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M otivation

. .

urbulence and the induced transport are key ingredients to
a number of problems in building a working device for
nuclear fusion:

#» scaling of transport
# transport events: blobs, ELMs ...
# transport of impurities

Thus effectively controlling or influencing turbulence is a
mayor issue in fusion research.

There are clearly two ways to control a plasma:
#® choose the right parameters and geometry
# do something actively

o -
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The Kiwi/Mirabelle device
-

Experimental buildup (Thomas Klinger this morning):
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Magnetized cylinder, current driven instability of drift wave
type, weak turbulence.
Control/influence by a spatiotemporal signal in resonance
LWIth naturally occuring ’linear’ mode J
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The Kiwi/Mirabedle device
VE

Xperimental result:
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Resonant drive with a m = 2 mode collapses turbulent
spectrum.
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Modeling the experiment
- -

dea:
Simplest system describing drift wave dynamics, reducing

drift wave dynamics to its core
Hasegawa-Wakatani equations: (1987)
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Balance divergences in ion-polarisation with parallel current
to hold up quasi-neutrality.
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Modeling the experiment

o .
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Driver term acts onto the source of instability:
Parallel current.

S = OjJex = Asin(1r /o) sin(21my0 — wyt)

Solved numerically on a disk (r,0) .
Drive/Damping layers at around r =0 and r = rpx keep up
density gradient Np.
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Modeling the experiment

Results: Experiment
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Modeling the experiment

Results: Simulation
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Excellent agreement between simulation and experiment.
Schroder et al. PRL 2001
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Modeling the experiment

Results: Simulation
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Excellent agreement between simulation and experiment.
Schroder et al. PRL 2001
But: Is this the whole story?

\_No, modeling is merely a good starting point... J
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Controlling multidimensional PDESs

-

Control theory of multidimensional PDEs is an active field of
research and not very well developed. It is not at all well
developed for non-linear problems...

-

# linear control theory for low number of degrees of
freedom ODE’s well developed.

# nonlinear control theory for chaos (attractors)
o feedback, open loop control ....

Some identifications:
A possible resonance of a system helps to exert control at
low control power....critical for fusion plasmas.

o -
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Autoresonance: Parametric Excitation

-

AUTORESONANCE (adiabatic nonlinear phase locking T
and synchronization) is a remarkable phenomenon of
nonlinear physics when a driven nonlinear system stays In
resonance with the driving oscillation or wave continuously,
despite variation of system’s parameters. (

Or: How do you drive a nonlinear oscillator
or wave to high amplitude?

o -
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Autoresonance

-

Simple example: Pendulum

d2
X +sin(x) = Acos(f(t))

Linear resonant frequency: w = 1.

At large oscillator amplitude resonant frequency changes:
Resonance lost

Solutions:

o -
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Autoresonance

-

Simple example: Pendulum

d2
X sin(x) = Acos(f(t))

Linear resonant frequency: w = 1.

At large oscillator amplitude resonant frequency changes:
Resonance lost

Solutions:

a) modify frequency accordingly

Inability to measure and to adjust makes this difficult for

most non-trivial systems.

o -
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Autoresonance

o .

Simple example: Pendulum

d2
X sin(x) = Acos(f(t))

Linear resonant frequency: w = 1.

At large oscillator amplitude resonant frequency changes:
Resonance lost

Solutions:

b) sweep driver frequency slowly, assuming some

monotonous frequency response

a (good) shot into the dark.

o -
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Autoresonance

-

Simple example: Pendulum
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Note: Sweep must be slow compared to system frequency

Lchange! J
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Autoresonance

-

AR and plasma turbulence?
No way, as turbulence

# s a complicated system, many degrees of freedom
# has a complicated frequency response
# exhibits instabilities
o
but....there are certain similarities:
#® no good knowledge of system
# linear frequencies (waves)
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Autoresonance

o .

Results from simulations of Hasegawa- Wakatani System.

mode amplitudes over time: free turbulence
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Amplitudes of modes m =1 to m = 5. Free system, far from J
Lonset of instablility, many unstable modes, turbulent.....
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Autoresonance

-

Results from simulations of Hasegawa- Wakatani System.
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LtDriving mode m = 3 with driver frequency increasing over J
Ime.
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Autoresonance

-

Results from simulations of Hasegawa- Wakatani System.

CHirp dowm

-

= 4 B B 5 & B
FIEEE

Arpliuces

10

LtDriving mode m = 3 with driver frequency decreasing over J
Ime.
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AR In turbulence
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Amplitude of driven mode m = 3 over freguency, using
Lincreasing and decreasing driver frequency. J
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AR (I ly stable system)
Drive of m=3 mode HW on a disk, chirped frequency of drive
12 T T T
Frequency chiped drive from T=500 m—

Chirping stops at 1800
Chirping stops at 1400 rssrms
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Amplitude of driven mode m = 3 over frequency, using
Increasing driver frequency, sweep stopped at certain
frequency.

Note: Linearly stable system. J
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Conclusion

turblence control accomplished (aka GWB)
modelled in simulations
autoresonance as a simple control strategy

some features of AR control demonstrated in
’taming turbulence’

allows to optimize control power

promising for future investigations
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