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Formation, self-sustainment and control of 
transport barriers in tokamaks

X. Garbet
CEA Cadarache

Thanks to: Y. Baranov, M. Becoulet, P. Beyer, S.Benkadda, 
C.Bourdelle, C. Figarella,  P. Ghendrih,  F. Imbeaux, 
E.Joffrin, X.Litaudon, D. Moreau, V.Parail, Y. Sarazin
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Why Transport Barriers?

• Thermonuclear fusion:
Lawson criterion → Good confinement → Reduced turbulent 

transport.
• Confinement improvement is a key issue . Transport 

barriers provide an attractive solution.
• Need to control position and height (MHD stability).
• Relaxation oscillations appear in edge transport barriers →

constraint on plasma facing components.
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Strategy to control transport barriers and 
relaxation oscillations

• Facts:
- main instabilities are driven by the pressure gradient.
- shear flow stabilisation plays a central role, but is not the 

unique ingredient.
- shear of magnetic field is also a key ingredient.
• Internal Transport Barriers : strategy is to control turbulent 

transport via shear flow and/or magnetic shear.
• Relaxations oscillations (and MHD): strategy is to keep 

the pressure away from stability limit. 
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Outline

• Introduction to turbulent transport in tokamaks
• Physics of transport barriers: 
- edge transport barriers and relaxation oscillations.

- internal transport barriers.
• Examples of control
- internal transport barriers
- relaxation oscillations (ELM’s) in edge transport 

barriers.
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Geometry
• Field lines generate 

magnetic surfaces.
• Along a field line 

q(r)=dϕ/dθ
• Density and temperature 

are constant on magnetic 
surfaces. 
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Turbulent Transport
Key ingredients:

• Fast motion along the field lines

• Perpendicular E×B Drift

δφ<0

v
E

B

δφ>0

 

Dturb.≈ vE
2

τc

 

vE = Bx∇φ
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Main instabilities are interchange 
modes

• Exchange of 
two flux tubes 
is energetically 
favourable if

(vE⋅∇B)(vE⋅∇p)>0
• Stable and 

unstable regions
are connected 
by field lines.

∇p

∇B

←→

UnstableStable

←

R

B
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Models of turbulence in tokamaks
• A key ingredient in tokamak turbulence is the interchange 

instability

dt=∂t+vE.∇ ;   vE=B×∇φ/B2

• Similarities with thermo-convection and Rayleigh-Taylor 
instability

• The actual plasma response is more complex.

dt∇⊥
2 φ = − b.∇( )2 φ + Vg.∇p + ν∇⊥

4 φ

dt p = χ // b.∇( )2 p + χ⊥∇⊥
2 p + S

dt∇⊥
2 φ = Vg.∇T + ν∇⊥

4 φ

dtT = χ⊥∇⊥
2 T + S
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Fluctuations of ExB drift velocity 
produce turbulent transport• ExB drift

• Turbulent 
diffusion

• Turbulent flux

Contour lines of electric potential φ.
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Several “regimes” in a tokamak plasma

• L-mode: basic plasma, 
turbulence everywhere. 

• H-mode: low turbulent 
transport in the edge, 
formation of a pedestal.

• Internal Transport Barrier:
low turbulent transport in 
the core, steep profiles.
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Oscillations relaxations ( "Edge Localised Modes") 
appear in H-mode plasmas

Monier 03
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JET#58135 at t=60.118s

• H-mode : transport barrier 
in the edge due to a shear 
flow.

• ELM: relaxation 
oscillations. 

• Complex temporal 
behaviour.
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ELM's dynamics is crucial

• Energy content depends 
on the type of ELM’s.

Parail 02
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ELM's are associated to an MHD  instability 

G. Saibene 03

• Underlying
electromagnetic 
mode.

• Relaxation= mode 
growth+transport 
event.

• Crash time ≈100µs
• Recovery time= 

diffusion time. 
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ELM's live close to an MHD limit
• Pressure (ballooning) 

and current (kink) driven 
modes.

• Stability domain   
pressure gradient 

α=-q2Rdβ/dr
vs magnetic shear   

s=rdq/qdr.

Wilson 01,  Snyder 02,  Parail
02, G. Huysmans 02

Lonnroth/Parail 03
α

s
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Barrier Relaxations appear in simulations for a large 
enough velocity shear 

P. Beyer

• Similarities with relaxations in edge barriers

• Link with actual ELM’s is unclear yet.

r
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Physics of Transport Barriers
• Transport barriers are layers of plasma where turbulent 

transport is reduced. 
• Requires a minimum amount of power
Z

R

Z

R
Contour lines of electric potential. Contour lines of electric potential.

ITBL-mode

Temperature 
profile
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Shear flow is stabilising
• E×B velocity 

shear tears 
apart large 
scale vortices. 

K.C. Shaing, K&S.Itoh,
K.Burrell, 
P.H.Diamond, 
R.Waltz, …

• Criterion for 
stabilisation

lin
E

E dr
dV γ>=γ

TRB simulations
Z

ϕ

R
Contour lines of electric potential.
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Control of the ExB Drift in a Tokamak
• Force balance equation

• Self-generation of mean flow 

∂tVθ = −∇ r ˜ V Er ˜ V Eθ − νneo Vθ − Veq( )

Er =
Tidni
ein idr

+ 1 − k neo( ) dTi
eidr

+ VTiBp

Fuelling
Toroidal 
momentumHeating
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Negative magnetic shear is also stabilising
• Turbulence simulations : stabilisation for s=rdq/qdr <-0.5 

(Y.Baranov, A.Bottino, R. Budny,… )

• Agrees with experiment (TORE SUPRA, TCV, FTU, JET, AUG 
…)

Y. Baranov, 
TRB 
simulations

Safety factor Temperature

Normalised radius Normalised radius
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Magnetic shear lowers 
critical shear flow at transition

Shear flow rate vs. 
magnetic shear
JET- T. Tala/V. Parail
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s

γΕR/cs
• Force balance 

equation

→ in a reactor plasma

→ adjustement of 
magnetic shear s to 
lower γlin.

1L/ Ts
*
TlinE <<ρ=ρ≈γγ

0p)(en iii =∇−×+ BVE
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Internal Transport Barriers
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• Magnetic shear seems to be the trigger.

• Once the barrier is established, the velocity shear rate exceeds 
the linear growth rate.

Challis 02 Budny 02
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Control of MHD Stability
• Pressure driven

MHD mode →
threshold

Huysmans, JET 1999
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• After
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Real-time control of internal transport barriers via 
velocity shear and current profile control

• Controlling γE and s seems an efficient way to control a 
transport barrier.

• Current drive provides a way to control j(r) and thus s →
expensive.

• In principle γE can be controlled via torque, but very 
expensive in a reactor → shear flow rate is related to 
gradient

→ Control of q profile and temperature profile (ρT
*) with 

current drive heating power

Tes
*
TlinE L/ρ=ρ≈γγ
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Means of (global) control in a tokamak
• q profile is determined by the poloidal field → current density 

→ controlled by current generation. Done with inductive field 
+ waves (e.g. Lower Hybrid) or particle beams.

• Neutral Beam Injection (NBI) controls  heating (mainly ions) 
and torque.

• Ion Cyclotron Resonant Heating (ICRH) controls heating, 
mainly on electrons.

• Pellet injection controls central fuelling (density)
• In a reactor : 
- heating due to alpha particles (not a control parameter)
- fuelling and torque will be negligible.
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Control scheme : proportional+integral feedback

SVD decomposition

K(s)=W(s)Σ(s)V+(s)

Moreau 03

Applied power
levels at time=t

Power levels when
control starts
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Algorithm for controlling current and pressure profiles
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1.8MA/3.4T
An example of control

• ITB is controlled during 7.5s 
with ≈100% of non-inductive 
current. 

• Neutral beam injection
controlled by neutron emission

• Radio-frequency heating 
controlled by ρs/LTe at the 
barrier location

• Plasmas are more stable with 
RT control

Active control

Ip[MA]

#53697
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Mazon 02
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First q-profile control in the high power phase

"Model Based SVD control" deduced from open loop experiments

1.8MA / 3.0T       HxβN~2
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• setpoints

Mazon 04
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First simultaneous control of q-profile and ITB strength
ρ*Te controlq profile control

• 3T/1.7MA H89x βN ~ 3.4

0

0

0

0.01

0.02

0.01

0.02

0.01

0.02

0.03

0 4 8 12 16
Time (s)

JG
04

.1
09

-3
c

JET Pulse No: 62160

X = 0.4

X = 0.5

X = 0.6

       ρ∗T Control

0
3

4

5
3
4
5
6
2
4
6
2

4

6

4

2

6

4 8 12 16
Time (s)

JG
04

.1
09

-2
c

q profile control
JET Pulse No: 62160 

X = 0.2

X = 0.4

X = 0.5

X = 0.8

X = 0.6

• Control performed either with a monotonic or a non-monotonic q-profile
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Control of oscillation relaxations with 
external coils.

• Use of  magnetic coils to 
ergodise field lines at the 
edge.

• Aim is to decrease the 
local pressure gradient to 
avoid crossing the 
stability threshold.

T.E. Evans 2004



HSCoPP'04 X. Garbet

Association
Euratom-CEA

31

Control of oscillation relaxations with 
external coils (cont.)

16
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Conclusions

• Control of confinement and stability seems feasible 
with macroscopic quantities such as magnetic shear, 
velocity shear and density gradient. 

• Magnetic shear requires current drive: expensive but 
feasible.

• Control of rotation seems much more difficult in a 
reactor: torque due to beams is small → means to 
generate rotation with RF waves.

• On a longer term, more sophisticated control 
techniques will be necessary.
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Effect of a Shear Flow

Figarella 03

• Shear flow rate 
• Approximate criterion for stabilisation 

Biglari-Diamond-Terry  90       Waltz 94

Dkθ
2VE
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1/ 3

> τc
−1 VE
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VE
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dr

VE
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Simultaneous control of q-profile and ITB location
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Effect of a Shear Flow on 
Transport

• Acts on amplitude and 
cross-phase of 
fluctuations

Γ=3/2<pvE>
• Leads to a transport 

barrier
Γ=-Dturb∇neq

Dturb ↓ → ∇neq ↑

Figarella 03

vE,rms

Cross-phase

prms

V'E
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The interaction between 
structures and transport barriers

• Structures have been found to play in important role in 
tokamak turbulence. 

• Zonal Flows are fluctuations of the poloidal velocity and 
play a stabilizing role.

• Streamers are convective cells elongated in the radial 
direction : enhance the turbulent transport.

• Avalanches are large scale transport events; Connected to 
streamers.

• Interplay with transport barriers?
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Avalanches are 
Large Scale Transport Events

• Evidence : maps of 
turbulent flux versus 
time and radius. 
Same for pressure.

• Observed in many 
simuations Carreras 
96, Sarazin and Gendrih
98, Garbet and Waltz 
98, Beyer et al. 99, 
Candy and Waltz 02, ...

Beyer et al 99
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3D Structure of an avalanche

• Maps of the flux in 
poloidal planes.

• Elongated structures in 
the radial direction: 
streamers.
Drake 88, Diamond 99, 
Jenko 00

• Elongated vortices 
along the equilibrium 
magnetic field.

Beyer et al 00
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Interaction with Zonal Flows
• Streamers in low k 

turbulence seem to be non 
linear structures: 

- several toroidal wave
numbers.

- growth time scale is not
linear.

• Mechanism for the onset of
a streamer still unclear.

• Interplay with Zonal Flows.

Cross correlation between
turbulent flux and ExB
shear flow: time delay.
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Avalanches hardly cross a
transport barrier

• Suggests an effect 
of the velocity shear
on the propagation 
of a transport event.

• Some large events 
cross the barrier.

Beyer et al 00
r
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Zonal Flows are active within transport barriers.
Thermal flux Zonal Flow

r r

tim
e

• Observed for 
combined electron 
and ion barriers.

• Not clear 
whether ZF 
participate in  the 
barrier onset.

• Some barriers 
are quiet.
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Conclusions

• Velocity shear is a powerful way of producing a 
transport barrier.

• There exists other ways to produce a barrier in a 
tokamak. A barrier is ultimately reinforced by the 
velocity shear associated to the strong gradient : 
positive feedback loop.

• Avalanches hardly cross transport barriers. Consistent 
with suppression due to mean shear flow. 

• Zonal Flows are active within some transport barriers. 
Precise role to be clarified.  
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Effect of a Shear Flow
• Shear flow rate

• Approximate criterion for 
stabilisation 

Biglari-Terry-Diamond 90

Waltz 94
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Negative magnetic shear is stabilising
• Magnetic shear :

• s<0 : favourable average of 
interchange drive
(vE⋅∇B)(vE⋅∇p) along field 
lines. 

• Enhanced by geometry 
effect. 
B.B.Kadomtsev, J.Connor, M.Beer, 
J.Drake, R.Waltz, A.Dimits, 
C.Bourdelle…

ϕ

θ

s=0 s>0
unstable

s<0
stabledr

dq
q
rs =

Vortex distorsion



HSCoPP'04 X. Garbet

Association
Euratom-CEA

45

Strategy for Predicting Turbulent Transport in 
Fusion Plasmas

• Calculating the plasma response is a challenge: fluid 
equations (3D,  5 equations at least)  or kinetic equations 
(5D). Simplifications:

- Mean field theory: development of transport models 
(usually based on a mixing-length approximation)

- Statistical theory of turbulent transport.

- Use low resolution turbulence simulations.

• Develop generic recipes to reduce turbulent transport.
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The least square integral error 
is minimised by the controller

control

Time (s)
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Dynamics of transport barriers is more complex than 
s<0 and shear flow

JET- E. Joffrin

JET #51573
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A shear layer results in a region where the gradients 
are large: transport barrier
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Challenges of profile control
Previous experiments were based on scalar measurements
1. ITB = pressure and current (+ rotation ...) profiles
2. Multiple time-scale system+loop interaction

Energy confinement time ≠ Resistive time
Nonlinear interaction between p(r) and j(r)

→ Multiple-input multiple-output distributed parameter system 
(MIMO + DPS)

→ Space-time structure of the system must be determined
Identify a high-order operator model around the target steady state
and try model-based DPS control using SVD techniques

D. Moreau et al., Nucl. Fus. 2003
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Negative magnetic shear is stabilising
• Magnetic shear :

• s<0 : favourable average of 
interchange drive
(vE⋅∇B)(vE⋅∇p) along field 
lines. 

• Enhanced by geometry 
effect. 
B.B.Kadomtsev, J.Connor, M.Beer, 
J.Drake, R.Waltz, A.Dimits, 
C.Bourdelle…
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