

Laboratoire de Physique et Modélisation des Milieux Condensés Univ. Grenoble Alpes & CNRS, Grenoble, France

CLOSED questions in heat transport and conversion at the nanoscale

Robert S. Whitney

 $22 |\psi\rangle$

Review – Benenti, Casati, Saito, R.W. Physics Reports 694, 1 (2017)

Marseille - Nov 2018

OVERVIEW

(I) Laws of thermodynamics same in quantum

- where does entropy come from? Schrodinger Eq. = Reversible
- Carnot efficiency

(II) Extra constraints from quantum

quantized heat flow

NANOSCALE MACHINES

Photosynthetic molecule (experiment)

Gerster et al (2012)

NANOSCALE MACHINES

NANOSCALE MACHINES

FOR THIS TALK, I ASSUME:

A Nanoscale/quantum system between macroscopic reservoirs

Long times (steady state) ⇒ "macroscopic" work output

cf fluctuation theorems

- Thermal reservoir states:
 - No squeezed reservoir states
 - No non-equil. reservoir states

cf. J. Roßnagel.et al PRL (2014)

cf. Sanchez, Splettstoesser & Whitney "Demon preprint" (2018)

REVERSIBLE OR NOT

REVERSIBLE or NOT?

- Where is entropy produced?
- 2nd law of thermodynamics?

REVERSIBLE OR NOT

REVERSIBLE or NOT?

- Where is entropy produced?
- 2nd law of thermodynamics?

SIMPLER – NANOSCALE THERMOELECTRIC

SIMPLER – NANOSCALE THERMOELECTRIC

Acts as Energy FILTER

different dynamics above and below Fermi surface

SIMPLER – NANOSCALE THERMOELECTRIC

Acts as Energy FILTER

different dynamics above and below Fermi surface

NANOSCALE THERMOELECTRIC

Acts as Energy FILTER

different dynamics above and below Fermi surface

TRADITIONAL versus QUANTUM

- (1) Filters \ll scale of thermalisation \Rightarrow Quantum thermoelectric
- (2) Central region (absorber) also \ll scale of thermalisation \Rightarrow Quantum thermocouple
- Often filters-absorber *combined* in in quantum thermocouples cf. simple model of photosynthetic molecule

QUANTUM THERMOELECTRICS FOR REFRIGERATOR

PELTIER FRIDGE

EFFICIENCIES AND ZT

EFFICIENCIES AND ZT

MODELLING METHODS

• Landauer scattering theory \iff *No e*-*e Interactions*

see chapters 4-6 of Benenti et al, Physics Reports 694, 1 (2017)

• Rate Equations \iff Weak Coupling

see chapters 8-9 of Benenti et al, Physics Reports 694, 1 (2017)

- Schrodinger eq. for system+environment

LANDAUER SCATTERING THEORY

LANDAUER SCATTERING THEORY (TWO TERMINALS)

$$\begin{array}{ll} \text{Particle current} & \equiv \frac{\mathrm{d}}{\mathrm{d}t}N_R = \int \mathrm{d}E & \mathcal{T}(E) \left[f\left(\frac{E-\mu_L}{T_L}\right) - f\left(\frac{E-\mu_R}{T_R}\right) \right] \end{array}$$

Energy current
$$\equiv \frac{d}{dt}E_R = \int dE \ E \ \mathcal{T}(E) \left[f\left(\frac{E-\mu_L}{T_L}\right) - f\left(\frac{E-\mu_R}{T_R}\right) \right]$$

into R

UNITS: $\hbar = k_{\rm B} = 1$

LANDAUER SCATTERING THEORY (TWO TERMINALS)

$$\begin{array}{ll} \text{Particle current} & \equiv \ \frac{\mathrm{d}}{\mathrm{d}t}N_R \ = \ \int \mathrm{d}E & \mathcal{T}(E)\left[f\left(\frac{E-\mu_L}{T_L}\right) - f\left(\frac{E-\mu_R}{T_R}\right)\right] \end{array}$$

Energy current
$$\equiv \frac{d}{dt}E_R = \int dE \ E \ \mathcal{T}(E) \left[f\left(\frac{E-\mu_L}{T_L}\right) - f\left(\frac{E-\mu_R}{T_R}\right) \right]$$

into R UNITS: $\hbar = k_B = 1$

- Electric current into $R = e \frac{d}{dt} N_R$
- Work into $R = \mu_R \frac{d}{dt} N_R \implies power generated = sum L & R$ = $(\mu_R - \mu_L) \frac{d}{dt} N_R$
- Heat current into $R = \frac{d}{dt}E_R \mu_R \frac{d}{dt}N_R$

• Entropy current into $R = Heat current/T_R$

 \Leftarrow CLAUSIUS LAW (1855)

LANDAUER SCATTERING THEORY (TWO TERMINALS)

• Rate of change of entropy $\frac{\mathrm{d}}{\mathrm{d}t}S$

= (Entropy current into L) + (Entropy current into R) ≥ 0

 \Rightarrow 2nd law proven for all $\mathcal{T}(E), T_L, T_R, ...$

Nenciu (2007) = proof for N reservoirs

• Carnot efficient system : reversible $\frac{d}{dt}S = 0$ requires transmission is only non-zero at $\frac{E-\mu_L}{T_L} = \frac{E-\mu_R}{T_R}$ Humphrey, Newbury, Taylor, Linke (2002)

Quantum bound on heat flow

Maximum HEAT FLOW per transverse mode \Rightarrow maximum ENTROPY CHANGE

Bekenstein, Phys. Rev. Lett. (1981) Pendry, J. Phys. A (1983)

Heat current out of hot reservoir

$$J_{
m hot} ~\leq~ N ~rac{\pi^2 k_{
m B}^2}{6h} \Big(T_{
m hot}^2 - T_{
m cold}^2\Big)$$

with "quantum" $N \sim rac{ ext{cross-section}}{ ext{wavelength}}$

Quantum bound on heat flow

Maximum HEAT FLOW per transverse mode ⇒ maximum ENTROPY CHANGE

Bekenstein, Phys. Rev. Lett. (1981) Pendry, J. Phys. A (1983)

Heat current out of hot reservoir

$$J_{
m hot} \leq N \frac{\pi^2 k_{
m B}^2}{6h} \Big(T_{
m hot}^2 - T_{
m cold}^2 \Big)$$
 with "quantum" $N \sim rac{
m cross-section}{
m wavelength}$

Quantum bound on power output

...do better with B-field/interactions cf. Brandner et al 2015, Lao et al 2018

Is quantum bound relevant for REAL applications?

Cross-section for 100W of power ? with wavelength $\lambda_{\rm F}{\sim}10^{-8}{\rm m}$

- $\diamondsuit~{\rm Minimal~cross-section} \sim 4 {\rm mm}^2$
- $\diamondsuit~$ 90% of Carnot requires $>0.4 cm^2$

RATE EQUATIONS

Set of coupled equations for system evolution:

$$\frac{\mathrm{d}}{\mathrm{d}t} P_b(t) = \sum_a \left(\Gamma_{b \leftarrow a} P_a(t) - \Gamma_{a \leftarrow b} P_b(t) \right)$$

where P_b = prob. system is in state b

& $\Gamma_{b\leftarrow a} = \mathsf{rate} \ a \! \rightarrow \! b$

Current into R = $\Gamma_{(0,0)\leftarrow(0,1)} P_{(0,1)} - \Gamma_{(0,1)\leftarrow(0,0)} P_{(0,0)}$

USEFUL TRICKS - look at loops:

• only Carnot efficient if no loop generates entropy

• if single-loop system $\Rightarrow \eta_{\text{engine}} = \frac{\text{Work in one cycle}}{\text{Heat in one cycle}}$

CAN'T CONTROL HEAT !!

Heat engine efficiency

 $\eta_{\text{engine}} = \frac{\text{work done}}{\text{heat used } + \text{heat lost}}$

CAN'T CONTROL HEAT !!

Heat engine efficiency

CONCLUSION: CLOSED[†] QUESTIONS

[†]*closed* for theories simple enough to treat \equiv (a) Landauer & (b) Rate eqs.

(I) Laws of thermodynamics same at nanoscale if reservoirs are macroscopic & internal equilibrium

- Entropy produced

(II) Extra constraints from quantum

• quantized heat flow

