Dipole-coupling a single-electron double quantum dot to a microwave resonator

<u>J. Basset</u>, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff

Quantum Device Lab Nanophysics Group

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Context and motivations

• Overall trend of coupling a Two Level System (TLS) or quantum bit to a resonant cavity

→ long distance exchange of quantum information, distant qubits entanglement,...

• Very well established in the

- Cold atoms community : cavity Quantum Electro-Dynamics (cavity QED)

- Superconducting qubit community : circuit Quantum Electro-Dynamics (circuit QED)

• Never realized using TLS made out of artificial atoms in semiconductor heterostructures with leads

Context and motivations

Interconnect the worlds of semiconductor and superconductor based quantum circuits

Circuit quantum electrodynamics

Potential benefits:

- Use electrons spins quantum bit \rightarrow low relaxation and dephasing rate
- Realize interfaces between different type of quantum systems

Context and motivations

First step: entanglement between a cavity and a q-bit ⇔ Coherent exchange of a single photon with a single q-bit = Vacuum Rabi Oscillations

Very challenging strong coupling regime necessary:	
Exchange rate = g mu	st be much higher than any other decay rates
$g/2\pi > 1/T_1$	 decay rate of the excited state (relaxation rate)
$g/2\pi > 1/T_{\phi}$	 dephasing rate
g/2π > κ/2π	 decay rate of the photon in the cavity

A very timely experiment....

Dephasing too high (GH2) compared to cot
 Is the number of electrons relevant?

Outline

1. Last-electron dedicated hybrid quantum device and circuit QED measurement setup

2. Dipole-coupling a single-electron to a microwave resonator

3. Single-electron vs many-electron decoherence

Outline

1. Last-electron dedicated hybrid quantum device and circuit QED measurement setup

2. Dipole-coupling a single-electron to a microwave resonator

3. Single-electron vs many-electron decoherence

Last-electron dedicated quantum device

- Superconducting overcoupled resonator (AI)
 v₀=6.7GHz
 Q~900
- Inductor at the center of the resonator

- 2D Gas in
 GaAs/GaAlAs
 90 nm below
 surface
- All gated DQD sample with a quantum point contact charge readout
- Heterodyne detection scheme of Amplitude and phase with FPGA

Hybrid Quantum Dot / Circuit QED Measurement Setup

~10 mK plate of cryostat

Pulse tube cooled cryostat

Outline

1. Last-electron dedicated hybrid quantum device and circuit QED measurement setup

2. Dipole-coupling a single-electron to a microwave resonator

3. Single-electron vs many-electron decoherence

Double Dot Charge state

Charge state measurements:

• Charging diagrams

Dot properties:

- Single-electron regime
- large charging energy E_c~3meV
- Mean level spacing $\Delta \epsilon^{110\mu eV=26GHz}$
- Strong cross-talk of PGs on tunnel coupling
- T_{el}~130mK

Double Dot Current and Resonator Transmission

Resonator transmission :

- Amplitude A
- Phase ϕ

Reference transmission spectra

Double Dot Current and Resonator Transmission

20

0

-20

-40

-60

0

6.757

6.757

6.754

 $v_{\rm B}$ [GHz]

6.754

้ v_B [GHz]

information

Double Dot Current and Resonator Transmission

0.002

6.754

0

-30

-60

(1)

6.757

 $\Delta \phi$

6.754

 $v_{_{\rm R}}$ [GHz]

ιv_M

v_R [GHz]

6.757

- Single-electron charge qubit: bonding and antibonding charge states of the delocalized electron
- Qubit energy depends on detuning δ ۲ and tunnel coupling t

Last electron: Resonator vs QPC readout

Microwave readout vs tunneling

- Changes in transmission amplitude and phase
 - → Amplitude : loss through the DQD

→ Phase : Dispersive shift due to the DQD

• Strong changes in phase behaviour depending on tunnel coupling (2t/h v_0)

Frey *et al.* PRL (2012)

➔ Determine tunneling

Frequency shift and linewidth broadening measurement

- Entire spectra acquisition along detuning δ + Lorentzian fit $\rightarrow \Delta v$ and $\kappa/2\pi$
- Acquired for different tunneling V_{CG} i.e. different tunneling t

Outline

1. Last-electron dedicated hybrid quantum device and circuit QED measurement setup

2. Dipole-coupling a single-electron to a microwave resonator

3. Single-electron vs many-electron decoherence

Jaynes-Cummings + Master equation

- Fixed parameters set by the experiment or according to literature:
 - ✓ Qubit/Resonator coupling: $g/2\pi=25$ MHz
 - ✓ Resonator frequency v_0 =6.75GHz
 - ✓ Relaxation rate: $\gamma_1^{b}/2\pi$ =100MHz
- Fitting parameters:
 - ✓ Tunnel coupling between dots 2t/h
 - ✓ Dephasing rate: $\gamma_{\phi}^{b}/2\pi$

Frequency shift and linewidth broadening analysis

Data simulation with Jaynes-Cummings Hamiltonian + q-bit relaxation + q-bit dephasing
 Markovian master equation approach (Alexandre Blais – Sherbrooke University)

Tunnel coupling extraction + comparison with charge detector

- Two methods are consistent
 - Tunnel coupling roughly depends exponentially with center gate voltage V_{CG}
 - ✓ More precise determination (x20) of 2t/h with microwave when 2t/h v_0 ~1

Dephasing: Single vs Many-electron

- Single electron DQD:
 - ✓ g/2π=25MHz
 - ✓ Dephasing increases at low tunnel coupling and ranges from 0.4GHz to 8GHz
- Many-electron DQD (~50 electrons in each dot):
 - ✓ g/2π=50MHz
 - ✓ Dephasing increases at low tunnel coupling and ranges from 1GHz to 17GHz
- Dephasing 2-3 orders of magnitude larger than coupling : $\gamma_{o}/2\pi >> g/2\pi = 25$ MHz

Possible sources of decoherence

Petersson *et al. PRL 105, 246804 (2010)* Exp: $\gamma_{\phi}/2\pi^{\sim}$ 100MHz Valente *et al.* PRB 82, 125302 (2010) Th: $\gamma_{o}/2\pi \sim 25$ MHz

Vorojtsov *et al. PRB 71, 205322 (2005)* Th: $\gamma_{\phi}/2\pi^{\sim}10\text{-}100\text{MHz}$

Itakura *et al. PRB 67, 195320 (2003), Abel et al. PRB 78, 201302 (2008),* Yurkevich *et al. PRB 81, 121305 (2010)* Th/Exp: MHz to GHz

Possible sources of decoherence

Petersson *et al. PRL 105, 246804 (2010)* Exp: $\gamma_{\phi}/2\pi^{\sim}$ 100MHz Valente *et al.* PRB 82, 125302 (2010) Th: $\gamma_{o}/2\pi \sim 25$ MHz

Vorojtsov *et al. PRB 71, 205322 (2005)* Th: $\gamma_{0}/2\pi^{-10-100}$ MHz

→ Our results are consistent with BCF:

Itakura et al. PRB 67, 195320 (2003), Abel et al. PRB 78, 201302 (2008), Yurkevich et al. PRB 81, 121305 (2010) Th/Exp: MHz to GHz

Strong detuning noise = Charge noise that changes the asymmetry of the qubit's double-well potential

Conclusions and perspectives

• Dipole-coupling a single-electron double quantum dot to a single photonic mode

J. Basset et al. arXiv 1304.5141 (2013)

Outlook

- Evaluate potential to investigate spin physics
 - Trif *et al.* PRB (2008), Nori *et al.* PRB (2012), Cottet *et al.* PRL (2010), Jin *et al.* PRL (2012)
 - ✓ Petersson et al. Nature (2012)

- Full counting statistics of photons emitted from the DQD to the resonator
 - ✓ Xu et al. arXiv (2013)
- Full counting statistics of electrons in a DQD in a controlled microwave environment
 - ✓ Lambert *et al.* PRB (2008)
- Non local electron transport properties with two S/DQDs coupled via the resonator
 - ✓ Bergenfeldt et al. PRB (2013), arXiv (2013), Lambert et al. EPL (2013)
 - ✓ Delbecq *et al.* Nat. Comm. (2013)