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1) Microscopic properties of plasma turbulence
— characterisation of plasma turbulence
— driving forces and transport

2) A plasma turbulence experiment
3) Control of turbulence

— by configuration optimisation
— by sheared background plasma flows

ICPP, Nice 2004 2



1.1
Characterisation of plasma turbulence



Toroidal plasmas
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Characterization of turbulence

0 (poloidal)

r (radial) —— r (radial) ——

DALF3 code, B. Scott PPCF 97
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Characterization of turbulence
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Measurements with a transport probe

Time traces from TJ-K
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1.2
Driving forces and transport



The linear interchange instability (hot plasma core)

interchange instabilt

Perturbations are
— constant on field linie
— with cross-phase(n,¢) = n/2
— destabilised by curvature

Related instabilities:
— ITG, ETG, TEM
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The linear drift-wave instability (cold plasma edge)

Perturbations are drift wave
— with finite parallel wave length
— cross-phase (n,0) = 0
— destabilised by resistivity




Microscopic structure of DW turbulence
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Electrostatic Turbulent Transport

Mixing length estimate of the
diffusion coefficient:

D=L, 2%txsiny

Transport if density and potential
fluctuate out of phase.

Cross-phase: y#0
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2
The plasma turbulence
experiment TJ-K



The torsatron TJ-K

=6, m=1
R=0.6m
a=0.1m
jota ~ 1/3
B<03T

Helikon 27 MHz, 3 kW
ECRH 2.45 GHz, 6 kW

Previously: TJ-IU at Ciemat
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Transport probe

Probes 2D plasma cross-section:
— equilibrium profiles
— fluctuations
— correlation with fixed probe

R-R, (m)
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Space-time evolution by conditional averaging
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Space-time evolution by conditional averaging
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Space-time evolution by conditional averaging

Perpendicular structure:
— correlation time: 1 =100-200 us
— correlation length: L =5 cm
— small cross-phases
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p, dependence from conditional averaging

Hydrogen

Size depends on ion mass or p,
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Poloidal Langmuir probe array
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Spectral density of ion-saturation current fluctuations
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Broad spectrum indicates fully developed turbulence
Lechte, PhD, submitted to PPCF




Wave-number spectra and transport
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Results:
— transport at intermediate scales
— slope in power spectrum —3
— outward transport at small scales?
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Wave-number spectra and p, scaling
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Results:
— spectral index of -3
— p, Scaling on all scales
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ECRH discharge Simulation
(DALF3,.Scott PPCF 1997)
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Small cross-phases on all scales are in agreement
with drift-wave simulation



tungsten tips
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Structure size increases with p

r (cm) r (cm) r (cm)

ps INcreases by factor of 10, structure by 3
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Correlation length and time

Correlation lengths
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Scaling of characteristic lengths and times
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Corrections for non-constant phase
D ~ pxDpsinopg

ICFF, NICE ZUU4
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N. Mahdizadeh, PPCF submitted
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2D Structure Shape

Database.
— H, D, He, Ne, Ar
— 2 gas pressures and heating powers
— 2 magnetic fields
— 3 radial positions
— remove points with p, > L,

Le (cm)

— radially elongated structures
— limitation due to system size for Ar

M. Ramisch submitted to PoP
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Scaling of Correlation Lengths

— scaling is less than linear
— no correlation with v* or *
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Scaling of Correlation Lengths
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— scaling is less than linear
— no correlation with v* or *
— cross-phase not constant
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3.1
Turbulence control by optimisation
of the magnetic configuration



Interchange mode in regions of good and bad curvature

good curvature bad curvature

— small aspect ratio
— plasma shaping
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Increase region of good curvature

Spherical tokamak

Tokam ak Spherical Torus
(A=4, g=4) (A=1.25q=12)
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Create negative magnetic shear

negative shear positive shear

QExB VB
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flux surfaces

—current drive
—non sationary profiles
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3.2
Turbulence control by
by sheared plasma flows




Spontaneous generation of zonal flows

Eound in Magnetized plasmas

— rotating fluids
— atmospheres
— oceans

Jupiter atmosphere

poloidal

radial



H mode: transition into improved confinement

edge transport barrier turbulence reduction

® ¥ 0O % @&

Wagner et al, PRL 1982
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Bifurcations in turbulent transport

Power flux
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Mechanisms to control the electric field

Torques change radial force balance Gradients react slowly
ngditf = 04 jOOIy B Y jPies %Vp ~ Source ~ "™ —T(Vuy)
. _ Bifurcation
Manipulation

Bifurcation

(turbulence level) Reaction
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Flow generation by plasma biasing

probe draws current

flow due to radial
electric field

return current due
to friction force

ambipolar flow at
neoclassical E,




Example from TJ-K
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Orbits for pitch angles —a, 0, o




Neoclassical bifurcation in the W7-AS stellarator

r=13cm, T;i = 500 eV

ion root
Te=500eV 1
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A electron root
Te=4keV
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Power-ramp experiments to investigate hysteresis
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Conclusions

There exists a reasonable understanding of electro-
static turbulence in toroidal plasmas.

Some turbulence control can be achieved by
optimising the magnetic configuration.

Efficient reduction is due to sheared plasma flows
which can be controlled by a number of different
mechanisms
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