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OVERVIEW

(I) Laws of thermodynamics same in quantum

e where does entropy come from?
Schrodinger Eq. = Reversible

e Carnot efficiency

(I) Extra constraints from quantum
e quantized heat flow

(Il Practical considerations
e can’t control heat!




NANOSCALE MACHINES

Photosynthetic molecule (experiment)
Gerster et al (2012)
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FOR THIS TALK, | ASSUME:

& Nanoscale/quantum system between macroscopic reservoirs
e Long times (steady state) ="macroscopic” work output
cf. fluctuation theorems
& Thermal reservoir states:
e No squeezed reservoir states cf. J. RoBnagel,et al PRL (2014)

e No non-equil. reservoir states
cf. Sanchez, Splettstoesser & Whitney "Demon preprint" (2018)
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SIMPLER — NANOSCALE THERMOELECTRIC

Au-BPDT-Au

Reddy group
(2015)
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SIMPLER — NANOSCALE THERMOELECTRIC

Acts as Energy FILTER

different dynamics above and below Fermi surface
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NANOSCALE THERMOELECTRIC

Acts as Energy FILTER
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TRADITIONAL versus QUANTUM

quantum
thermoelectric

Quantum

(1) Filters < scale of thermalisation = Quantum thermoelectric

(2) Central region (absorber) also < scale of thermalisation
= Quantum thermocouple

e Often filters-absorber combined in in quantum thermocouples
cf. simple model of photosynthetic molecule




QUANTUM THERMOELECTRICS FOR REFRIGERATOR
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EFFICIENCIES AND ZT

HEAT-ENGINE efficiency Carnot limit

. _ work done Carnot
Tengine = heat used nenagrirrlloe =1- TCold/Thot

LINEAR RESPONSE:  engine = 15amet x YZTIL-1

(Electric Conductance) (Seebeck)® T £T= 0 = Garnol

77 — — o ZT=3 = Carnot/3
ermal Conductance ZT=1 = Carnot/6




EFFICIENCIES AND ZT

HEAT-ENGINE efficiency Carnot limit
R work done Carnot __
Tengine = heat Lsed noanot =1 — Teord / Thot

LINEAR RESPONSE:  flengine = iaine. X V2t
ZT = oo = Carnot
ZT=3 = Carnot/3
ZT=1 = Carnot/6

(Electric Conductance) (Seebeck)? T

7T =
Thermal Conductance

FRIDGE efficiency

Carnot limit
heat removed
Tfridge = “work used ngﬁfggt = Tcold/(Tambient_Tcold>
. AT
“LINEAR” RESPONSE: Max T difference : Ea < 54T




MODELLING METHODS

e Landauer scattering theory <= No e-¢ Interactions

see chapters 4-6 of Benenti et al, Physics Reports 694, 1 (2017)

e Rate Equations <= Weak Coupling

see chapters 8-9 of Benenti et al, Physics Reports 694, 1 (2017)

e Keldysh field theory <= “everything” often need approx similar to above
OPEN questions ask Rosa & David, or Fabienne & Adeline ...

e Schrodinger eq. for system-+environment




LANDAUER SCATTERING
THEORY




THEORY

LANDAUER SCATTERING RESERVOIR RESERVOIR
quantum

(TWO TERMINALS)

Particle current
into R

Energy current
into R

seten | Gurrants into
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UNITS: h =k =1




THEORY
(TWO TERMINALS) system | Currents into R

/dE T(E) [f(E%fL)—f(EE;R)]

Energyouent = i = a8 570 [7 (57e) - 7 (7))

LANDAUER SCATTERING RESERVOIR RESERVOIR
quantum

Particle current = d v
. = R
into R dt

UNITS: i = kg =1

Electric currentinto R = e < Ng

Work into R= MR%NR — power generated = sum L & R
= (ur — pL) S Ng

Heat currentinto R = S Eg — ur & Nr

Entropy current into R = Heat current / Tr <= CLAUSIUS LAW (1855)




LANDAUER SCATTERING RESﬁERVO|R [—RESERVOIR
THEORY quantum
(TWO TERMINALS) system | Currents into R

The Blackboard see section 6.4 of Phys. Rep. 694, 1 (2017)
et L o

e Rate of change of entropy g; S

= (Entropy current into L) + (Entropy currentinto R) > 0

= 2nd law proven for all T (E), Tr, Tr, ...
Nenciu (2007) = proof for N reservoirs

e Carnot efficient system : rever3|ble 55=0

requires transmission is only non-zero at £ S = E;—I‘;R

Humphrey, Newbury, Taylor, Linke (2002)




Quantum bound on heat flow

Maximum HEAT FLOW per transverse mode = maximum ENTROPY CHANGE

Bekenstein, Phys. Rev. Lett. (1981)

Heat current out of hot reservoir Pendry, J. Phys. A (1983)

w2 k3
Jhot S N GhB

(T2 — 72 ) i
hot cold with “quantum” N ~ c\l;‘?:vséfeencg;cr)]n




Quantum bound on heat flow

Maximum HEAT FLOW per transverse mode = maximum ENTROPY CHANGE

Bekenstein, Phys. Rev. Lett. (1981)

Heat current out of hot reservoir Pendry, J. Phys. A (1983)

w2k
Jhot < N GhB (Th20t - Tc201d)

» \ ~ Cross-section

with “quantum wavelength

Quantum bound on power output
Theory: RW (2013) — Experiment: Chen et al (2018)

Carnot x (1 —al,/P/qu+.._)

Quantum bound (gb)
qu x N (Ijhot_jﬂlcold)2

Efficiency

Power output Py,
...do better with B-field/interactions cf. Brandner et al 2015, Lao et al 2018




Is quantum bound relevant for REAL applications?

Cross-section for 100W of power ?
with wavelength Ap~10~%m

¢ Minimal cross-section ~ 4mm?

& 90% of Carnot requires > 0.4cm?




RATE EQUATIONS
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Set of coupled equations for system evolution:

%Pb(t) = ; (Pbea Pa(t) — Tacs Pb(t))

where P, = prob. system is in state b

&Iy q =ratea—b

CurrentintoR = F(O,O)(—(O,l) P(O,l) — F(O,I)H(O,O) P(O,O)
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USEFUL TRICKS - look at loops:
e only Carnot efficient if no loop generates entropy

Work in one cycle
Heat in one cycle

o if Single-loop SYSTem = Tlengine =




CAN’T CONTROL HEAT !!

a . . b) Electrical
@ e o insulation . > ®) Conductivity Thermal
R Conductivit
103__00\9? at 300K
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CAN’T CONTROL HEAT !!
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Efficiency

strong phonons

0 Power output,.P >

- J

work done
heat used + heat lost

Heat engine efficiency Tlengine =




CONCLUSION: CLOSED' QUESTIONS

Tclosed for theories simple enough to treat
= (a) Landauer & (b) Rate eqgs.

(I) Laws of thermodynamics same at nanoscale
if reservoirs are macroscopic & internal equlibrium

e Entropy produced
e Carnot efficiency (in principle) <= vanishing power

(I) Extra constraints from quantum
e quantized heat flow

(Ill) Practical considerations
e can’t control heat!




