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Motivation

Turbulence and the induced transport are key ingredients to
a number of problems in building a working device for
nuclear fusion:

scaling of transport

transport events: blobs, ELMs ...

transport of impurities

Thus effectively controlling or influencing turbulence is a
mayor issue in fusion research.

There are clearly two ways to control a plasma:

choose the right parameters and geometry

do something actively
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The Kiwi/Mirabelle device

Experimental buildup (Thomas Klinger this morning):

B
w

U =Asin( t+3 )4 w f

U =Asin( t+2 )3 w f

U =Asin( t+ )2 w f

U =Asin( t)1 w

...

Magnetized cylinder, current driven instability of drift wave
type, weak turbulence.
Control/influence by a spatiotemporal signal in resonance
with naturally occuring ’linear’ mode
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The Kiwi/Mirabelle device

Experimental result:

Resonant drive with a m = 2 mode collapses turbulent
spectrum.
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Modeling the experiment

Idea:
Simplest system describing drift wave dynamics, reducing
drift wave dynamics to its core
Hasegawa-Wakatani equations: (1987)

∂
∂t

∇2
⊥φ+~VE×B ·∇∇2

⊥φ = ∇‖J‖ +µw∇4
⊥φ

∂
∂t

n+~VE×B ·∇(N0 +n) = ∇‖J‖ +µn∇2
⊥n

Balance divergences in ion-polarisation with parallel current
to hold up quasi-neutrality.
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Modeling the experiment

∂
∂t

∇2
⊥φ+~VE×B ·∇∇2

⊥φ = σ̃(φ−n)−S +µw∇4
⊥φ

∂
∂t

n+~VE×B ·∇(N0(r)+n) = σ̃(φ−n)−S +µn∇2
⊥n

Driver term acts onto the source of instability:
Parallel current.

S = ∇‖Jext = Asin(πr/r0)sin(2πmdθ−ωdt)

Solved numerically on a disk (r,θ) .
Drive/Damping layers at around r = 0 and r = rmax keep up
density gradient N0.
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Modeling the experiment
Results: Experiment
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Modeling the experiment
Results: Simulation

Excellent agreement between simulation and experiment.
Schröder et al. PRL 2001
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Modeling the experiment
Results: Simulation

Excellent agreement between simulation and experiment.
Schröder et al. PRL 2001
But: Is this the whole story?
No, modeling is merely a good starting point...
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Controlling multidimensional PDEs

Control theory of multidimensional PDEs is an active field of
research and not very well developed. It is not at all well
developed for non-linear problems...

linear control theory for low number of degrees of
freedom ODE’s well developed.

nonlinear control theory for chaos (attractors)

feedback, open loop control ....

Some identifications:
A possible resonance of a system helps to exert control at
low control power....critical for fusion plasmas.
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Autoresonance: Parametric Excitation

AUTORESONANCE (adiabatic nonlinear phase locking
and synchronization) is a remarkable phenomenon of
nonlinear physics when a driven nonlinear system stays in
resonance with the driving oscillation or wave continuously,
despite variation of system’s parameters. (Fajans,
Friedland)

Or: How do you drive a nonlinear oscillator

or wave to high amplitude?
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Autoresonance

Simple example: Pendulum

d2

dt2
x+ sin(x) = Acos( f (t))

Linear resonant frequency: ω = 1.
At large oscillator amplitude resonant frequency changes:

Resonance lost
Solutions:
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Autoresonance

Simple example: Pendulum

d2

dt2
x+ sin(x) = Acos( f (t))

Linear resonant frequency: ω = 1.
At large oscillator amplitude resonant frequency changes:

Resonance lost
Solutions:
a) modify frequency accordingly
Inability to measure and to adjust makes this difficult for
most non-trivial systems.
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Autoresonance

Simple example: Pendulum

d2

dt2
x+ sin(x) = Acos( f (t))

Linear resonant frequency: ω = 1.
At large oscillator amplitude resonant frequency changes:

Resonance lost
Solutions:
b) sweep driver frequency slowly, assuming some
monotonous frequency response
a (good) shot into the dark.
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Autoresonance

Simple example: Pendulum

Note: Sweep must be slow compared to system frequency
change!
L. Friedland, J. Fajans, and E. Gilson, Subharmonic autoresonance of the diocotron mode.
Phys. Plasmas, 7:1712, 2000.
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Autoresonance

AR and plasma turbulence?
No way, as turbulence

is a complicated system, many degrees of freedom

has a complicated frequency response

exhibits instabilities

....

but....there are certain similarities:

no good knowledge of system

linear frequencies (waves)

.....
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Autoresonance

Results from simulations of Hasegawa- Wakatani System.
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Amplitudes of modes m = 1 to m = 5. Free system, far from
onset of instability, many unstable modes, turbulent.....
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Autoresonance

Results from simulations of Hasegawa- Wakatani System.

Driving mode m = 3 with driver frequency increasing over
time.
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Autoresonance

Results from simulations of Hasegawa- Wakatani System.

Driving mode m = 3 with driver frequency decreasing over
time.
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AR in turbulence

Amplitude of driven mode m = 3 over frequency, using
increasing and decreasing driver frequency.
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AR (linearly stable system)
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Drive of m=3 mode HW on a disk, chirped frequency of drive

Frequency chiped drive from T=500
Chirping stops at 1800
Chirping stops at 1400

Amplitude of driven mode m = 3 over frequency, using
increasing driver frequency, sweep stopped at certain
frequency.
Note: Linearly stable system.
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Conclusion

turblence control accomplished (aka GWB)

modelled in simulations

autoresonance as a simple control strategy

some features of AR control demonstrated in
’taming turbulence’

allows to optimize control power

promising for future investigations
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