

Dynamical Band-Engineering of Spin-Polarized Edge States

BinHe Wu

Department of Applied Physics, Donghua University, Shanghai 2013-8-8

Email: bhwu2010@gmail.com

Band Theory

Insulator, Semiconductor and Conductor

Topological Insulator

Momentum

Edge States: Hall effect

Band: bulk gap due to Landau levels
Conductivity: quantized Hall conductivity
Chiral Edge states at the boundaries

Haldane Model: Edge States without Magnetic field

This spinless model consists of tight-binding terms on the honeycomb lattice.

$$H = \sum_{i} t_0 c_i^{\dagger} c_i + \sum_{\langle i,j \rangle} t_1 c_i^{\dagger} c_j + \sum_{\langle \langle i,j \rangle \rangle} t_2 e^{i\phi_{ij}} c_i^{\dagger} c_j.$$

- The second term due to nearest-neighbor hopping on graphene gives rise to the Dirac dispersion.
- The first term describes a sublattice staggering and leads to the open up of gap.
- The third term describes the next-nearest-neighbor hopping which is modified by a periodic vector potential and zero total magnetic-flux.

 $t_0 = \pm M$

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

Quantum Spin Hall Effect

Kane and Mele correlated spin with Haldane model and introduced the following Hamiltonian.

$$H_0 = -t \sum_{\langle ij \rangle} c^{\dagger}_{i\sigma} c_{j\sigma} + \lambda_v \sum_i \xi_i c^{\dagger}_{i\sigma} c_{i\sigma}$$

$$H' = i\lambda_{SO} \sum_{\langle\langle ij\rangle\rangle} v_{ij}c_i^{\dagger}s^z c_j + i\lambda_R \sum_{\langle ij\rangle} c_i^{\dagger}(\mathbf{s} \times \hat{\mathbf{d}}_{ij})_z c_j$$

Without Rashba term (second SO coupling), have two copies of Haldane's IQHE model. All physics is the same as IQHE physics.

The Kane-Mele model represents a new phase of materials: Topological Insulator.

However, materials in nature which are classified as TI are rare!

C.L.Kane and E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

Artificial Topological Insulators: Band Engineering

HgTe quantum wells

B.A Berneig et al., Science 314,1757 (2006) M. Konig, et al., Science 318, 766 (2007).

Artificial Topological Insulators: Band Engineering

Topological Anderson Insulator

J. Li et al. Phys. Rev. Lett. 102, 136806 (2009) . C. W. Groth et al. Phys. Rev. Lett. 103, 196805 (2009)

Dynamical Band Engineering

Question:

What happens to the Dirac particles of graphene subjected to circularly polarized field?

A dynamical gap appears at the Dirac point of graphene making it a photo-induced quantum Hall state.

T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (R) (2009)

Floquet Theorem

Floquet Theorem

If H(t) = H(t + T), then there exists a complete set of solutions of the SE of the form $\psi(t) = e^{-i\varepsilon t/\hbar}u(t)$, with u(t + T) = u(t).

- ε is called Floquet quasi-energy; it is defined up to multiples of $\hbar 2\pi/T$.
- u(t) is a solution of the problem $[H(t) i\hbar \frac{d}{dt}] u = \varepsilon u$, or $\sum_{m} (H_{n-m} + \hbar \frac{2\pi n}{T} \delta_{nm}) u_m = \varepsilon u_n$ in Fourier components.

J.H. Shirley, Phys. Rev. 138 (1965) B979

Photo-Induced Hall Effect ----- Floquet Topological Phase Transition

Floquet Hamiltonian

$$H^{mn} = \frac{1}{T} \int_0^T dt H(t) e^{i(m-n)\Omega t} + m\delta_{mn}\Omega I$$

"Dynamical topological gap" $\kappa = \frac{\sqrt{4A^2 + \Omega^2} - \Omega}{2} \sim A^2 / \Omega$

T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (R) (2009)

Photo-Induced Hall Effect ----- Floquet Topological Phase Transition

Extended Thouless-Kohmoto-Nitingale-Nijis formula for photo-induced Hall conductivity (photo-induced Chern form)

Z. Gu, et al. Phys. Rev. Lett. 107, 216601 (2011)

Optical Tuning of Haldane Model

The phase diagram of Haldane model can be tuned by dynamical methods.

J. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010). J. Inoue, J. of Luminescence.131, 482 (2011).

Photo-induced Helical Edge States

- By tuning the form of the periodic modulation, one can induce either chiral or helical edge states.
- Topological States with a pair of helical edge states can be turned on and off in HgTe/CdTe quantum wells by time-dependent perturbation.

• Stress modulation – Material parameter

N. H. Lindner, G. Rafael, and V. Galitski, Nature Physics 7, 490 (2011)

Classical View: Edge States formation

• Hall effect

Magnetic field & $\vec{F} = q \left(\vec{E} + \left(\vec{V} \times \vec{B} \right) \right)$ Lorentz force:

• Optical Hall Effect

Circularly polarized field:

Dynamical tuning the Kane-Mele Model?

- Edge States Structure
 - ---- Chiral or Helical ?
 - ---- Spin-polarized or unpolarized?
- Tuning the topological insulating states via optical means.
 - ---- Dynamical Band-Engineering

Nanoribbon of Kane-Mele model subjected to circular polarized field

Hamiltonian

Model Hamiltonian:

$$\begin{split} H &= \sum_{\langle ij \rangle} \tilde{t}_{ij} c_i^{\dagger} c_j + i \sum_{\langle \langle ij \rangle \rangle} \tilde{\lambda}_{\mathrm{SO}, ij} \mu_{ij} c_i^{\dagger} \sigma^z c_j \\ &+ i \sum_{\langle ij \rangle} \tilde{\lambda}_{R, ij} c_i^{\dagger} (\boldsymbol{\sigma} \times \mathbf{d}_{ij})_z c_j + \lambda_v \sum_i \eta_i c_i^{\dagger} c_i, \end{split}$$

Vector Potential:

$$\mathbf{A}(t) = A_0(\sin(\Omega t), \cos(\Omega t))$$

The hopping term between two lattice sites is modified with an extra phase: $e^{iA_{ij}(t)}$ where $A_{ij} = \frac{e}{\hbar}(\mathbf{r}_j - \mathbf{r}_i) \cdot \mathbf{A}(t)$

Conductance Quantization

At static, the ribbon is an insulator as shown by Kane and Mele.

Conductance Quantization

Wave-function of Edge States

- Dynamical methods provide useful tools to switch on and off edge states, enabling the dynamical band engineering of topological properties.
- The edge states of Kane-Mele model can be tuned by dynamical methods. With proper parameters, one can obtain spin-polarized edge states without external magnetic field, which may be useful for spin injection.

Acknowledgment:

 Collaborate with Dr. Qin Liu Prof. Xunya Jiang Prof. Juncheng Cao
Financial Support by Natural Science Foundation of China (NSFC)

Thank you for your attention!