Electric Field Effect in Ultra-thin TiN Films

Hao Van Bui*, Alexey Kovalgin, Jurriaan Schmitz and Rob Wolters

MESA+ Institute for Nanotechnology
University of Twente, the Netherlands

(* also from Department of Physics, Quy Nhon University, Vietnam)

Ref.: H. Van Bui et al., APL, 103, 051094 (2013)
Introduction

- Electric field effect: ability to modulate the electronic transport properties of a material by an external electric field.
 → field effect transistors (FETs)

![Conventional FET diagram]

\[V_g \geq V_T > 0 \]

Conventional FET
Introduction

Carbon nanotubes

graphene

Molybdenum disulfide
Introduction

- Most desirable materials should exhibit conductance close to that of a metal → electric field effect in metals?
- Metals: high electron concentration prevents the penetration of electric field (screening effect)
 → Induced surface charge is negligible compared to bulk carrier concentration.
 → To observe field effect in metals: film thickness ~ screening length.

- We use atomic layer deposition to grow ultra-thin continuous TiN films → electric field effect in TiN films
Outline

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thin TiN films
- Electric field effect in ultra-thin TiN films
- Conclusion
Atomic Layer Deposition of TiN from TiCl$_4$ and NH$_3$

$-OH + TiCl_4 \rightarrow -OTiCl_3 + HCl$

$-TiCl + NH_3 \rightarrow -TiNH_2 + HCl$
Growth of ALD TiN monitored by *in-situ* SE

(1): Incubation regime
(2): Transient regime
 + 2D growth
 + 2D-3D transition
 + Closure of 3D islands

(3): Linear regime: Film thickness increases linearly with ALD cycles.

By *in-situ* spectroscopic ellipsometry, the film thickness can be precisely controlled.

Outline

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thin TiN films
- Electric field effect in ultra-thin TiN films
- Conclusion
Electrical properties of thin TiN films

- Test structure

- Linear I-V characteristics ➔ an evidence of continuous films
Resistivity of TiN films

\[R = \frac{V}{I} = \rho \frac{L}{tW} + 2R_c = R_{sh} \frac{1}{W} L + 2R_c \]

TCR of ultra-thin TiN films

4.5 nm

Temperature (°C)

Resistance (Ω)

4.5 nm TiN
TCR = 2.37 \times 10^{-4} (K^{-1})

0.65 nm

Temperature (°C)

Resistance (Ω)

0.65 nm TiN
TCR = -2.54 \times 10^{-3} (K^{-1})

2.2 nm

Temperature (°C)

Resistance (Ω)

2.2 nm TiN
TCR = -1.33 \times 10^{-4} (K^{-1})

2.5 nm

Temperature (°C)

Resistance (Ω)

2.5 nm TiN
TCR and Resistivity of TiN films - a summary

- Resistivity increases rapidly with decreasing film thickness.
- TCR values change sign at a thickness of ~2.5 nm

Note: TiN films are continuous \(\rightarrow\) TiN films below 2.5 nm are non-metallic
Outline

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thin TiN films
- Electric field effect in ultra-thin TiN films
- Conclusion
Electric field effect in thin TiN films (I)

\[\frac{\Delta I}{2I_0} = \frac{I_{V_+} - I_{V_-}}{2I_0} \]

- \(I_0 \): current at \(V_g = 0 \)
- \(I_{V_+}/I_{V_-} \): Current at maximum positive/negative gate voltage

Small field effect is caused by the change of local carrier density and surface scattering.
Electric field effect in thin TiN films (II)

(a) 2.2 nm
(b) 1.8 nm
(c) 1.2 nm
(d) 0.85 nm

- Drain current (A) vs. Gate voltage (V)

- (a) 0.089%
- (b) 0.23%
- (c) 1.5%
- (d) 2.8%

UNIVERSITY OF TWENTE.
Electric field effect in thin TiN films (III)

(1) Electrons-only
(2)-(3) Electrons and holes
(4) Holes-only

Coexistence of electrons and holes \rightarrow Semimetallic state

$$\frac{\Delta I}{2I_0} = 11\%$$
Thickness and temperature dependence of FE

- The field effect increases remarkably with decreasing film thickness.
- The field effect is temperature independent.
Outline

- Atomic Layer Deposition (ALD) of TiN
- Resistivity and Temperature Coefficient of Resistance (TCR) of ultra-thin TiN films
- Electric field effect in ultra-thin TiN films
- Conclusion
Conclusion

- Resistivity, TCR and electric field effect in ultra-thin ALD TiN films were studied.

- TiN films below 2.5 nm exhibit semimetallic properties: there co-exists electrons and holes

- Applicable field-induced current up to 11% in ultra-thin TiN film was obtained. The field effect is temperature independent.
Acknowledgement

- Prof. Wilfed van der Wiel
- Prof. Hans Hilgenkamp
- Prof. Dirk Gravesteijn
- Dr. Elia Strambini
(All at MESA+, Utwente)

Thank you for your attention!