

HSCoPP 2004

dynamics control in plasmas the experimentalist's "point de vue"

- I. Controlling chaos
- II. Controlling noise
- III. Controlling turbulence

Thomas Klinger - Max-Planck-Institut für Plasmaphysik – Greifswald

on behalf of many collaborators:

D. Block¹, G. Bonhomme², F. Greiner¹, O. Grulke^{3,4}, N. Krahnstöver¹, A. Latten¹, A. Piel¹, T. Pierre⁵, C. Schröder ⁴, H. Thomsen⁴, H. Zohm⁴

¹ University of Kiel (Germany)⁴ MPI for Plasma Physics (Garching/Greifswald, Germany)² Université de Nancy (France)⁵ Université de Provence (Marseille, France)³ University of Greifswald (Germany)

controlling chaos in plasmas

control of chaos - idea

H. G. Schuster (Ed) Handbook of Chaos Control (VCH-Wiley 1999)

control = stabilising unstable periodic orbits (UPOs)

Ott, Grebogi, Yorke, PRL 64, 1196 (1990)

Pierce diode

1d electron fluid model

$$egin{array}{rcl} \partial_t n_e + \partial_x (n_e v_e) &=& 0 \ \ \partial_t v_e + v_e \partial_x v_e &=& qE \ \ \ \partial_x E &=& lpha^2 (n_i - n_e) \end{array}$$

toy model for plasma diode

- monoenergetic electron beam
- neutralising ion background
- surface charges on electrodes
- external circuit

1d PIC simulation

- use XPDP1 (UC Berkeley)
- bounded plasmas code
- O(10000) particles

Pierce parameter $\alpha = \omega_{pe}L/v_0$ control parameter

 $\eta \leq 0.2\%$

the MATILDA device

device located until recently at IEAP Kiel University

ΠÌ

dynamical response of plasma current to periodic voltage drive

period doubling and chaos

phase space portraits

ΠΠ

Poincaré sections \Rightarrow

bifurcation diagram

power spectra

OPF control

Mausbach, Klinger, Piel, Phys. Plasmas 6, 3816 (1999)

wave chaos

Gravier et al. PoP 6, 1670 (1999)

controlling noise in plasmas

stochastic resonance = SR : first proposed by Benzi et. al, *Tellus* (1982)

- stochastical systems theory
- optical systems
- electric and magnetic systems
- neuronal systems
- geoscience

Ganopolski and Rahmstorf, PRL 88, 038501 (2002)

SR principle

3 ingredients

apparent paradox: increase noise level \rightarrow improved signal-to-noise ratio

some theory & simulation

- Langevin stochastic ODE
- valid for large damping

signal-to-noise ratio SNR = $10 \log_{10}(S/B)$

Kramer's time

$$\begin{array}{l} \overbrace{T_k} \propto \ \frac{1}{\alpha} \mathrm{e}^{-U_0/\sigma} & \text{at } A = 0 \\ \mathrm{SNR} \ \propto \ (A/\sigma)^2 \, \mathrm{e}^{-U_0/\sigma} \\ S(\omega) \ = \ \frac{\alpha\beta}{\beta + \omega^2} + \gamma \delta(\omega - \omega_d) \end{array}$$

McNamara and Wiesenfeld, PRA 39, 4854 (1989)

hysteresis models

energy balance equation (Ohmic heating vs. surface loss)

 $f(heta) = lpha \, \exp(-1/ heta) - (heta - heta_0) = 0$ with $heta = k_B T_e/E_i$

similar conclusion!

Matsunaga and Kato, JPSJ 66, 115 (1997)

Greiner, Klinger, Klostermann, Piel, PRL 70, 3071 (1993)

discharge modes

stochastic behaviour

stochastic behaviour

IDD

phase space structure

PΓ

controlling instabilities and turbulence

- drift waves are generic in the edge of magnetized plasmas
- drift waves and drift wave turbulence cause strong particle transport
- transport properties are determined by the power spectrum (Re and Im!)
- transport is not necessarily undesired but needs to be controlled

- magnetic shear fairly static
- self-consistent radial electric shear fields ITB's difficult to establish
- active open-loop or closed-loop contro not yet developed
- simple: open-loop control
- necessary: spatiotemporal control signal

T. Klinger – HSCoPP 2004 Frejus

magnetized triple plasma

- thermionic discharges
- magnetized mid-section

~ DLD (Darmouth), MIRABELLE (Nancy), KIWI (Kiel), MISTRAL (Marseille), VINETA (Greifswald)

T. Klinger – HSCoPP 2004 Frejus

plasma parameters

magnetized plasma column

- L = 1.5 m and d = 0.3 m
- $n_e^{} \leq 5 \cdot 10^{16} \ m^{-3}$
- $T_e \approx 1.5 eV$
- $B \le 0.1T$ (linear)
- $\beta \leq$ 2.5 \cdot 10⁻⁶

quiescent plasma

- low-beta plasma
- ρ_s ~ other scales

- $\nabla_z n \neq 0 \Rightarrow 3d$ equilibrium
- collisions with neutrals

features

an array of 64 probes

turbulence

idea: suppression resp. synchronisation of drift wave turbulence by externally applied electric rotation field

Schröder, Klinger, Block, Piel, Bonhomme, Naulin, Phys. Rev. Lett. 86, 5711 (2001)

IDD

- no external field
- co-rotating field
- counter-rotating field

physical mechanism

direct perturbation of the drift modes's electric field?

indirect perturbation of the drift wave by poloidal current profile?

extended HW-model (2d)

plasma potential

$$\frac{\partial}{\partial t} \nabla (\phi + \vec{V}_{E \times B} \cdot \nabla \nabla_{\perp}^{2} \phi = \tilde{\sigma} (\phi - n) + S + \mu_{w} \nabla_{\perp}^{4} \phi$$

$$\frac{\partial}{\partial t} n + \vec{V}_{E \times B} \cdot \nabla (N_{0} + n) = \tilde{\sigma} (\phi - n) + S + \mu_{n} \nabla_{\perp}^{2} n$$
plasma density

- rotating electron current profile || B
- poloidal mode structure (m=2)
- radially localized

simulation result

counter-rotating field

Schröder, T.K., Block, Piel, Bonhomme, Naulin, PRL 86, 5711 (2001)

IDD

- no external field
- co-rotating field
- counter-rotating field

synchronisation of modes

IPP

incomplete synchronisation - van-der-Pol behaviour

$$\ddot{x} - \gamma f(x, \dot{x}) \, \dot{x} + \omega_0^2 \, x = E_0 \cos(\omega_i t)$$

phase evolution

- m=2 exciter field
- moving frame
- drift mode response
- phase slippage
- periodic pulling

Block, Piel, Schröder, Klinger, PRE 63, 056401 (2001)

transport

 $\Gamma(\omega) = \frac{2}{B_0} C_{n,E}(\omega) \quad \text{with} \quad C_{n,E}(\omega) = \Re \, S_{n,E}(\omega) \quad \text{and} \quad \langle \Gamma \rangle = \int_0^\infty \Gamma(\omega) \, d\omega$

Block, Piel, PPCF 45, 413 (2001), ibd. 427

proof of priciple ✓ how about the big devices?

turbulence in W7-AS

driver frequency observed ~ weak impact ...

- E×B co-rotation \Rightarrow phase coupling
- E×B co-rotation \Rightarrow phase slippage

Thomsen et al., PPCF, to be published 2004

T. Klinger – HSCoPP 2004 Frejus

neoclassical tearing modes

ECCD in magnetic islands

ECR O-mode deposition ~ width down to 2 cm

Can be used to replace the hole in the bootstrap current distribution

NTMs - control

NTMs - control

perspective: feedback control

Zohm et al, Nuclear Fusion 39, 557 (1999)

Proof-of-principle experiments on control of ...

chaos bounded plasmas

turbulence Spatial sychronisation

phase distributions

Choi et al., PRE 57, 6335 (1998)

experiment and theory agree well ...

AGM current oscillations

ΠΠ

LM current oscillations

Hasegawa-Wakatani model

plasma potential

plasma density

$$\frac{\partial}{\partial t} \nabla \left[\phi \right] + \vec{V}_{E \times B} \cdot \nabla \nabla_{\perp}^{2} \phi = \tilde{\sigma} \left(\phi - n \right) + \mu_{w} \nabla_{\perp}^{4} \phi$$

$$\frac{\partial}{\partial t} n + \vec{V}_{E \times B} \cdot \nabla \left(N_{0} + n \right) = \tilde{\sigma} \left(\phi - n \right) + \mu_{n} \nabla_{\perp}^{2} n$$

IPP

intrinsic noise

period doubling cascade

IPP

control schemes

