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Outline

1) Microscopic properties of plasma turbulence
– characterisation of plasma turbulence
– driving forces and transport

2) A plasma turbulence experiment

3) Control of turbulence
– by configuration optimisation
– by sheared background plasma flows



1.1 
Characterisation of plasma turbulence
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Toroidal plasmas
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Characterization of turbulence
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Characterization of turbulence
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Measurements with a transport probe
Time traces from TJ-K

PDF Spectra



1.2 
Driving forces and transport
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Perturbations are
– constant on field linie
– with cross-phase(n,φ) = π/2
– destabilised by curvature

Related instabilities: 
– ITG, ETG, TEM

The linear interchange instability  (hot plasma core)
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Perturbations are
– with finite parallel wave length
– cross-phase (n,φ) ≈ 0
– destabilised by resistivity

The linear drift-wave instability (cold plasma edge)
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Microscopic structure of DW turbulence
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Electrostatic Turbulent Transport

Mixing length estimate of the 
diffusion coefficient: 

D = L⊥
2/τ ×sin γ

Transport if density and potential
fluctuate out of phase.

Cross-phase: γ ≠ 0



2
The plasma turbulence

experiment TJ-K
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The torsatron TJ-K

l = 6, m = 1
R = 0.6 m
a = 0.1 m
iota ≈ 1/3
B < 0.3 T

Helikon 27 MHz, 3 kW
ECRH 2.45 GHz, 6 kW

Previously: TJ-IU at Ciemat
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Transport probe 

Probes 2D plasma cross-section:
– equilibrium profiles
– fluctuations
– correlation with fixed probe
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Space-time evolution by conditional averaging
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Space-time evolution by conditional averaging
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ECRH, Argon

Perpendicular structure:
– correlation time:    τ = 100-200 µs
– correlation length: L = 5 cm
– small cross-phases
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ρs dependence from conditional averaging
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Poloidal Langmuir probe array 
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Spectral density of ion-saturation current fluctuations

Broad spectrum indicates fully developed turbulence
Lechte, PhD, submitted to PPCF
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Wave-number spectra and transport

Results:
– transport at intermediate scales
– slope in power spectrum –3
– outward transport at small scales?

m = −3
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Results:
– spectral index of -3
– ρs scaling on all scales

Wave-number spectra and ρs scaling
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Experimental and simulated cross-phase spectra

Small cross-phases on all scales are in agreement 
with drift-wave simulation

ECRH discharge Simulation 
(DALF3, Scott PPCF 1997)
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The 8x8 Langmuir probe matrix



26ICPP, Nice 2004

ArgonHydrogen Helium

ρs increases by factor of 10, structure by 3

Structure size increases with ρs
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Correlation length and time
Correlation lengths Correlation time

N. Mahdizadeh, PPCF submitted

Scaling of characteristic lengths and times

Gyro-Bohm scaling of diffusivity

Corrections for non-constant phase
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2D Structure Shape 

Database:
– H, D, He, Ne, Ar
– 2 gas pressures and heating powers
– 2 magnetic fields
– 3 radial positions
– remove points with ρs > Ln

– radially elongated structures
– limitation due to system size for Ar

M. Ramisch submitted to PoP
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Scaling of Correlation Lengths

– scaling is less than linear
– no correlation with ν∗ or β∗
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Scaling of Correlation Lengths

– scaling is less than linear
– no correlation with ν∗ or β∗ 

– cross-phase not constant



3.1
Turbulence control by optimisation 

of the magnetic configuration 
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Interchange mode in regions of good and bad curvature

good curvature

∇p

bad curvature

– small aspect ratio
– plasma shaping
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Start

Increase region of good curvature

Spherical tokamak
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Create negative magnetic shear

negative shear  positive shear

–current drive
–non sationary profiles



3.2
Turbulence control by 

by sheared plasma flows
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Spontaneous generation of zonal flows

Jupiter atmosphere

Found in 
– rotating fluids
– atmospheres
– oceans

Magnetized plasmas
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H mode: transition into improved confinement

Wagner et al, PRL 1982

edge transport barrier turbulence reduction

radius
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Bifurcations in turbulent transport

uθ (r) uθ (r)
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Mechanisms to control the electric field

Torques change radial force balance Gradients react slowly
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Flow generation by plasma biasing

probe draws current

flow due to radial 
electric field

return current due 
to friction force

ambipolar flow at 
neoclassical Er

⊗ B
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Example from TJ-K
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Particle orbits in an l=2 stellarator

Orbits for pitch angles −α, 0, α
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Neoclassical bifurcation in the W7-AS stellarator
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Power-ramp experiments to investigate hysteresis
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Conclusions

There exists a reasonable understanding of electro-
static turbulence in toroidal plasmas.

Some turbulence control can be achieved by 
optimising the magnetic configuration.

Efficient reduction is due to sheared plasma flows 
which can be controlled by a number of different 
mechanisms
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