HSCoPP'O4, Fréjus, October 2004

Control of Hamiltonian chaos in a Traveling Wave Tube

F. Doveil and A. Macor

Equipe Turbulence Plasma

Laboratoire de Physique des Interactions Ioniques et Moléculaires

Centre universitaire de St. Jérôme - Marseille

 beam - plasma system traveling wave tube trochoidal analyzer distribution function Hamiltonian chaos • the beam-wave/s system • the "devil's staircase" control of chaos conclusion and perspectives

<u>beam-plasma</u>

 traveling wave tube trochoidal analyzer distribution function Hamiltonian chaos • the beam-wave/s system • the "devil's staircase" control of chaos conclusion and perspectives

beam - plasma system traveling wave tube

- trochoidal analyzer
- distribution function
- Hamiltonian chaos
- the beam-wave/s system
- the "devil's staircase"
- control of chaos
- conclusion and perspectives

 beam - plasma system traveling wave tube the trochoidal analyzer distribution function Hamiltonian chaos • the beam-wave/s system • the "devil's staircase" control of chaos conclusion and perspectives

 beam - plasma system traveling wave tube trochoidal analyzer velocity distribution functions Hamiltonian chaos • the beam-wave/s system • the "devil's staircase" control of chaos conclusion and perspectives

beam - plasma system
traveling wave tube
trochoidal analyzer
distribution function

Hamiltonian chaos

• the beam-wave/s system

• the "devil's staircase"

control of chaos
conclusion and perspectives

 beam - plasma system traveling wave tube trochoidal analyzer distribution function Hamiltonian chaos the beam-wave/s system • the "devil's staircase" control of chaos conclusion and perspectives

libration

- f 30[*MHz*]
- v_{φ} 4,07.10⁶[*m*/*s*]
- ϕ_{s} 6,1[mV] ($C_{E_{1}} = 0,061$)
- v_b 4,03·10⁶[m/s]
- I 100[*nA*]
- l_{int} 400[cm]

f

Vo

30[*MHz*]

 $4,07 \cdot 10^{6} [m/s]$

 $6,1[mV](C_{E_1}=0,061)$ ϕ_{S} eφ $v_{\pm} = v_{\varphi} \pm 2$ $4,03 \cdot 10^{6} [m/s]$ V_h т 100[*nA*] Ι 260[*cm*] $l_{\rm int}$ trapping 3.8 3.9 [ສ.4. ເສັມ ຍິງ[] > 4.2 4.3 4.5∟ 0 10 50 60 70 20 30 40 80 90 amplitude [mV]

- ϕ_{30} 195[mV] ($C_{30} = 0,061$)
- ϕ_{40} 250[mV] ($C_{40} = 0,04$)
- $v_b \quad 3,35 \cdot 10^6 \rightarrow 4,78 \cdot 10^6 [m/s](step \, 0,42[m/s])$
- I 50[*nA*]
- $l_{\rm int}$ 400[cm]

- $f \quad 30 \text{ and } / \text{ or } 40 [MHz]$
- v_{φ} 4,07.10⁶ and 3,55.10⁶ [m/s]
- ϕ_{30} 144[mV] ($C_{30} = 0,061$)
- ϕ_{40} 136[mV] ($C_{40} = 0,04$)
- v_b 3,55.10⁶[m/s]
- I 50[*nA*]
- l_{int} 400[cm]

 beam - plasma system traveling wave tube trochoidal analyzer distribution function Hamiltonian chaos • the beam-wave/s system the "devil 's staircase" control of chaos conclusion and perspectives

One excitation at 30 MHz

 beam - plasma system traveling wave tube trochoidal analyzer distribution function Hamiltonian chaos • the beam-wave/s system • the "devil's staircase"

control of chaos

conclusion and perspectives

 beam - plasma system traveling wave tube trochoidal analyzer distribution function Hamiltonian chaos • the beam-wave/s system • the "devil's staircase" control of chaos conclusion and perspectives

- trapping and modulation of test beam measured
- × transition to large scale chaos observed
- secondary resonances observed
- new method of control of Hamiltonian chaos tested
- detailed analysis of destruction of KAM barriers
- measure chaotic diffusion
- introduce self consistency
- injection of electron packets

bectives

Mean beam velocity of a modulated beam (2nd order perturbation theory)

synchronization and bunching

- f 30[*MHz*]
- v_{φ} 4,07.10⁶[m/s]
- ϕ 18,3[mV] ($C_{E_1} = 0,061$)
- v_b 3,46.10⁶[*m*/*s*]
- *I* 230[*nA*]
- $l_{\rm int} \quad 20 \rightarrow 351, 5[cm](126step, 2, 63 \ [cm])$

Dispersion relation

Resonance condition

Principle of measurement

