

Supercollision cooling of electrons in graphene

Meso-group : A.C. Betz, E. Pallecchi, S-H. Jhang, G. Fève, J-M. Berroir, B. Plaçais Optic-group : D. Drunel, F. Vialla, C. Voisin, R. Ferreira

> Laboratoire Pierre Aigrain – Ecole Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05 France www.lpa.ens.fr

> > APHENE FLAGSH

lpa v

Why studying cooling processes ?

1. Hot carriers affect resolution detectors

2. Can be useful as bolometers

3. Graphene \rightarrow lab for electron-phonon physics

4. Acoustic phonon bottleneck

Acoustic phonon bottleneck

photo-current or pump-probe

N.M. Gabor et al., Science 334, 648 (2011)
S. Winnerl et al. PRL 107, 237401 (2011)
J. Yan et al., nnano 7, 472 (2012)
M. Freitag et al., nphoto 453 (2013)
M.W. Graham et al., nphys 19, 103 (2013)

noise thermometry (this work)

F. Wu et al., APL 97, 262115 (2010) (nanotube)
A. Fay et al., PRB 84, 245427 (2011) (Bilayer)
K.C. Fong, K. C. Schwab, PRX, 031006 (2012)
A.C. Betz et al., PRL 109, 056805 (2012)
A.C. Betz, et al. nphys 19, 109 (2013)

noise thermometry

noise thermometry

1. Introduction : the Bloch-Grüneisen phonon resistivity

- 2. Relaxation by acoustic phonons Betz et al., PRL 109, 056805 (2012).
- 3. Disorder assisted relaxation : supercollisions Betz et al., Nature Physics 9, 109 (2013)

Phonon resistivity

Phonon resistivity in (2D) graphene

Nanophysics, Quy-Nhon, 7/8/2013

The Bloch-Grüneisen crossover

(Efetov-Kim PRL2010)

Outline

1. Introduction : the Bloch-Grüneisen phonon resistivity

2. Relaxation by acoustic phonons

Betz et al., PRL 109, 056805 (2012).

3. Disorder assisted relaxation : supercollisions Betz et al., Nature Physics 9, 109 (2013)

lpa

acoustic-phonon cooling (theory)

(Viljas-Heikkila PRB 2010)

AC-phonon cooling (principles)

Nanophysics, Quy-Nhon, 7/8/2013

AC-phonon cooling (practicals)

Nanophysics, Quy-Nhon, 7/8/2013

Device fabrication

Gr/BN (diffusive)

Mitutoyo

Wedging transfer: polymer CAB & water

Schneider et al. Nano Letters **2010** 10 (5) Nanophysics, Quy-Nhon, 7/8/2013

CVD (doped and diffusive)

CVD grown on Cu (A. Madouri, LPN)

lpa

Noise thermometry

Relaxation by « cold AC phonons »

Agreement with T⁴ dependence for 2D acoustic phonons

> $\Sigma^* = 0.5-2 \text{ mW/m}^2\text{K}^4$ is disorder dependent and $\Sigma^* < \Sigma = 10 \text{mW/m}^2\text{K}^4$

Outline

1. Introduction : the Bloch-Grüneisen phonon resistivity

2. Relaxation by acoustic phonons

Betz et al., PRL 109, 056805 (2012).

3. Disorder assisted relaxation : supercollisions Betz et al., Nature Physics 9, 109 (2013)

Crossing the Bloch-Gruneisen temperature

Relaxation at the Charge Neutrality Point

We measure $P\alpha T^3$ instead of $P\alpha T$

lpa

Supercollisions

Ordinary collision

 $2 k_F < q_{max}$

$$P(T \ge \theta_{BG}) = A \Delta T^3 = \frac{1}{kl} \times \frac{9.62D^2 k_B^3 |\mu|^2}{8\pi^2 \rho_m \hbar^5 s^2 v_F^4} (T_e^3 - T_{ph}^3)$$

Theory : Song-Reizer-Levitov, PRL 109, 106602 (2012)

supercollisions

Theory : Song-Reizer-Levitov, PRL 109, 106602 (2012)

supercollisions

Effect of disorder on relaxation

Conclusion

"ordinary collisions" rule momentum

"Supercollisions" rule energy

Supercollision in the photocurrent (Graham et al. Nat Phys. 2013)

- Ordinary phonon collisions observed at low temp (T⁴ law)
- Phonon bottelneck (T law) is overcomed by supercollisions (T³ law)
- Need for a theoretical approach for disorder
- Hot electrons useful for photodetection (from UV to THz) C. McKitterick et al., JAP 2013 and arXiv:1307.5012v1

Graphene teams at LPA-ENS

Mesoscopic physics team

PhD Andreas Betz (Hitachi Cambridge)

Dr.Sung-Ho Jhang (Assist-Prof. Seoul) Emiliano Pallecchi (Assist-Prof, IEMN) Jean-Marc Berroir

Gwendal Fève

Bernard Plaçais

Coherent and Non Linear Optics team

post-doc positions at ENS-LPA !!!!

PhD Fabien Viala

Christophe Voisin

Robson Ferreira