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Single Molecule Spectroscopy I 
« Detection of laser induced fluorescence in small sample volume in which at 
most a single molecule can be excited by the incoming laser » 
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emission 

Saturation Diagram 

Spectral properties 



Single Molecule Spectroscopy II 
Stark effect Temperature Dependence  

Work at al low temperature Extremely local and sensitive probe 

Typical frequency shift  in a 
 solid state matrix  

1MHz for a field of 1 kV/cm 



Single Molecule Spectroscopy III 
Microwave irradiated molecules  



Detecting Nanotubes Displacement 

Using Zeeman splitting of NV centers recent experiments:  
O. Arcizet et al., Nature Physics 7, 879 (2011), S. Kolkowitz et al., Science , 335, 1603 (2012) 
 [see also proposal by P. Rabl et al Phys. Rev. B 79, 041302(R) (2009)] 



Coupling constant 
Electric field limited by the 
threshold of field Emission 

Typical Electric field gradient 

Detailed numerical calculations confirm these 
rough estimates (V=10mV, d=1nm) 

Coupling constant: shift of the fluorescent resonance per m of CNT displacement   

Strong Coupling 

This is 3-4 orders of magnitude larger than the magnetic coupling in NV centers 

Présentateur
Commentaires de présentation
Lambda for f_m=5 MHz     4 10^8 Hz



Hamiltonian 

Molecule: 

Laser: 

Mechanical Oscillator: 

Coupling of the Molecule and of the Oscillator to the environnement 
leading to a width Γ and a damping ϒ 

Coupling Hamiltonial: 



Comparison of frequency scales 
For a SW carbon 
nanotube of 1 μm 

Ultra strong coupling since  



Bloch Equations description 

Laser-Molecule coupling constant 

Classical Thermal 
fluctuations  

The  fluorescence signal is given by  



Weak coupling to the laser 

After averaging over the fluctuations of x for  

For thermal motion: 

Comparison with coherent drive: 



Side bands 

The ratio of the peak intensity gives direct access to the fluctuation intensity 



Practicals  



Real Time position measurement 

Adiabatic limit 

Response to displacement: 



Typical Sensitivity 



Second order correlation function 

PT1 

PT
2 

molecule 

Evaluation by Quantum Regression Theorem 

At lowest order in  



Non-interacting case 



Long time behavior 



Fast and Slow oscillator limit for large t-t’ 



General result for small Ϛ 



Back action 



In order to estimate back-action we use linear  back-action theory (quantum noise) 
A.A. Clerk, Phys. Rev. B 70, 245306 (2004); A.A. Clerk and S. Bennett, New J. Phys. 7, 238 (2005); 



Cooling 
I. Wilson-Rae et al, PRL 2003, I. Martin et al, PRB 2004, F. Marquardt et al.,  PRL 2007; I. Wilson-Rae et al, 

PRL 2007, P. Rabl, PRB 2010, … 



Different regimes 



Conclusions 

• Single Molecule Spectroscopy can be used to 
detect and manipulate suspended carbon 
nanotubes 

• Strong coupling can be achieved with strong 
back action 

Perspectives 
• Dynamics in the strong coupling regime 

(ongoing work) 
• Experiments 
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