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Turbulence and its control: hints from Reversed Field Pinch plasmas
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Outline

Reversed Field Pinch (RFP) configuration: main features &
experiments
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RFP configuration
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(Consorzio RFX - Padua) (KTH - Stockholm)
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CONSORZIO RFX

RFP: core and edge regions

The B¢ reversal surface separates two distinct regions: core region and

In the core region MHD modes determine dynamics (Dynamo) and transport

Current 1

Toroidal field Flux &

B, (@) [T]

-0.020 -

4 6 8§ 10 12 14
t [ms]
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LR RFP: core reg ion

Magnetic configuration characteristics:

High magnetic shear for r/a>0.5
Safety factor q <1
Several m=1 resonant surfaces present

Frejus 21-23 October 2004 Hamiltonian system,Control and Plasma Physics



CONSORZIO REX . . . . £KTHY

~RFP: MHD dynamics and dissipative forces ¥

B

r]'r

Ay
T+“ Viv=JxB v Viy
ot

(vxB-nl)
The RFP dynamics is described by

Normalizing, the equations become:

NTIEIC
H = 1/vn is the Hartmann number ?Jk X (VxB - @ 1

v=plasma viscosity

v — -
@ —+(v-V)v —lxﬂ+@ Voy
| ot
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Turbulent & laminar regimes

Two different regimes are predicted in RFP: Laminar and turbulent

regimes

Turbulent regimes or Multi Helicity (MH) regimes are characterized by

an axisymmeftric configuration whose symmetry is broken by intense

MHD turbulence

n==g

oar

=0
n=10

n=11

n=12

rfa

S. Cappello, EPS 2004 o
to be published in
PPFC (2004) 08

1
oz

1
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Regime transition

The transition from Turbulent to Laminar regimes depends on
dissipative forces and in ar‘rlcular on the

: . - (1.-12) S. Cappello, EPS 2004
i R S 0¥ T T an ! to be published in
E PPFC (2004)
e 10° iéz Illlq | 5
H 10 19
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VETENSKAP @
o

s Magnetic stochasticity in the core region %

In a Multi Helicity (turbulent) regime , the interaction of several m=1
modes results in a completely stochastic core

-6 -4 -2 0 2 -4 6
R (m)

Toroidal direction
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Caos healing

Chaos healing has been
predicted when a dominant
symmetry emerges in the
plasma.

Poincaré plot show that
increasing the evergy of the
dominant mode, the magnetic
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st Dynamo electric field in the edge region

A Dynamo Electric Field

is established in the outer region
The Dynamo electric field is due to
the coupling of velocity and magnetic

- o~ e e st : ré—
= X I y ]
E, <V b> gl o 7
% -10F% Y ;
“?.; BN /."/ .
15F ‘\\ & :
) 200 ++ lllllllllllllll R
175 180 185 190
r [mm]
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SNOPORY  Turbulence characteristics: fluctuation —  fas=
amplitude and k,f spectra

Typical normalised fluctuation levels are 6T/T~ 30% 6n/n~50% and oV/T~ 100%

Fluctuation level
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CONSORZIO RFX

r [1022 -2 1]

0 ..g,...*....’..............

08 088 09 092 094 096
rla

RFP: Particle transport at the edge

Turbulence carries most of the particle flux at the edge (as in tokamaks and stellarators)

@
e e iy ., COFCe e @

0.85 0.9 0.95 1 1.05
r/a

The effective dlffu3|on coeff|C|ent D F /vVn is comparable or larger than the Bohm diffusion

SU > ‘
D (m /S) ]
20 é | l } ]
10 - E
Bakan i H ******** Bohm value
f : :
0 [ . |
085 090 095 100 , 1.05

rla

Plasma Phys. Control. Fusion 42 (2000) 83
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Particle flux:
frequencies and wave-vectors

100 200 300 400
o PKHl

200 300 400 500

f [kHz]

_ 60 5 e 20| ®

» ii o leo. A : %o

g 40 ° ‘e = ' e ® o ® o0,
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= 20 s ® e _: g ; . e o

e fe Y ’ 13 | = 0 o

ol ol 10 % o
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Time scale range: 5 <t <50 pus

Wave-length range:0.15<A <1m
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25<1t<20us
0.06 <A<0.6m

Time scale range: 2.5 <1< 20

0 100 200 300 400 500
f [kHz]

Characteristic frequency & length:

Confinement times 300us

MHD frequency <80kHz
Ion cyclotron frequency ~1MHz
Major circumference ~7m
Larmor radius ~10?m
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O probe 1
A cross correlation
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-80 |

The radial E gives rise to a ExB drift velocity in the toroidal direction (B is
mainly poloidal) with a relatively high shear which changes sign in a narrow

region. The width of the shear closer to wall has width comparable to a
Larmor radius Phys. Rev. Lett. 79, 4814 (1997).
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Where «—>

o, =shearing frequency 1/k.

Ar, = turbulence radial correlation length _ >

k= turbulence wavevector e e

Ao, =ambient turbulence spectrum width {_# = é’;{ =2
—
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" Experimental flow shear and BDT model Ponce

In the T2R second velocity shear layer:

~ 106
Ao, ~(3.3 £ 0.3) -10° rad/s Ao, ~ (1.5) -10° rad/s

In RFX and T2R the spontaneous ExB shear gives a shearing frequency o,
comparable to the turbulence characteristic time scale A, so that the spontaneous
shear in the RFP results marginal for turbulence stabilisation.

Phys. Rev. Lett. 80, 4185 (1998).
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“Momentum equation for a compressible plasma *

Momentum equation

)V—VP+/N2V+J><B

Continuity equation

on
— V- -(nV)=V.I°
Substituting J 1 j’ VX é
odJ =

Approximations: cylindrical geometry and curvature effects negligible
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Momentum balance

B, By
o

) = /.Laqug, -+ mz—ﬁrl“ovqb

V=V+% B=B+b p=75+/
...and ensemble averaging the equation:

d{pV, o  bby, o o
< ¢>+ [—MWS)—vrv¢>+<pvr>V¢+<pv¢>Vr+<vrv¢p> -

Ot or

—— | pV,V
or P ¢
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Diagnostics in T2R ;m}

3-axial magnetic probes
located in A and B

17 electrostatic pins, 0.6 mm
diameter, protruding of 1.5 mm
from the boron nitride case
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Momentum
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Momentum balance
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All terms have the same sign of
velocity second derivative apart term
B which acts as damping for r < 178.

Reynolds Stress (RS) is the dominant
driving term inside LCFS

Electrostatic RS drives the ExB shear
( as in tok and stell.)
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Viscosity estimate St

LHS and RHS of balance equation change
} sign in the same location across LCFS. From
@ their ratio the perpendicular viscosity can be
™ obtained.

Radially inward
+—

0 [ B
175 180 185 190 _
r [mm] 50!

40 -

A
305[‘%_,_1 "“Ii-\

Experimental viscosity results much larger than

classical one. Assuming u=pD the corresponding £ o

diffusivity results comparable to that caused by 08| A5
electrostatic turbulence. 10 Lo
Therefore momentum transport is anomalous and of 8
consistent with anomalous particle transport 172 174 176 178 180 182 184

r [mm]
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Turbulence self regulation

ExB velocity profile is the result of the balance between RS
and ‘anomalous’ viscosity, both driven by electrostatic

turbulence
The ‘spontanoeus’ ExB velocity shear is marginal for
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a)
Skewness 3.8

0=

sor0f [

-1'0*105 L ] - q ......... 2 .....................................................
31.00 3110 31.20 3.3 3140 3150 e -
t [ms]

Instantaneous radial particle flux I, (evaluated from two-point measurements)
exhibits bursts and its Probability Distribution Function (PDF) is non-symmetric

Phys Rev Lett, 87, (2001) 045001 1-4
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Statistical C(F\C(lYS IS

Wavelet analysis is applied at different time scale and a Probability Distribution
Function of fluctuation amplitudes is calculated for each time scale t

0.08) : )
— 017 ‘\\‘ i |
o #
- By Y. " |+
081 f T=17.58us S 4 ﬂ-:zua.-.-:: N /‘ 7=31.36u8 5
:immﬂu ess=4.03 ﬂllmll'l-lﬂfgo

000 —— T T T
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XOSOVEER! Turbulence properties: Intermittency g

TS

Wavelet analysis is applied at different time scale and a Probability Distribution Function of

Electrostatic turbulence in RFX
and T2R exhibits non-gaussian
tails at short time scales in

primary and derived quantities

* |n turbulent fluids
intermittency manifests itself as
a departure from self-similarity
in the Probability Distribution
Function (PDF) and power law
in PDF momentum

log(P,)

log(P,)

U. Frisch, Turbulence: The legacy of A.
N. Kolmogorov, Cambridge University
Press, Cambridge 1995

Phys.Plasmas 7, 445 (2000)

Bursts belong to the non-gaussian tail of the PDF and (in RFP) have intermittent character
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e LNTermittency in magnetic furbulence and particle flux — %s

“Leyeloe

Phys.Rev E 62, R49 (2000)
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Bursts (negative and positive) in raw
signals of V have been sorted out
from background turbulence and

05 [ \ ) 1 ; ONAITIC Verage
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The (normalized) average time : ;
structure for minima or maxima T oo :
has been obtained. 0.5 """ '

(V A<V >)o
o
\
)
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P}
(
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VETENSKAP

2D reconstruction WS

Ricerca Formazione Innovazione

r/a 0.540319; 1= 100 kHz

ro 0940919 1= 100 kHz

083 D5 - ; ; ]
033 uum ]
- Cul ]
© -0 .
~ -0 i
—nes TOF ]

-1.01 -15 . . ,
- 0.2 - £.00 .01 002 -0 Daa D o D G2

t [us] t [us]
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Intermittent events and structures

Structures associated to intermittent events have been reconstructed by using
radial arrays of probes (rake) and Taylor’s hypothesis (frozen turbulence)

11724 ;3 v,—awvg [v]

| ...throug
12.840 143.845 t]mr [ms‘:IIG,ESD 15 655 122_ - T ] Vle I OCthy . .I. i
Intermittent even:t g '
VExB F . i
".I|||'1 1 I:I"'."g _405— ¥ . X-%
450 50 ]

— 440
E 430
L 420

4110

0.88 080 0.4z 0.94 0.88 0.53 1.00
rfa

...to potential spatial structure...

-a0 o a0 100
phi [ ]
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Intermittent events and structures

il
phi [rmm]

Weloeity Field

|

|

...10 ExB velocity pattern...

)
m

If
i
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Bursts and vortices

L
o

o

Vi<V [V]

I
[
o

T

Bursts in V;correspond to
vortices with opposite
vorticity

EEEEEEEEE

16.840 16.845 16.850
time [ms]
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Numerical simulation

density

vorticity

J-l

. F - o h
‘ 0 100 200 300 400 0 100 200 300 400
X

Similar structures obtained in two-dimensional fluid simulations in scrape-off
layer of magnetized plasmas.(O. E. Garcia,V. Naulin, A. H. Nielsen, and J. Juul
Rasmussen PRL 92(2004), 165003-1)
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Numerical simulation At
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Dipolar vortices Mo

ahot# 11962[1 0,3.0]ma

182
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— 02 —0Cudl 000
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4 2R
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184 .82
. L 1 V — 180 C o
Reconstruction of a structure | 18
observed in a low shear region B -0.58
(RFX) —0a3 - tTanE] 0.0 -
Estimate of dipolar/monopolar vortices population:
Hypothesis:
SORINYE EITE UEgRIE =1 Ny-N, monopolar structures
structures combine to ‘ Nimono™ | | :
maximize the dipolar Ngip = (Np+Nn N ono)/2 dipolar structures

vortices population
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Dipolar vortices constitute the larger population where the vg,g
shear is lower and tend to decrease in higher shear regions
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Vortices and transport N

Horton-Ichikawa’'s model

T T T T T T T T
(@) Plx,y,1) (b) 8f(x,y,1)

D = Dv + Dbackground Vo]
1T
Dbackground — YBohm — EE

Dv rOVd fVZ

A contribute to anomalous diffusion is
due to vortex interactions through:

«displacement of structures

srearrangement of vorticity patterns
lead to faster spreading and escape of ,
advected particles ol

| L . ! L |
20 -20 0 20
X /Pg

[W. Horton, Phys. Fluids B, 1 (1989) 524]
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N, (r,7)ArAz

27(R+1)Ar

onherent Structures occuples 2ZU-oU~ € Space In the edge region

D = Dv T (1_ 1:v) DBohm
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D, accounts for up
to 50% of the
experimental total
diffusivity D
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Vortices and diffusivity

_ 2 2 Generalization of Horton’s

D, ~ ar,V, ( fd —2 fm)2
o o § &

rfa

NB. Analogous to Horton’s

In RFX and T2R, D, minimum where f, ~ 2f ~ formulaforf,=0 and a~1

i.e. were the two populations are equal 5
Dv — rOVd fv
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Estimate of v, where D, is at maximum:
2
ro( 1:d —2 fm)

Vy R v4~=20 — 30 km/s
D )

Vv
[, = IAr AZ / 2 Consistent with vg,g drift velocity
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velocity and occupying 20% of the space in the edge region
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Intermittency & Magnetic Relaxation %=

CONSORZIO RFX

Bya clalive proceaure calied LOCAl ITterit elICY vieasureilner , HUCUUALIONS dle Wavelel Ue O"'l
and for each time scale T an amplitude threshold is identified to sort out the intermittent events from the
Gaussian background

r/a = 087 v = 10 us
s T = T o=zt = T:

o

—100

=T E: A : :
=l | & -100 fy

e % i 3 | -200 ' -
~400}8 E IS
sobl= 2 EL, BiEE EE O EE 2R

14 16 18 =0

t{rme] -0.1s 200

In RFX and T2R intermittent events tend to cluster at the = A~V oo
occurrence of minima in the mean plasma potential.’////,-%r _
As these minima are correlated with cyclic magnetic RN N —
relaxation, a non-linear coupling between core MHD mM%
and edge electrostatic turbulence is proved. ;

Europhys. Lett. 54 (2001)51
PPCE 44 (2002) 2513
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Turbulence control: techniques

Turbulent transport reduction by modification of the ExB
flow shear has been achieved:
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SR Turbulence control:edge biasing

current
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Vacuum
Vessel
Plasma
Edge

Electrode

Biasing
Current

%+V-V)V—VP+MV2V

Momentum equation

-
2

pd oy
DT e

o
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Increasing the ExB velocity shear the particle flux (and D) decreases and the reduction is mainly
due to a modification of density and velocity fluctuation cross-phase, as observed in other
experiments and predicted by theory in some case (P.W. Terry, et al ,Phys Rev Lett, 87,(2001) 185001-1)

Plasma Phys. Control. Fusion 42 (2000) 83-90
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Turbulence control: pulsed poloidal current drive

In T2R a transient poloidal electric field can be applied by a fast change
of the toroidal field. This technique is called Pulsed Poloidal Current
Drive (PPCD)

A steep (10-fold) increase of the toroidal ExB flow shear is observed

; norme(t_J.
200 - - prece
T E
£ 100 & ;
v E : 3
5 0 é.b,.. ....

w : q ]
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CONSORZIO RFX

== Turbulence control: pulsed poloidal current drive

A reduction of the burst
intensity is observed -
reduction of structure’s
vorticity
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cientific program for MHD control in RFX %

RFX plasma experiments will restart by the end of 2004.

The scientific programme aims at enhancing plasma confinement and

among
the main topics is the MHD control.
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Tools for MHD control

New tools to allow a direct magnetic interaction with the m=1 and m=0 modes :
- Replacement of the thick shell with a much thinner one (t <50ms);
- Installation of a new system of 192 (4x48) saddle coils, individually fed by fast

amplifiers (switching frequency 10 kHz);
- Improvement of the toroidal field power supply:;
- Improvement of magnetic measurements (192 B,.,
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Conclusions g

A turbulence self-regulation process is in action in the edge region of
RFP's.

The highly sheared ExB flow at the edge comes from a balance
between Reynolds stress and anomalous viscosity, both mainly driven
by electrostatic turbulence

Coherent structures emerge from the turbulent background. They
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