Wigner time delay distribution in mesoscopic chaotic cavity

Christophe Texier

Laboratoire de Physique Théorique et Modèles Statistiques Laboratoire de Physique des Solides

August 7, 2013

with Satya N. Majumdar

Christophe Texier Nanophysics: from fund. to appl. - Quy Nhon, Vietnam - 07/08/2013

Scattering approach in mesoscopic physics

 \rightarrow Coherent transport : $[-\Delta + V(x)]\psi_E(x) = E\psi_E(x)$

Stationary scattering states : $\psi_E^{(\alpha)}(x)$

For N open channels :

 $N \times N$ scattering matrix $\mathcal{S}(E)$

 \rightarrow Current (Landauer/Büttiker), shot noise, G_{NS} , etc

Temporal aspect of quantum scattering : time delay

2) Wigner-Smith matrix & Proper time delays

$$Q(E) \stackrel{\text{\tiny def}}{=} -i\mathcal{S}(E)^{\dagger} \frac{d\mathcal{S}(E)}{dE} \longrightarrow \text{eigenvalues } \{\tau_a\}$$

3) Wigner time delay (↔ DoS of open cavity)

$$\tau_{\mathrm{W}}(E) \stackrel{\text{def}}{=} \frac{1}{N} \operatorname{Tr} \{ Q(E) \} = -\frac{\mathrm{i}}{N} \frac{\mathrm{d}}{\mathrm{d}E} \ln \det \mathcal{S}(E) \simeq \frac{2\pi}{N} \operatorname{DoS}_{\mathbb{C}}$$

Application : Quantum *R*-*C* circuit

AC transport \rightarrow Admittance $G(\omega)$

$$\frac{1}{G(\omega)} = \frac{1}{-\mathrm{i}\omega C_{\mu}} + R_q$$

 $\{\tau_a\} \longrightarrow C_{\mu} \& R_{q}$ (Büttiker '93, etc)

mesoscopic capacitance :

Christophe Texier

electrostat.

Fermi gas

Mécanique guantique

J. Gabelli et al, Science 313, 499 (2006)

(Problem 10.2,

Mesoscopic cavity \Rightarrow complex dynamics (chaos)

Q : What are the statistical properties of $\tau_{\rm W}$?

→ E → < E</p>

Chaotic cavities - RMT approach

Several formulations of Random Matrix Theory :

Stochastic approach (SA) : S → COE, CUE or CSE → no E-structure !

Hamiltonian approach, or « Heidelberg » formulation (HA) :

$$S(E) = -\mathbf{1} + 2iW \frac{1}{E - H + iW^{\dagger}W} W^{\dagger} \qquad \begin{array}{c} H = H^{\dagger} \& W \\ 2 \text{ random matrices} \end{array}$$

 « Alternative » stochastic approach (ASA) : idea of HA within SA

Brouwer & Büttiker, Europhys. Lett. (1997)

 $P(\tau_1, \cdots, \tau_N)$: Brouwer, Frahm & Beenakker, PRL (1997)

Outline

- Coulomb gas formulation
- Preezing transition
- Numerics
- Concluding remarks

★ ∃ → ★ ∃

I. Coulomb gas formulation

Laguerre ensemble : (for τ_a 's in units of $\tau_{\rm H} = h/\Delta$)

$$\mathcal{P}(\gamma_1,\cdots,\gamma_N)\propto\prod_{i< j}|\gamma_i-\gamma_j|^{eta}\prod_k\gamma_k^{eta N/2}e^{-rac{eta}{2}\gamma_k}$$

with
$$\beta \in \{1, 2, 4\}$$

Brouwer, Frahm & Beenakker, '97

 $\{\gamma_a = 1/\tau_a\}$ are eigenvalues of Wishart matrices $X^{\dagger}X$

Coulomb gas method (F. Dyson, '62)

$$P(\gamma_1, \cdots, \gamma_N) \propto e^{-\beta E(\gamma_1, \cdots, \gamma_N)}$$

with
$$E(\gamma_1, \cdots, \gamma_N) = \underbrace{\frac{1}{2} \sum_{k} \gamma_k}_{\sim N \gamma_i} - \underbrace{\frac{N}{2} \sum_{k} \ln \gamma_k}_{\sim N^2 \ln \gamma_i} - \underbrace{\sum_{i < j} \ln |\gamma_i - \gamma_j|}_{\sim N^2 \ln \gamma_i}$$

Scaling

$$N \gamma_i \sim N^2 \Rightarrow \gamma_i \stackrel{\text{\tiny def}}{=} N x_i \text{ with } x_i = \mathcal{O}(N^0)$$

Rescaling $x_i \stackrel{\text{\tiny def}}{=} \gamma_i / N = 1 / (\tau_i N)$ & $s \stackrel{\text{\tiny def}}{=} N \tau_W$

$$P(x_1, \cdots, x_N) \propto e^{-\frac{\beta}{2}N^2 \mathscr{E}[\rho]}$$
 where $\rho(x) = \frac{1}{N} \sum_i \delta(x - x_i)$

$$\mathscr{E}[\rho] = \int_0^\infty \mathrm{d}x \left(x - \ln x\right) \rho(x) - \int_0^\infty \mathrm{d}x \mathrm{d}x' \,\rho(x) \,\rho(x') \ln |x - x'|$$

$$\tau_{\rm W} = \frac{1}{N} \sum_{i} \gamma_i^{-1} \longrightarrow \boxed{s \stackrel{\text{def}}{=} N \frac{\tau_{\rm W}}{\tau_{\rm H}} = 2\pi \frac{\rm DoS}{\langle \rm DoS \rangle} = \frac{1}{N} \sum_{i} x_i^{-1} = \int \frac{\rm dx}{x} \rho(x)}$$

 $au_{
m H}=h/\Delta$: Heisenberg time $\Delta=1/\langle{
m DoS}
angle$: mean level spacing

< ロ > < 同 > < 三 > < 三 > -

Path integral – Saddle point approximation ($N \gg 1$)

$$P_{N}(s) = \frac{\int \mathcal{D}\rho \, e^{-\frac{\beta}{2}N^{2}\mathscr{E}[\rho]} \, \delta\left(1 - \int \mathrm{d}x\rho(x)\right) \, \delta\left(s - \int \frac{\mathrm{d}x}{x}\rho(x)\right)}{\int \mathcal{D}\rho \, e^{-\frac{\beta}{2}N^{2}\mathscr{E}[\rho]} \, \delta\left(1 - \int \mathrm{d}x\rho(x)\right)}$$

 \Rightarrow Minimize $\mathscr{E}[\rho]$ under two constraints \longrightarrow two Lagrange multipliers

$$\mathscr{F}[\rho] = \mathscr{E}[\rho] + \mu_0 \left(\int \mathrm{d}x \, \rho(x) - \mathbf{1} \right) + \mu_1 \left(\int \mathrm{d}x \, \frac{\rho(x)}{x} - s \right)$$

Optimal distribution $\rho_*(x; s)$ solves $\frac{\delta \mathscr{F}[\rho]}{\delta \rho(x)} = 0$

$$\mathsf{P}_{\mathsf{N}}(s) \mathop{\sim}\limits_{\mathsf{N}
ightarrow \infty} \exp\left\{-rac{eta}{2}\mathsf{N}^2 \mathscr{E}[
ho_*]
ight\}$$

Equilibrium condition

$$rac{\delta \mathscr{F}[
ho]}{\delta
ho(x)} = 0$$
 gives

chemical potential $\widehat{\mu_0} + \underbrace{\frac{\mu_1}{x} + x - \ln x}_{a} - 2 \int_a^b \mathrm{d}x' \,\rho(x') \,\ln|x - x'| = 0 \quad \text{for } x \in [a, b]$ $V_{\rm conf}(x) = V(x) + \mu_1 / x$ interaction with bulk $-1 + \frac{1}{x} + \frac{\mu_1}{x^2} + 2 \int_a^b dx' \frac{\rho(x')}{x - x'} = 0$ for *x* ∈ [*a*, *b*] $F_{\rm conf}(x)$ $F_{\text{bulk}}(x)$ $\wedge \rho_*(x;s)$ $V_{\rm conf}(x)$ \Rightarrow Solution x x

< 同 ▶ < 三 ▶

Given a function g, consider the integral equation for ρ

$$\int_{a}^{b} \frac{\mathrm{d}t}{\pi} \frac{\rho(t)}{x-t} = g(x) \quad \text{ for } x \in [a,b]$$

Assuming that ρ has a compact support [*a*, *b*], then

$$\rho(x) = \frac{1}{\pi\sqrt{(x-a)(b-x)}} \left\{ C + \int_a^b \frac{\mathrm{d}t}{\pi} \frac{\sqrt{(t-a)(b-t)}}{t-x} g(t) \right\}$$

< ∃ > < ∃ >

Maximum of $P_N(s)$

General solution :

$$ho_*(x;s) = rac{x+c}{2\pi x^2} \sqrt{(x-a)(b-x)}$$
; $c = rac{\mu_1}{\sqrt{ab}}$

Most probable τ_{W} : remove constraint $\Rightarrow \mu_{1} = 0$ leading to $\begin{cases} a = 3 - 2\sqrt{2} \\ b = 3 + 2\sqrt{2} \end{cases}$ (Marčenko-Pastur law) $\Rightarrow s = \int \frac{\rho_{*}(x)}{x} = 1$ most probable value

For $s \sim 1$ one finds : $\mathscr{E}[\rho_*(x; s)] - \mathscr{E}[\rho_*(x; 1)] \simeq \frac{1}{4}(s-1)^{2-x}$

$$\boxed{\begin{array}{l} P_{N}(s) \underset{s \sim 1}{\sim} \exp{-\frac{\beta N^{2}}{8}(s-1)^{2}} \quad \Rightarrow \quad \operatorname{Var}(\tau_{W}) \simeq \frac{4\tau_{H}^{2}}{\beta N^{4}} \\ \text{i.e. } \operatorname{Var}(\operatorname{DoS}) \simeq \frac{4}{\beta N^{2} \Delta^{2}} \end{array}}$$
Lehmann et al '95 and Mezzadri & Simm '12 : $\operatorname{Var}(\tau_{W}) = \frac{4\tau_{H}^{2}}{(N+1)(N\beta-2)N^{2}}$

Large deviations for $s \rightarrow 0$

$$\Rightarrow \quad x_i \sim \frac{1}{s} \to \infty \; \forall i$$

$$s
ightarrow 0 \Rightarrow \mu_1 \simeq 1/s^2
ightarrow \infty$$

$$\Rightarrow \mathscr{E}[\rho_*(x;s)] \simeq 1/s$$

Detailed analysis :

$$\rho_*(x;s) \underset{s \to 0}{\simeq} \frac{1}{\pi} \sqrt{2s - (x \, s - 1)^2} \quad \& \quad \mathscr{E}[\rho_*(x;s)] \underset{s \to 0}{\simeq} \frac{1}{s} + \frac{3}{2} \ln s + \frac{1 + \ln 2}{2}$$

(like Wigner semi-circle law for GE)

i.e.
$$P_N(s) \underset{s \to 0}{\sim} s^{-\frac{3}{4}N^2\beta} \exp{-\frac{N^2\beta}{2s}}$$

Large deviations for $s \gg 1$?

 $s > 1 \Rightarrow \mu_1 < 0$

$$\frac{\delta \mathscr{F}[\rho]}{\delta \rho(x)} = 0: \text{no real solution for } s > s_c$$
$$s_c = \frac{10 + 6 \times 2^{1/3} - 11 \times 2^{2/3}}{3(6 - 6 \times 2^{1/3} + 2^{2/3})} = 1.1738...$$

э

II. Large deviations for s > 1: freezing transition

New scenario : splitting of a single charge

$$\rho(\mathbf{x}) = \underbrace{\frac{1}{N} \delta(\mathbf{x} - \mathbf{x}_1)}_{\text{isolated charge}} + \underbrace{\tilde{\rho}(\mathbf{x})}_{\text{continuous}}$$

Saddle point eqs. :

$$\frac{\delta \mathscr{F}[\rho]}{\delta \widetilde{\rho}(x)} = 0 \quad \& \quad \frac{\partial \mathscr{F}[\rho]}{\partial x_1} = 0$$

Equilibrium condition :

$$-1 + \frac{1}{x} + \frac{\mu_1}{x^2} + \frac{2}{N} \frac{1}{x - x_1} + 2 \int_a^b dx' \frac{\tilde{\rho}(x')}{x - x'} = 0 \qquad \text{for } x \in [a, b]$$
$$-1 + \frac{1}{x_1} + \frac{\mu_1}{x_1^2} + 2 \int_a^b dx' \frac{\tilde{\rho}(x')}{x_1 - x'} = 0 \qquad \text{with } x_1 < a$$

 \Rightarrow 4 eqs. for *a*, *b*, μ_1 & x_1

Freezing transition for s > 1

(*)
$$s = \frac{1}{Nx_1} + \frac{1}{N} \sum_{i>1} x_i^{-1} \to \infty \Rightarrow \text{ one charge } x_1 \sim \frac{1}{Ns} \to 0$$

•
$$\mu_1 \simeq -x_1 \rightarrow 0^-$$

•
$$\tilde{
ho}(x;s) \xrightarrow[N \to \infty]{}
ho_*(x;1)$$
 for $s > 1$

 $\widetilde{
ho}(x;s)$ freezes to the MP law $ho_*(x;1)$

$$\mathscr{E}[\rho_*(x;s)] = \frac{1}{N}(x_1 - \ln x_1) + (\cdots) \underset{s \gg 1}{\simeq} \frac{1}{N} \ln s + \text{Cste}$$

Power law tail

$$\ln P_N(s) \sim -\frac{\beta N}{2} \ln s + \cdots$$

Scattering interpretation : a single time τ_1 dominates \Rightarrow resonance

Large deviation functions

★ ∃ → ★ ∃

A second order phase transition

New phase exists for s > 1(and not only $s > s_c$)

Crossover at s_N

$$\begin{array}{rcl} s < s_N & \rightarrow & \mathscr{E}[\rho_*(x;s)] - \mathscr{E}[\rho_*(x;1)] \underset{s \rightarrow 1}{\simeq} \frac{1}{4}(s-1)^2 \\ s > s_N & \rightarrow & \mathscr{E}[\rho_*(x;s)] - \mathscr{E}[\rho_*(x;1)] \underset{s \rightarrow 1^+}{\simeq} \frac{1}{N} \frac{1}{s-1} \end{array}$$

 $s_N \simeq 1 + (4/N)^{1/3}$

 $s_N \xrightarrow[N \to \infty]{} 1^+$: Freezing is here a **2nd** order phase transition

III. Numerics

★ ∃ >

Monte Carlo simulation of the gas

Demonstrates the phase transition :

For s going from $\infty \rightarrow 1^+$: force the existence of one isolated charge

- 10

IV. Conclusions

Power law $P_N(s) \sim s^{-2-\beta N/2}$: one narrow resonance

CT & S. N. Majumdar, Phys. Rev. Lett. 110, 250602 (2013)