UNIVERSITY OF TWENTE.

Electric Field Effect in Ultra-thin TiN Films

<u>Hao Van Bui*</u>, Alexey Kovalgin, Jurriaan Schmitz and Rob Wolters

MESA+ Institute for Nanotechnology University of Twente, the Netherlands

(* also from Department of Physics, Quy Nhon University, Vietnam)

Ref.: H. Van Bui et al., APL, 103, 051094 (2013)

Introduction

- Electric field effect: ability to modulate the electronic transport properties of a material by an external electric field.
- \rightarrow field effect transistors (FETs)

Conventional FET

Introduction

Carbon nanotubes

Molybdenum disulfide

Introduction

- Most desirable materials should exhibit conductance close to that of a metal → electric field effect in metals?
- Metals: high electron concentration prevents the penetration of electric field (screening effect)
- \rightarrow Induced surface charge is negligible compared to bulk carrier concentration.
- \rightarrow To observe field effect in metals: film thickness ~ screening length.
- We use atomic layer deposition to grow ultra-thin continuous TiN films → electric field effect in TiN films

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thinTiN films
- Electric field effect in ultra-thin TiN films
- Conclusion

Atomic Layer Deposition of TiN from TiCl₄ and NH₃

 $-TiCl + NH_3 \rightarrow -TiNH_2 + HCl$

Growth of ALD TiN monitored by in-situ SE

- (1): Incubation regime
- (2): Transient regime
 - + 2D growth
 - + 2D-3D transition
 - + Closure of 3D islands

(3): Linear regime: Film thickness increases linearly with ALD cycles.

By in-situ spectroscopic ellipsometry, the film thickness can be precisely controlled.

H. Van Bui et al., J. Electrochem. Soc. **158**, H214 (2011)

H. Van Bui et al., ECS J. Solid State Sci. Technol. 1, P285 (2012)

Atomic Layer Deposition (ALD) of TiN

- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thinTiN films
- Electric field effect in ultra-thin TiN films
- Conclusion

Electrical properties of thin TiN films

Test structure

Linear I-V characteristics → an evidence of continuous films

Resistivity of TiN films

$$R = \frac{V}{I} = \rho \frac{L}{tW} + 2R_c = R_{sh} \frac{1}{W} L + 2R_c$$

H. Van Bui et al., Appl. Surf. Sci. 269, 45 (2013)

TCR of ultra-thin TiN films

TCR and Resistivity of TiN films - a summary

- Resistivity increases rapidly with decreasing film thickness.
- TCR values change sign at a thickness of ~2.5 nm

Note: TiN films are continuous → TiN films below 2.5 nm are non-metallic

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thinTiN films
- Electric field effect in ultra-thin TiN films
- Conclusion

Electric field effect in thin TiN films (I)

 I_0 : current at $V_g = 0$ I_{V+}/I_{V-} : Current at maximum positive/negative gate voltage Small field effect is caused by the change of local carrier density and surface scattering.

Electric field effect in thin TiN films (II)

Electric field effect in thin TiN films (III)

(1) Electrons-only(2)-(3) Electrons and holes(4) Holes-only

Coexistence of electrons and holes→ Semimetallic state

Thickness and temperature dependence of FE

- The field effect increases remarkably with decreasing film thickness.
- The field effect is temperature independent.

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thinTiN films
- Electric field effect in ultra-thin TiN films
- Conclusion

Conclusion

- Resistivity, TCR and electric field effect in ultra-thin ALD TiN films were studied.
- TiN films below 2.5 nm exhibit semimetallic properties: there coexists electrons and holes
- Appreciable field-induced current up to 11% in ultra-thin TiN film was obtained. The field effect is temperature independent.

Acknowledgement

- Prof. Wilfed van der Wiel
- Prof. Hans Hilgenkamp
- Prof. Dirk Gravesteijn
- Dr. Elia Strambini
 (All at MESA+, Utwente)

Thank you for your attention!

Nieuwe technologie mogelijk maken

INSTITUTE FOR NANOTECHNOLOGY