

Transport properties of helical Tomonaga Luttinger liquids

IXth Rencontres du Vietnam Nanophysics: from fundamentals to applications

August 4-10, 2013 Quy-Nhon, Vietnam

Jan C. Budich (Uni Stockholm) François Crépin (Uni Würzburg) Fabrizio Dolcini (PolyTech Torino) Chaoxing Liu (Penn State Uni) Thore Posske (Uni Würzburg) Patrik Recher (TU Braunschweig)

Björn Trauzettel

Source of backscattering?

Quantum

well

channel with down-spin charge carriers

Spin detector

Qi & Zhang Phys Today 2010

Spin detector

Qi & Zhang Phys Today 2010

Spin detector

Qi & Zhang Phys Today 2010

Outline

- Phonon-induced backscattering in helical edge states (2T)
- RG analysis for scattering off a Rashba impurity in a helical liquid (2T)
- Kondo screening cloud of two helical liquids (4T)
- Parity measurement in topological Josephson junctions (0T)

System

electron reservoirs

single impurity

System & Hamiltonian

$$\Psi = \left(\Psi_{\scriptscriptstyle R\uparrow}, \Psi_{\scriptscriptstyle L\downarrow} \right) = \left(\Psi_{\scriptscriptstyle +}, \Psi_{\scriptscriptstyle -} \right)$$

$$\begin{split} H &= H_{hl} + H_{p} + H_{ep} + H_{R} \\ H_{hl} &= \int dx \Psi^{\dagger} \left(x \right) p \sigma_{z} \Psi \left(x \right) \\ H_{p} &= \frac{1}{2} \int dx \Big[\left(\Pi_{d} \left(x \right) \right)^{2} + c^{2} \left(\partial_{x} d \left(x \right) \right)^{2} \Big] \\ H_{ep} &= \lambda \int dx \Psi^{\dagger} \left(x \right) \sigma_{0} \Psi \left(x \right) \partial_{x} d \left(x \right) \\ H_{R} &= \frac{1}{2} \int dx \Psi^{\dagger} \left(x \right) \Big(\Big\{ \alpha_{1} \left(x \right), p \Big\} + \Big\{ \alpha_{3} \left(x \right), p^{3} \Big\} \Big) \sigma_{y} \Psi \left(x \right) \end{split}$$

No backscattering: 1 term

No backscattering: 1 term

How about the \Box_3 -term?

 $M_{_{i\!f}} = rac{\lambda^2 c}{16\pi} ilde{lpha}_3^2 \left(q_{_{ph}} + p_{_f}^- - p_{_i}^+
ight) \left| q_{_{ph}}
ight|^5$

How about the \Box_3 -term?

$$M_{if} = \frac{\lambda^2 c}{16\pi} \tilde{\alpha}_3^2 \left(q_{ph} + p_f^- - p_i^+ \right) \left| q_{ph} \right|^5$$

Fermi's golden rule calculation

$$I_{\scriptscriptstyle BS} = 2\pi e \int dp_i^+ \int dp_f^- \int dq_{\scriptscriptstyle ph} \left[f^+ \left(\varepsilon_i^+ \right) \left(1 - f^- \left(\varepsilon_f^- \right) \right) \left| M_{_{i\!f}} \right|^2 \delta \left(\varepsilon_i^+ - \varepsilon_f^- - \omega_{_{ph}} \right) \right]$$

$$I_{\scriptscriptstyle BS} = \frac{\alpha_{\scriptscriptstyle 3}^2 \lambda^2 e}{672 \pi^2 c^5} V^7$$

Budich, Dolcini, Recher & BT PRL 2012

Presence of ee interactions

calculation of average current:

$$I\left(x,t\right) = \frac{e}{\sqrt{\pi}} \partial_t \left\langle \varphi\left(x,t\right) \right\rangle$$

on basis of generating functional:

Ш

$$Z[J] = \int D(\varphi, \theta, d) e^{iS_0 - i\int_C H_R + i\frac{e}{\sqrt{\pi}}E^T \sigma_3 \varphi + \frac{i}{\sqrt{2}}J^T \varphi}$$

along Keldysh contour
$$\Box \quad I = \frac{e^2}{h}V \quad \text{up to second order in } \Box_1$$

up to second order in \Box_1

Take home messages

- I₁-Rashba impurity does not lead to inelastic backscattering (in the presence of a simple phonon bath) at quadratic order
- holds in the presence and the absence of ee interactions in the helical liquid
- \Box_3 -Rashba impurity term can lead to inelastic backscattering at finite voltage or temperature.

Outline

- Phonon-induced backscattering in helical edge states (2T)
- RG analysis for scattering off a Rashba impurity in a helical liquid (2T)
- Kondo screening cloud of two helical liquids (4T)
- Parity measurement in topological Josephson junctions (**0T**)

"Simpler" Hamiltonian

$$\mu_{\uparrow}$$
 μ_{\downarrow}

$$\begin{split} H &= H_{_{0}} + H_{_{I}} + H_{_{R}} \\ H_{_{0}} &= \int dx \sum_{\eta=\pm} \Psi_{\eta}^{\dagger} \left(x \right) \left(-i\eta v_{_{F}} \partial_{_{x}} - E_{_{F}} \right) \Psi_{\eta} \left(x \right) \\ H_{_{I}} &= \int dx \int dx' \Psi_{_{+}}^{\dagger} \left(x \right) \Psi_{_{-}}^{\dagger} \left(x' \right) g_{_{2}} \left(x - x' \right) \Psi_{_{-}} \left(x' \right) \Psi_{_{+}} \left(x \right) \\ H_{_{R}} &= \int dx \alpha \left(x \right) \left[\left(\partial_{_{x}} \Psi_{_{+}}^{\dagger} \right) \Psi_{_{-}} - \Psi_{_{+}}^{\dagger} \left(\partial_{_{x}} \Psi_{_{-}} \right) \right] \left(x \right) + \text{H.c.} \end{split}$$

motivation: Ström, Johannesson & Japaridze PRL 2010

Generation of 2p backscattering?

$$\begin{split} H &= H_{_{0}} + H_{_{I}} + H_{_{R}} \\ H_{_{0}} &= \int dx \sum_{\eta=\pm} \Psi_{\eta}^{\dagger} \left(x \right) \left(-i\eta v_{_{F}} \partial_{_{x}} - E_{_{F}} \right) \Psi_{\eta} \left(x \right) \\ H_{_{I}} &= \int dx \int dx' \Psi_{_{+}}^{\dagger} \left(x \right) \Psi_{_{-}}^{\dagger} \left(x' \right) g_{_{2}} \left(x - x' \right) \Psi_{_{-}} \left(x' \right) \Psi_{_{+}} \left(x \right) \\ H_{_{R}} &= \int dx \alpha \left(x \right) \left[\left(\partial_{_{x}} \Psi_{_{+}}^{\dagger} \right) \Psi_{_{-}} - \Psi_{_{+}}^{\dagger} \left(\partial_{_{x}} \Psi_{_{-}} \right) \right] \left(x \right) + \text{H.c.} \end{split}$$

Question: How is (inelastic) two-particle backscattering generated by this Hamiltonian?

$$H^{\scriptscriptstyle in}_{_{2p}} = \gamma_{_{2p}} \int dx \Big[\Big(\partial_{_x} \Psi^{\dagger}_{_+} \Big) \Psi^{\dagger}_{_+} \Big(\partial_{_x} \Psi^{}_{_-} \Big) \Psi^{}_{_-} \Big] \Big(x^{}_{_0} \Big) + \mathrm{H.c.}$$

RG for interacting fermions

Partition function:

$$Z = \int D\Psi_{\pm}^* D\Psi_{\pm} e^{-S}$$

integrate out fields on the momentum shell:

$$\Lambda \left/ \left(1 + dl \right) < v_{_{F}} \left| \eta k - k_{_{F}} \right| < \Lambda$$

RG for interacting fermions

Partition function:

$$Z = \int D\Psi_{\pm}^* D\Psi_{\pm} e^{-S}$$

integrate out fields on the momentum shell:

$$\Lambda \left/ \left(1 + dl \right) < v_{_{F}} \left| \eta k - k_{_{F}} \right| < \Lambda$$

flow equations:

$$\begin{split} \frac{d\gamma_{_{2p}}}{dl} &= -3\gamma_{_{2p}}\left(l\right) + \frac{\alpha\left(l\right)^2}{v_{_F}\Lambda} \frac{g_{_2}}{2\pi v_{_F}} \\ \frac{d\alpha}{dl} &= -\alpha\left(l\right) \\ \hline \gamma_{_{2p}}\left(l=0\right) = 0 \end{split}$$

Next: Bosonization

$$H_{_{hl}} = H_{_0} + H_{_I} = \frac{v}{2\pi} \int dx \left[K \left(\partial_{_x} \theta \right)^2 + \frac{1}{K} \left(\partial_{_x} \phi \right)^2 \right]$$

with bosonization identity:

$$\Psi_{\pm}\left(x\right) = \frac{\kappa_{\pm}}{\sqrt{2\pi a}} e^{\pm ik_F x} e^{-i\left(\pm\phi-\theta\right)}$$

and bosonized Rashba Hamiltonian:

$$H_{\scriptscriptstyle R} = i\kappa_{\scriptscriptstyle +}\kappa_{\scriptscriptstyle -}\int dx \frac{\alpha\left(x\right)}{\pi a} \left(\frac{2\pi a}{L}\right)^{\scriptscriptstyle K}: \partial_{\scriptscriptstyle x}\theta\left(x\right) \left(e^{-i2\phi\left(x\right)}e^{i2k_{\scriptscriptstyle F}x} + e^{i2\phi\left(x\right)}e^{-i2k_{\scriptscriptstyle F}x}\right):$$

Real space RG

RG transformation in real space:

$$a \to a' = \left(1 + dl\right)a$$

$$Z = ext{Tr} \Big[e^{-eta H_0} \hat{U} ig(eta, 0 ig) \Big]$$

Important consequence in the absence of interactions:

$$\tilde{\gamma}_{2p}^{^{in}}\left(l\right)=0$$
 at any scale l

Surprising T-dependence

related work: Schmidt, Rachel, von Oppen & Glazman PRL 2012; Lezmy, Oreg & Berkooz PRB 2012

Outline

- Phonon-induced backscattering in helical edge states (2T)
- RG analysis for scattering off a Rashba impurity in a helical liquid (2T)
- Kondo screening cloud of two helical liquids (4T)
- Parity measurement in topological Josephson junctions (**0T**)

Setup

QSH system

Setup & Hamiltonian

$$\begin{split} H &= \sum_{a=t,b} H_a + H_{KXY,a} + H_{KZ,a} \\ H_a &= \frac{v_a}{2} \int dx \sum_{\sigma=\pm} \left(\partial_x \varphi_{a,\sigma} \left(x \right) \right)^2 \\ H_{KXY,a} &= \frac{1}{4\pi a_0} J_a^{\perp} \kappa_{a\uparrow}^{\dagger} \kappa_{a\downarrow} e^{i\sqrt{2K_a}\varphi_{a,+}} \tau^- + H.c. \\ H_{KZ,a} &= \frac{J_a^z}{8\pi} \sqrt{\frac{2}{K_a}} \partial_x \varphi_{a,+} \left(0 \right) \tau^z \end{split}$$

$$\tilde{\Psi}_{t,\downarrow} - \tilde{\mu}_t \qquad \tilde{\mu}_t \qquad \tilde{\Psi}_{t,\uparrow} \\ \tilde{\Psi}_{b,\uparrow} \qquad \tilde{\mu}_b \qquad \tilde{\Psi}_{b,\downarrow} \qquad \tilde{\Psi}_{b,\downarrow}$$

with non-equilibrium operator:

$$Y = \sum_{a=t,b} ilde{\mu}_a \left(ilde{N}_{a,\uparrow} - ilde{N}_{a,\downarrow}
ight)$$

Toulouse points

• Emery-Kivelson rotation

$$U=\exp\!\left(i\!\sum_{a}\lambda_{a,+}arphi_{a,+}\left(0
ight) au^{z}
ight)$$

• Transform bosonic fields

$$\phi_{_j} = \sum_{_{a,\sigma}} M_{_{j,a,\sigma}} \varphi_{_{a,\sigma}}$$

• Refermionize the Hamiltonian

two sets of Toulouse points

type A:
$$K_t + K_b = 2$$

type B: $K_t + K_b = 1$

Two (new) Toulouse points

Type A:

$$\begin{split} \tilde{H}_{A} = -\mu_{x}N_{2} - \mu_{s}N_{4} + H_{0} + \frac{1}{\sqrt{8\pi a_{0}}} \Big(J_{L}^{\perp}\Psi_{4}^{\dagger}\left(0\right)c + J_{R}^{\perp}\Psi_{4}\left(0\right)c + H.c.\Big) \\ \hline c = \kappa_{2}^{\dagger}\tau^{-} \end{split}$$

Type B:

$$\begin{split} \tilde{H}_{\scriptscriptstyle B} = - \left(\mu_{\scriptscriptstyle x} - \mu_{\scriptscriptstyle s} \right) N_{\scriptscriptstyle 2} - \left(\mu_{\scriptscriptstyle x} + \mu_{\scriptscriptstyle s} \right) N_{\scriptscriptstyle 4} + H_{\scriptscriptstyle 0} + \frac{1}{\sqrt{8\pi a_{\scriptscriptstyle 0}}} \left(J_{\scriptscriptstyle L}^{\scriptscriptstyle \perp} \Psi_{\scriptscriptstyle 4}^{\dagger} \left(0 \right) c + J_{\scriptscriptstyle R}^{\scriptscriptstyle \perp} \Psi_{\scriptscriptstyle 2}^{\dagger} \left(0 \right) c + H.c. \right) \\ \hline c = \tau^{-} \end{split}$$

$$\left| \mu_{_{x}} = ilde{\mu}_{_{t}} + ilde{\mu}_{_{b}}
ight| \qquad \left| \mu_{_{s}} = ilde{\mu}_{_{t}} - ilde{\mu}_{_{t}}
ight|$$

Analytical result: Kondo cloud

$$\chi_{a}^{z}\left(x,K_{t,b}\right) = \left\langle \delta\tilde{\rho}_{spin,a}\left(x\right)\delta\tau^{z}\right\rangle$$

Nagaoka Phys. Rev. 1965 Müller-Hartmann Z. Physik 1969

Type A:

$$\chi_{a}^{z}\left(x,K_{_{t,b}}
ight)=\chi_{a}^{z}\left(x,1
ight)$$

$$\left| \chi_{t}^{z} \left(x, K_{t,b} \right) = - \chi_{b}^{z} \left(x, K_{t,b} \right) \right|$$

Type B:

$$\chi_b^z\left(x, K_{t, b}\right) = \frac{1}{\sqrt{K_b}} \left[\left(-\sqrt{K_b} + \sqrt{K_t} \right) \chi_b^z\left(x, \frac{1}{2}\right) + \left(\sqrt{K_b} + \sqrt{K_t} \right) \chi_t^z\left(x, \frac{1}{2}\right) \right]$$

Non-equilibrium Kondo cloud

Outline

- Phonon-induced backscattering in helical edge states (2T)
- RG analysis for scattering off a Rashba impurity in a helical liquid (**2T**)
- Kondo screening cloud of two helical liquids (4T)
- Parity measurement in topological Josephson junctions (0T)

insprired by: Fu & Kane PRB 2009

JJ current vs. parity pumping

$$J_{\scriptscriptstyle{\sigma,\sigma'}}\left[\phi\right] = I_{\scriptscriptstyle{up,\sigma}}\left[\phi\right] + I_{\scriptscriptstyle{down,\sigma'}}\left[\phi\right]$$

total fermion parity number:

$$\Sigma = \sigma \cdot \sigma'$$

JJ current vs. parity pumping

$$J_{\scriptscriptstyle{\sigma,\sigma'}}\left[\phi\right] = I_{\scriptscriptstyle{up,\sigma}}\left[\phi\right] + I_{\scriptscriptstyle{down,\sigma'}}\left[\phi\right]$$

total fermion parity number:

$$\Sigma = \sigma \cdot \sigma'$$

$$\phi \to \phi + 2\pi$$

$$\phi_{2\pi}^{\prime} = \Phi_{\Phi_0}^{\prime} \text{ with } \Phi_0^{\prime} = h_{2e}^{\prime}$$

Fu & Kane PRB 2006

Short junction limit

$$\begin{split} I_{up,\pm} \left[\phi \right] &= I_{down,\pm} \left[\phi \right] = \pm I_c \sin \left(\frac{\phi}{2} \right) \\ I_c &= \frac{\Delta_0}{2} \end{split}$$

Short junction limit

$$I_{up,\pm} \left[\phi \right] = I_{down,\pm} \left[\phi \right] = \pm I_c \sin \left(\frac{\phi}{2} \right)$$

$$I_c = \frac{\Delta_0}{2}$$

odd parity:

even parity:

$$J_{\scriptscriptstyle +,-}\left[\phi\right] \!= J_{\scriptscriptstyle -,+}\left[\phi\right] \!= 0$$

$$J_{\scriptscriptstyle +,+}\left[\phi\right] = -J_{\scriptscriptstyle -,-}\left[\phi\right] = 2I_c \sin\left(\frac{\phi}{2} \right)$$

a parity detector

Long junction limit

twisted boundary conditions:

$$L \gg \xi = \bigvee_F / \Delta_0$$

$$\begin{aligned} \psi_{\scriptscriptstyle R,\uparrow}\left(x+2L,t\right) &= -e^{-i\phi}\psi_{\scriptscriptstyle R,\uparrow}\left(x,t\right) \\ \psi_{\scriptscriptstyle L,\downarrow}\left(x+2L,t\right) &= -e^{-i\phi}\psi_{\scriptscriptstyle L,\downarrow}\left(x,t\right) \\ \psi_{\scriptscriptstyle R,\uparrow}\left(x,t\right) &= -i\psi_{\scriptscriptstyle L,\downarrow}^{\dagger}\left(-x,t\right) \\ x \in \left[-L,L\right] \end{aligned}$$

Maslov, Stone, Goldbart & Loss PRB 1996

ABS spectrum:

Bosonization again

Klein factors

Bosonization again

$$\tilde{\phi}_{R}\left(x\right) = -\sum_{q>0} \sqrt{\frac{\pi}{Lq}} \left(e^{iqx}b_{R,q} + e^{-iqx}b_{R,q}^{\dagger}\right) e^{-aq/2}$$

Hamiltonian

$$H_{up} = \frac{v_{\scriptscriptstyle F} \pi}{2L} \left(\hat{N}_{\scriptscriptstyle R} - \frac{\pmb{\phi}}{2\pi} \right)^2 + v_{\scriptscriptstyle F} \sum_{q>0} q b^\dagger_{\scriptscriptstyle R,q} b_{\scriptscriptstyle R,q} \label{eq:Hupper}$$

$$H_{\scriptscriptstyle down} = \frac{v_{\scriptscriptstyle F} \pi}{2L} \left(\hat{N}_{\scriptscriptstyle L} + \frac{\pmb{\phi}}{2\pi} \right)^2 + v_{\scriptscriptstyle F} \sum_{q>0} q b^{\dagger}_{\scriptscriptstyle R,q} b_{\scriptscriptstyle R,q}$$

$$\phi \rightarrow \phi + 2\pi$$
 [] parity pumping

Josephson current

$$I_{_{up,\pm}}\left[\phi\right] = e\frac{v_{_F}}{L}\frac{\phi}{2\pi} - \frac{2e}{\hbar\beta}\partial_{_{\phi}}\ln\theta_{_{3_{2}}}\left[i\beta\frac{\hbar\pi v_{_F}}{2L}\frac{\phi}{\pi}, e^{-2\beta\frac{\hbar\pi v_{_F}}{L}}\right]$$

related work: Beenakker, Pikulin, Hyart, Schomerus & Dahlhaus PRL 2013

Take home messages

• Critical current:

$$\frac{2I_c}{I_c} \text{ even case}_{c} \text{ with } I_c = \frac{ev_F}{L}$$

• Phase dependence:

$$J[\phi] = J[\phi + 4\pi] \text{ even case}$$
$$J[\phi] = J[\phi + 2\pi] \text{ odd case}$$

parity detector

• Phase dependence could be modified by disorder

Summary

Budich, Dolcini, Recher & BT PRL 2012

Crépin, Budich, Dolcini, Recher & BT PRB 2012

Posske, Liu, Budich & BT PRL 2013

