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> small modification > small modification of the system  of the system  // great influencegreat influence on the dynamicson the dynamics

regular dynamicsregular dynamics

Aim: find a small and apt control   f

original system controlled system

control  termcontrol  term
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chaotic0H H V= + ε c    regula r0H H V f= ++ ε

 obvious and useless solutionf V= −ε

• small with respect to the perturbation εV

• localized in phase space 
>> accessible region, fewer energy for the control

• with a certain shape
>> robustness …

• other requirements ?

> here, we require that  ( )Of 2= ε

Aim:

Requirements on f :

⇒ tailoring the control term f 



Physical situationsPhysical situations

>> electrostatic turbulence :            drift motion

>> magnetic field lines
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>> atomic physics : atoms in external fields, traps

>> particle accelerators, free electron laser, ....?
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I. Global controlGlobal control of Hamiltonian systems :

- method and illustration

- application to edge plasma turbulence

II. LocalisedLocalised controlcontrol of Hamiltonian systems

- method and illustration

- application to magnetic field lines



Lie formalismLie formalism
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where is of order

If is non-resonant and in many other situations is integrable
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Control of chaotic transport in a model for Control of chaotic transport in a model for EE××BB drift in drift in 
magnetized plasmasmagnetized plasmas

• Algorithm for the computation of the control term f

• Numerical investigation:  - of the effect of the control term  (in practice f2 )

- of its robustness
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Control of EControl of E××B driftB drift

Electrostatic potential                      known 

on a spatio-temporal grid.

1) Expansion of 

2) Computation of

3) Computation of 

4) Higher orders ?

( , , )V x y t

e( , , ) ( , ) ki t
k

k

V x y t V x y ω≈ ∑

e
0

( , ) k

k

i tk

k

V x yV
i

ω

ω ≠

=
ω

Γ ∑

{ }2
1 ,
2

Vf V=− Γ

{ }where   ,  
x y y x
∂ ∂ ∂ ∂⋅ ⋅ = ⋅ − ⋅
∂ ∂ ∂ ∂

{ }  1
1 ,n nVf f
n −= − Γ

2( , , 0)f x y t =

( , , 0)V x y t =

recall:    
2

( ).
n

nf f
∞

=

=∑



( )( )2 2 3/2
, ,

( , , ) sin 2
( )

k
nmk k

m n k

aV x y t nx my t
n m

= π + + ϕ −ω
+∑ExampleExample::

( , , 0)V x y t =
nmkϕ random phases

2( , , 0)f x y t =3( , , 0)f x y t =

( , , 0)V x y tΓ =

2

3

4

0.1

0

0.1−

0.01

0

0.01−

0.01

0

0.01−

0.01

0

0.01−



( , , )V x y t 2( , ,, , )( ) fV x xt yy t+
The control term is a small modification of the potentialThe control term is a small modification of the potential



Trajectories of particlesTrajectories of particles

without control 2with control f

0.8a =

> Poincaré surface   
of section

> Projection on 
the x axis



Diffusion of test particlesDiffusion of test particles
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Diffusion coefficient 

significant reduction of diffusion by 2f>

Probability Distribution Function of step sizesProbability Distribution Function of step sizes

Step size ≡ distance between two 

successive sign reversals of the velocity

> the control quenches the large steps

without control

with control 2f



0H V+ ε

Robustness of the control : a crucial requirementRobustness of the control : a crucial requirement

domaindomain ofof efficient controlefficient control

0H V f+ ε +

uncontrolled Hamiltonian

controlled Hamiltonian, computed theoretically

controlled Hamiltonian, implemented experimentally
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 Modification of the amplitude of the control term :   2 2f f→ δ ⋅>

Robustness  1Robustness  1

>> optimal control for δ = 1
>> increasing its amplitude does not improve control
>> decreasing the amplitude does still give a good control
>> reducing energy to control the system (δ =0.5  ⇒ reduction of 30%)

c 0 2H V fH = + ε + δ ⋅

without control

0.7a =



truncation of the Fourier series of the control term  2f

Robustness  2Robustness  2
if the potential is known on a coarse grained grid:

>> efficient control with few Fourier modes: 12 modes ⇒ reduction of 25%

>> simplification of the control term 
>> reduction of the energy necessary for the control

without control

control 2f

0.8a =



I. Global control of Hamiltonian systems :

- method and illustration

- application to edge plasma turbulence

II. LocalisedLocalised controlcontrol of Hamiltonian systems

- method and illustration

- application to magnetic field lines
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LocalisedLocalised control : control : channeling chaos by building barrierschanneling chaos by building barriers

0 0. . :H e g= =A A A 0> expansion of  around  , , 

Remark: for  2 d.o.f.  barrier to diffusion
for  n d.o.f.   effective barriers    

Advantages:Advantages:

> Explicit expression for the control term: existence and regularity

> Explicit expression for the invariant torus which has been created

> Persistence of the created torus for arbitrarily large values of          ε (provided )f V≤



AlgorithmAlgorithm ofof construction construction ofof a a localisedlocalised control control termterm

on an example:   
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controlcontrol
4% 4% ofof VV

on 1% phase on 1% phase spacespace

LocalisedLocalised control: control: forcedforced pendulumpendulum
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on 1% phase on 1% phase spacespace



LocalisedLocalised control: control: channellingchannelling chaos by building barrierschaos by building barriers
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> Trapping of particles
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LocalisedLocalised control: control: magneticmagnetic fieldfield lineslines
Magnetic field line dynamics in a toroidal geometry
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0.003=ε
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LocalisedLocalised control: control: magneticmagnetic fieldfield lineslines
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0.003=ε5% 0f 5% 0f VV
on 7% phase spaceon 7% phase space
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Summary and outlookSummary and outlook

>> Global control of Hamiltonian systems
- application to electrostatic turbulence
- robustness

>> Localised control of Hamiltonian systems
- application to magnetic field lines 
- barrier to diffusion

>> control of chaos in area-preserving maps [cf. Poster]

>> application on a TWT     [cf. Doveil’s talk]

>> extension to more realistic models in fusion plasmas

>> other applications to atomic physics, particle accelerators, free electron laser..?



 phase error in  2f>

Robustness  3Robustness  3

>> 50% reduction of the diffusion coefficient for 5 % error in the phases

err
nm nm nmϕ = ϕ + γ ⋅ ϕ

without control

control 2f

0.7a =


