctuates in time. These fluctuations were
characterized, in our work, the finite frequency noise (the Fourier transform of the current-
current correlation). In the first part of the thesis, we focused on a system where the source
of noise is arbitrary. In the second part, we used a known source of noise — a fluctuating
current in the fractional quantum Hall regime.

We presented a review of noise and its detection at high frequencies in the first part.
The concepts of noise were presented in chapter 2. So far, measurements of noise have been
done mainly at low frequency (kHz range), which corresponds to the white noise regime
of thermal and shot noise. Yet, while it is difficult to measure it, high frequency noise
allows to further characterize the transport in mesoscopic devices. In nanotube transport
for instance, we can probe frequency scales which corresponds to the size of the device
[130] (which in practice can reach frequencies from the GHz to the THz regime). This has
challenged physicists working in quantum nanophysics to construct methods to measure
noise at high frequency, using novel electronic detection such as on chip devices coupled to
the source of noise. In the recent years, measurement setups for detecting quantum noise
have used capacitive coupling between two mesoscopic systems [20]. The detection then
makes use of dynamical Coulomb blockade theory [64], which was presented in chapter 3 of
this thesis, and has recently generated a lot of excitement [20, 21, 22, 23, 75]. Pursuing this
current issue, we have studied a new capacitive coupling scheme based on hydrid normal
metal-superconductor devices in order to study the high frequency spectral density of
noise of a mesoscopic device. The original results of this work were explained in chapter
D.

In our model, the detector, which consists of a normal metal-superconductor junction,
was capacitively coupled to a mesoscopic device where noise is to be measured. Because the
junction contains a superconducting element, in the subgap regime, two electrons need to
be transferred as the elementary charge tunneling process. “Photons” originating from the
mesoscopic circuit can be provided to/from the constituent electrons of the Cooper pair
in the tunneling process. We have computed the dc current in the detector circuit for two
different situations. In a first step, we considered a single normal metal-superconductor
junction, and we computed all lowest order elastic and inelastic charge transfer processes
which can be involved in the measurement of noise: the photo-assisted transfer of single
(and pairs of) electrons (with energies within the gap) into quasiparticle(s) above the gap,
and photo-assisted Andreev transfer of electrons as a Cooper pair in the subgap regime.
It was shown that when the detector voltage is smaller than (and not close to) the su-
perconducting gap, the Andreev reflection contribution dominates in the photo-assisted
tunneling current. This suggested to consider Andreev reflection to probe high frequency
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noise in a more complex detector circuit where the normal metal and the superconductor
are separated by a quantum dot. There, the dot acts as an additional energy filtering de-
vice. We found that it is possible to make such a distinction between photon emission and
absorption processes. The NDS detection setup could therefore provide more information
on the spectral density of noise than the NS setup. The central point of this study is to
obtain the signature of noise via the measurement of dc photo-assisted tunneling current
in the detector circuit, for both the NS and NDS setups, following one form (see text
in chapter 5). We noticed that the sign of the frequency corresponding to the absorp-
tion/emission of a photon from/to the mesoscopic circuit lets us distinguish clearly these
different processes in the asymmetrized noise.

This study has dealt only with the measurement of the lowest current moment, the
noise. Yet in order to fully characterize transport in a mesoscopic device, all current
moments, at all frequencies, need to be known. This constitutes a very exciting field of
mesoscopic physics called full counting statistics [73]. While full counting statistics is a
field where theoretical contributions dominate, recent experiments have started to address
such challenges [74]. The third moment of the current has now been measured at relatively
low frequencies, but its detection at high frequencies remains a challenge. It would be
therefore be very useful to imagine detection schemes based on the above capacitive
scenarios where the frequency spectrum of the third moment could be measured. This
constitutes an interesting perspective for future work [131].

Another perspective deals with the detection of finite frequency noise correlations in
mesoscopic conductors which contain many terminals. Specially, in Y shaped junctions,
where electrons are injected from one lead, and collected in two other leads, we can for
instance probe directly the statistics of the charge carriers by measuring noise cross cor-
relations between the two branches [55, 132|. The dynamics of electron transfer at the
junction could thus be studied by analyzing the spectrum of the cross correlations [133].
So far, there are no experiments which can address these issues at high frequencies, yet pro-
posals for detecting quantum non locality effects (Bell inequalities) [134] or for detecting
anomalous charges in carbon nanotubes [135] require such type of measurements. Given
the success of two terminal high frequency noise measurements using capacitively coupled
circuits, it is tempting to ask whether the same detection scenarios can be envisioned for
the high frequency noise cross correlations.

For the second part of this study, our motivation was different, and we used a known
source of noise: a point contact placed on a quantum Hall bar, placed at sufficiently high
magnetic field so that one reaches the fractional quantum Hall regime [101, 102]. In this
setup it is well established that electron interactions in the Hall fluid lead to dramatic
behavior in the current and in the noise [31, 32, 33|. Indeed, besides non-interacting
systems, it is more challenging to study a system with electron interaction effects as a
noise source. In general, this constitutes a daunting problem, yet in one dimension, there
are available tools (Luttinger liquid theory [111]|) which allows to tackle such problems.
The history and properties of FQHE were presented in chapter 6. If a fluctuating current
originated from the quantum point contact is placed next to a quantum dot, strong charge
fluctuations associated with the current noise will affect the quantum dot level. In chapter
7, we introduced the dephasing of electron propagation through a quantum dot embedded
in one arm of a double-slit interference due to the effect of this environment (the quantum
point contact).

Following the pioneering work of Y. Levinson [28], we established a general formula for
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the dephasing rate of a quantum dot located in the proximity of a fluctuating fractional
edge current, which was presented in chapter 8. The quantum dot can, as in the first part
of this study, be considered as a detector: information about the line width (obtained for
instance by placing the dot in an Aharonov-Bohm ring) is directly linked to charge noise.
In the case where screening is strong, we showed that the dephasing rate is proportional
to the backscattering current noise and therefore, in the weak backscattering regime,
it decreases when voltage bias applied to the quantum point contact is increased. This
result is counter intuitive when considering non interacting noise sources |28, 29|, or noise
sources consisting of normal metal-superconducting junctions [120], because there it is
predicted that the dephasing always increases when the voltage bias of the noise source
is increased. In our case, these results can nevertheless be reconciled with the fact that
the charge noise is directly related to the backscattering current noise in the FQHE
regardless of the regime (weak or strong backscattering). The decrease of the dephasing
rate with an increasing voltage is a mere consequence of the anomalous behavior on the
current voltage characteristics of fractional quantum Hall chiral edge states in the weak
backscattering regime [31, 32, 33|. We also considered the case of arbitrary screening. For
weaker screening, the spatial dependence of the density-density correlation function has to
be taken into account, but we showed explicitly that the long range nature of the Coulomb
interaction can be included as a trivial multiplicative factor. Next, we conjectured that
it is possible to describe the crossover in the dephasing rate between weak and strong
backscattering cases for arbitrary screening at zero temperature.

The results which have been presented could be tested using Gallium Arsenide two
dimensional electron gases of high mobility under high magnetic fields. Experiments on
dephasing in the integer quantum Hall regime have already been performed [129], con-
firming to some extent the predictions of Levinson. Yet from our point of view, it would
be very stimulating to increase the magnetic field in order to probe the dephasing of the
quantum dot next to a noise source which is placed in the fractional quantum Hall regime.

A perspective of this work would be to go beyond the Gaussian approximation of
Levinson, which was used to derive the dephasing rate. In principle this dephasing rate
should also include a dependence of the higher moments of charge, which are also related
to the higher moments of currents from the full counting statistics. But this constitutes
a very challenging task.
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