Dissipation in tunneling: fluctuation relations and Maxwell's demon

Jukka Pekola

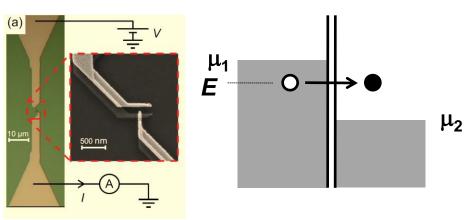
O. V. Lounasmaa Laboratory, Aalto University, Helsinki

- **1. Fluctuation relations in electronic circuits**
- 2. Maxwell's demon
- 3. Statistics of dissipation in qubits

Collaborators: Olli-Pentti Saira, Youngsoo Yoon, Mikko Möttönen, Paolo Solinas, Jonne Koski, Aki Kutvonen, Tapio Ala-Nissila

Dmitri Averin (SUNY), Alexander Shnirman (KIT), Takahiro Sagawa (Univ. Tokyo), Frank Hekking (Grenoble)

Dissipation in electron tunneling



Dissipation generated by a tunneling event in a junction biased at voltage *V*

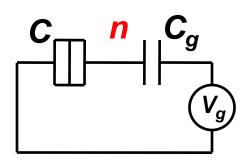
$$\Delta Q = (\mu_1 - E) + (E - \mu_2) = \mu_1 - \mu_2 = eV$$

 ΔQ is first distributed to the electron system, then typically to the lattice by electron-phonon scattering

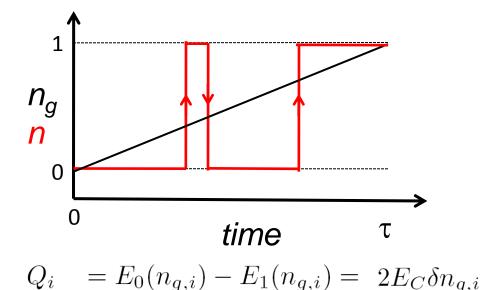
For average current *I* through the junction, the total average power dissipated is naturally

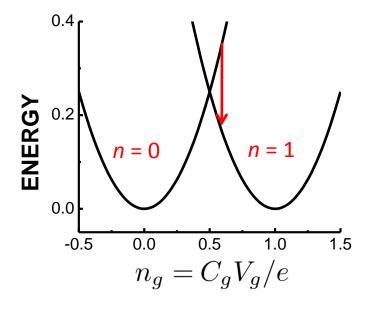
$$P = (I e) \Delta Q = IV$$

Dissipation in driven single-electron transitions



Single-electron box





The total dissipated heat in a ramp:

$$Q = 2E_C \sum_i \pm \delta n_{g,i}$$

D. Averin and J. P., EPL 96, 67004 (2011).

 $E_C = \frac{e^2}{2(C+C_c)} \quad \delta n_{g,i} = n_{g,i} - 1/2$

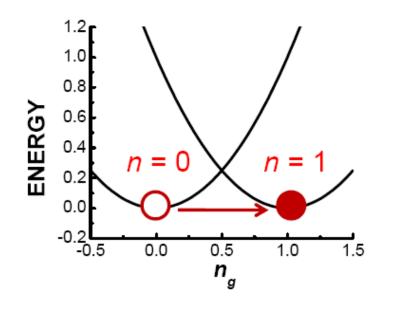
Work done by the gate

In general:

$$W_{\rm th} = \int dt \frac{\partial H}{\partial t} = \int dt \dot{\lambda} \frac{\partial H}{\partial \lambda}$$

For a SEB box: (for the gate sweep 0 -> 1)

$$W_{\rm th} - \Delta F = E_C \left(1 - n_i - n_f \right) + Q$$



When the system is in the preferred charge state at the ends of the sweep,

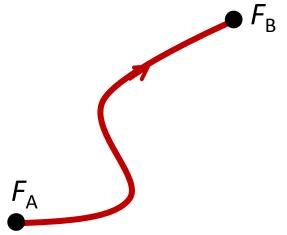
$$W_{\rm th} - \Delta F = Q$$

J. P. and O.-P. Saira, JLTP 169, 70 (2012)

Crooks and Jarzynski fluctuation relations

Systems **driven** by control parameter(s), starting in equilibrium

 $W_d = W - \Delta F$ "dissipated work"



C. Jarzynski 1997
$$\langle e^{-\beta W_d} \rangle = 1$$
 $\langle W \rangle \ge \Delta F$

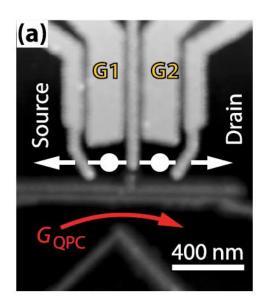
G. Crooks 1999

$$p_F(W_d)/p_R(-W_d) = e^{\beta W_d}$$

Fluctuation relations in steady-state

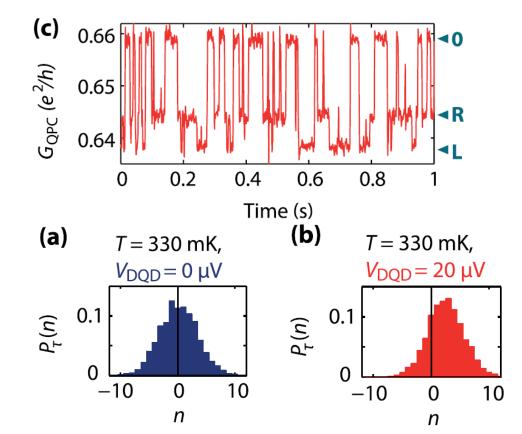
$$\frac{P_{\tau}(\Delta S)}{P_{\tau}(-\Delta S)} = e^{\Delta S/k_{\rm B}}$$

Double quantum dot circuit B. Küng et al., PRX **2**, 011001 (2012) Utsumi et al.



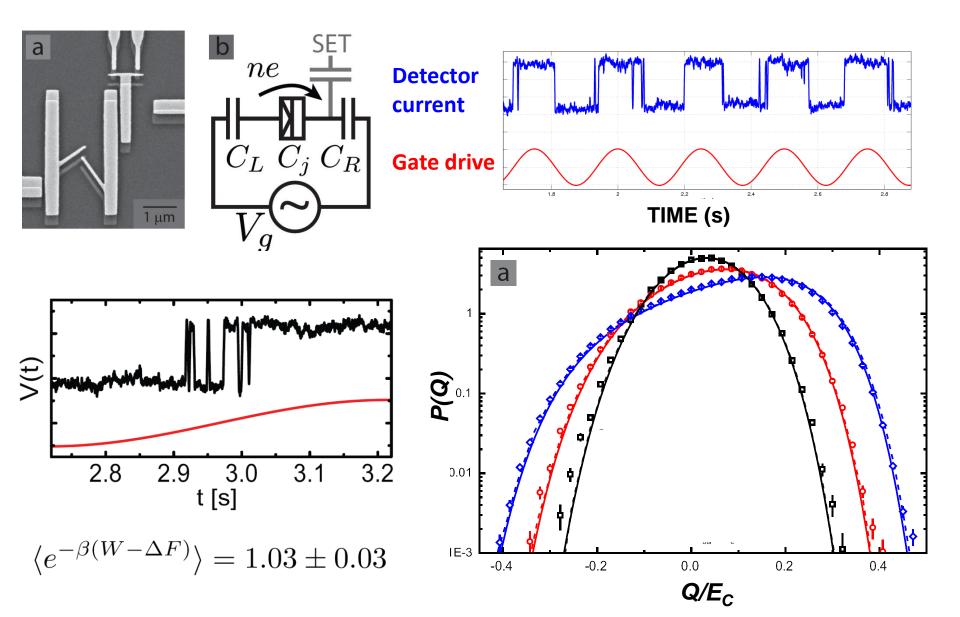
Evans et al. 1993

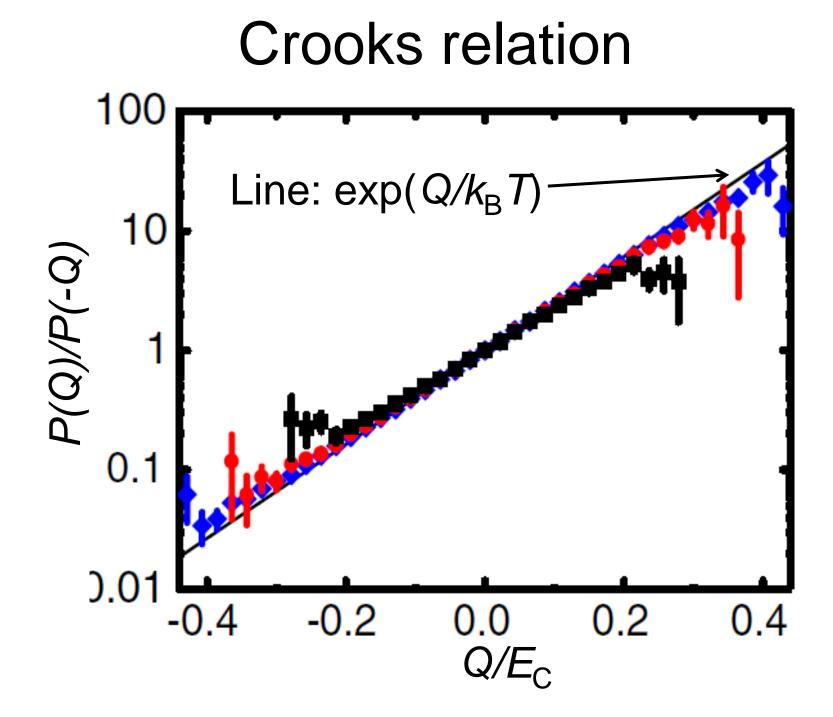
$$\frac{P_{\tau}(n)}{P_{\tau}(-n)} = e^{neV_{\rm DQD}/k_{\rm B}T}$$



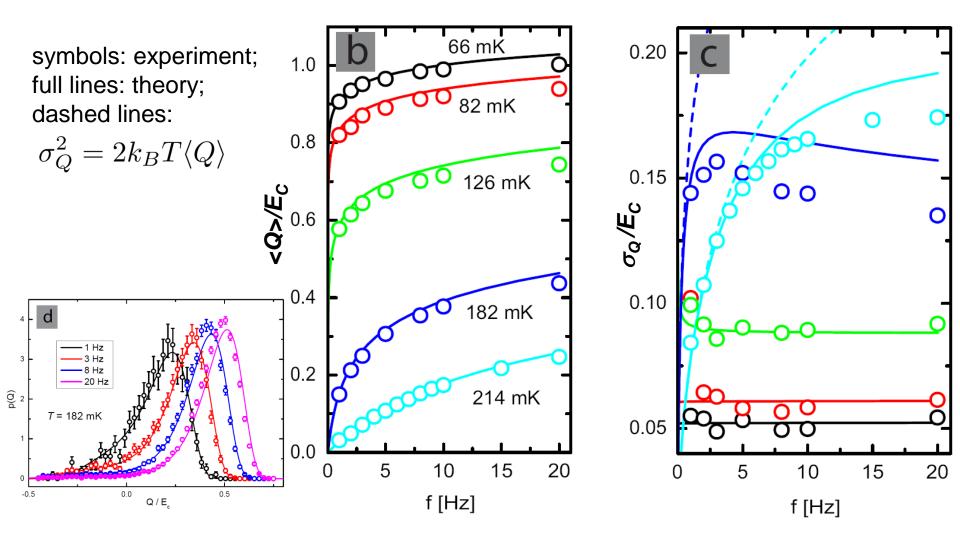
Experiment on a single-electron box

O.-P. Saira et al., PRL 109, 180601 (2012).





Measurements of the heat (= work) distribution at various frequencies and temperatures



Fluctuations under more general conditions (e.g. no single heat bath)

stochastic entropy $\Delta s_{tot} = \Delta s + \Delta s_m$

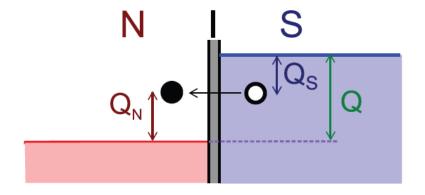
$$\Delta s_{\rm m} = \sum_{i} \mp \ln(\Gamma_{-}(\tau_{i})/\Gamma_{+}(\tau_{i}))$$

 $\langle e^{-\Delta s_{\mathrm{tot}}} \rangle = 1$ u

 $\Delta s = -\ln(\frac{p_1(t)}{p_0(0)})$

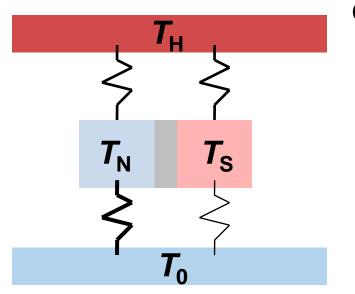
thermodynamic entropy

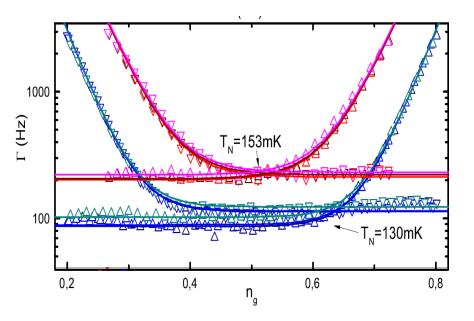
$$k_B \Delta S = Q_S / T_S + Q_N / T_N$$



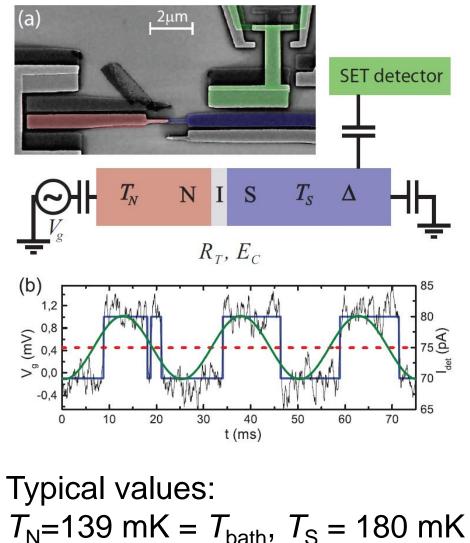
 $\langle e^{-\Delta S} \rangle = 1$

Experiments with un-equal temperatures

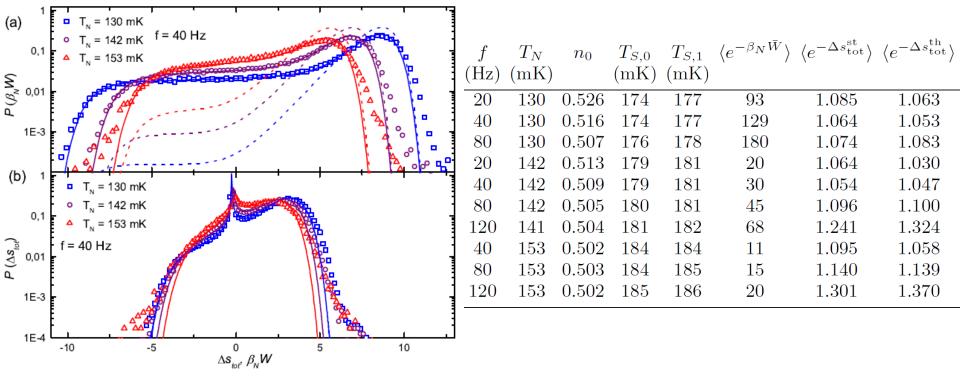




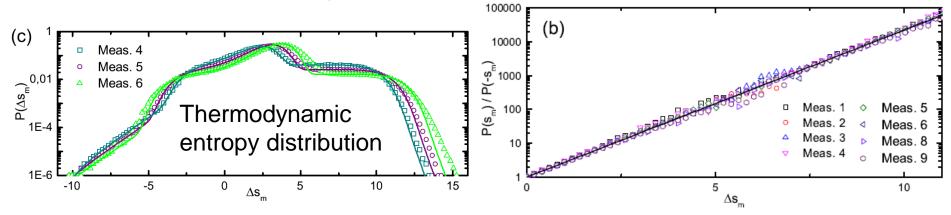
Coupling to two different baths



Experiments with un-equal temperatures

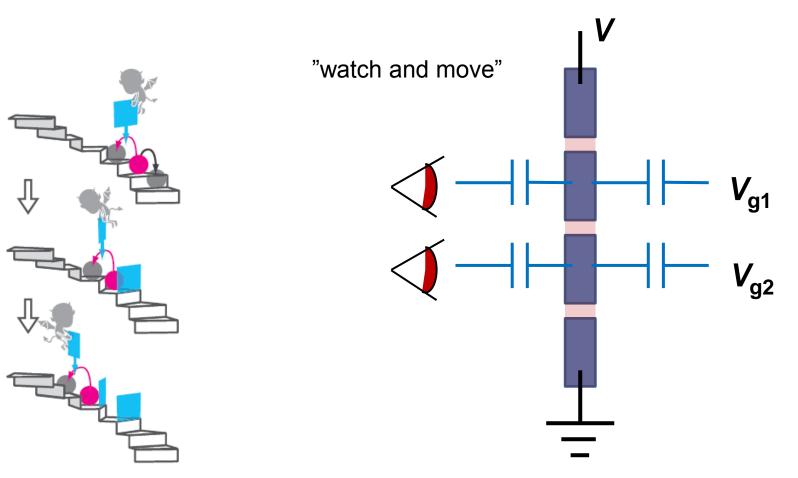


Work and (stochastic) entropy distributions



J.V. Koski et al., arXiv:1303.6405, Nature Physics (2013).

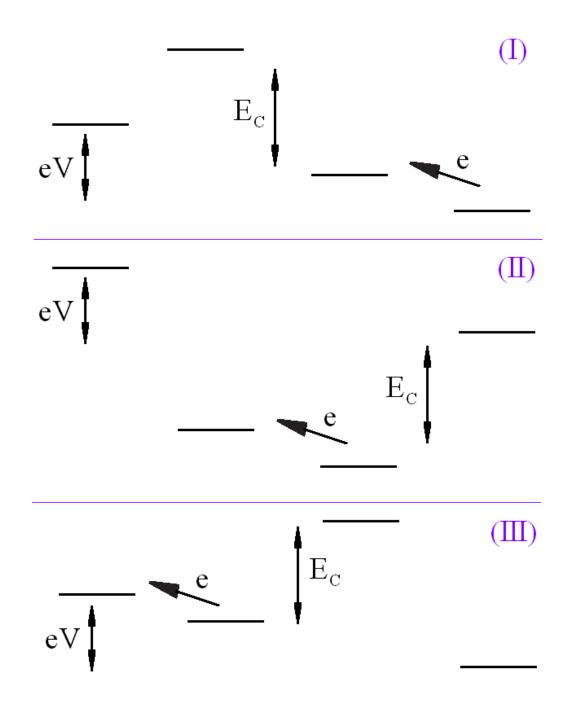
Electronic Maxwell's demon



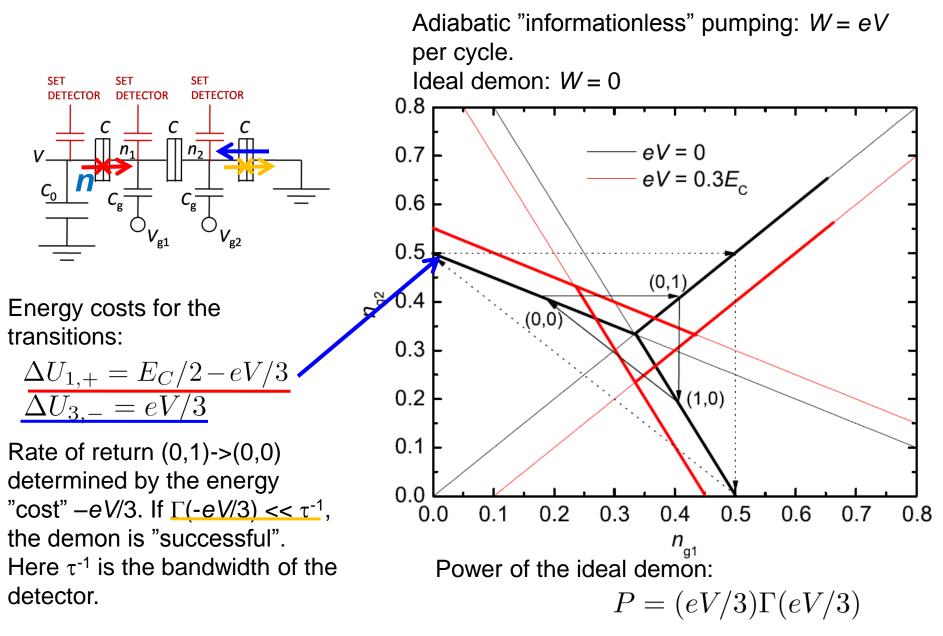
S. Toyabe et al., Nature Physics 2010

D. Averin, M. Mottonen, and J. P., PRB 84, 245448 (2011)

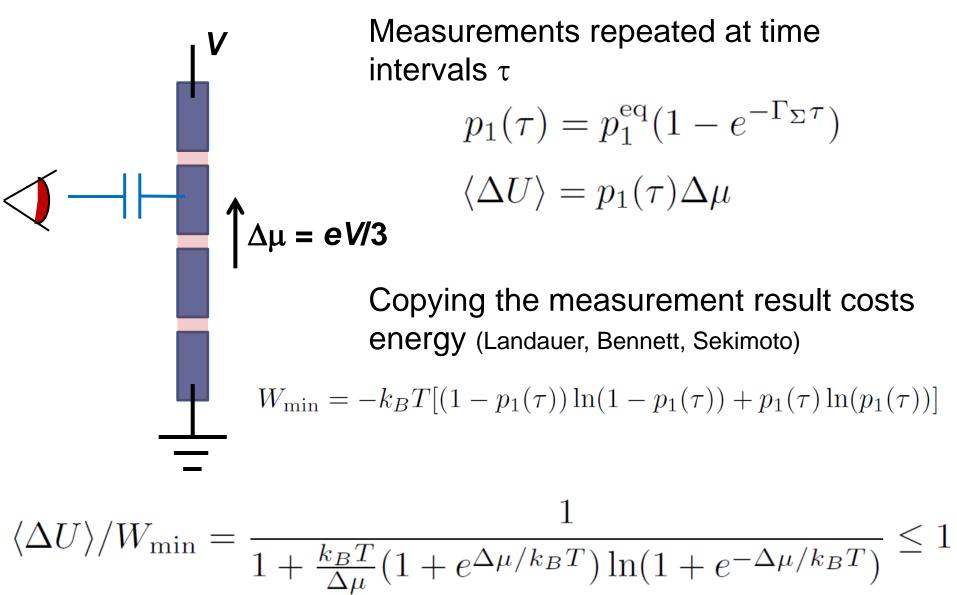
- G. Schaller et al., PRB 84, 085418 (2011)
- P. Strassberg et al., PRL 110, 040601 (2013).
- J. Bergli et al., arXiv:1306.2742



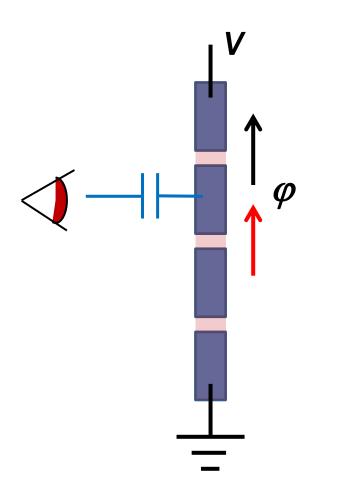
Demon strategy



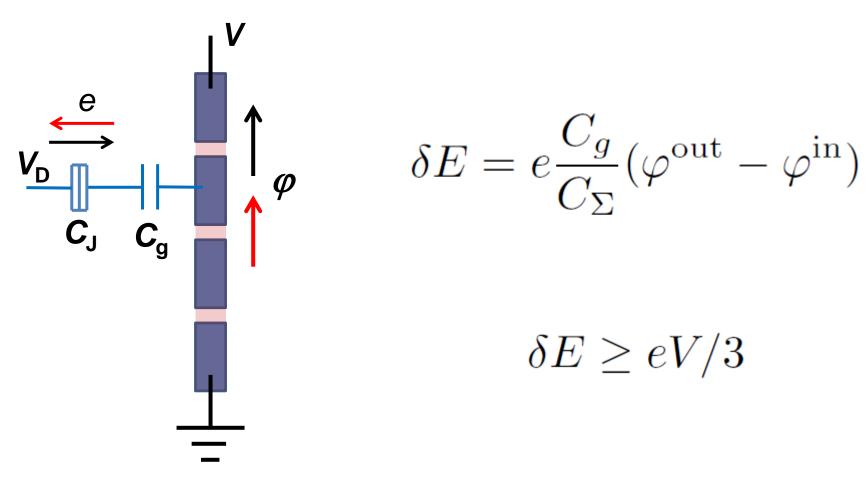
Information to energy in MD



Single-electron box as detector



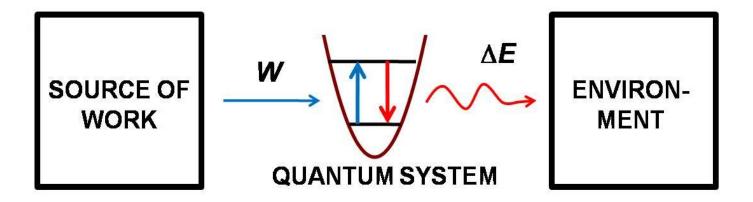
Single-electron box as detector



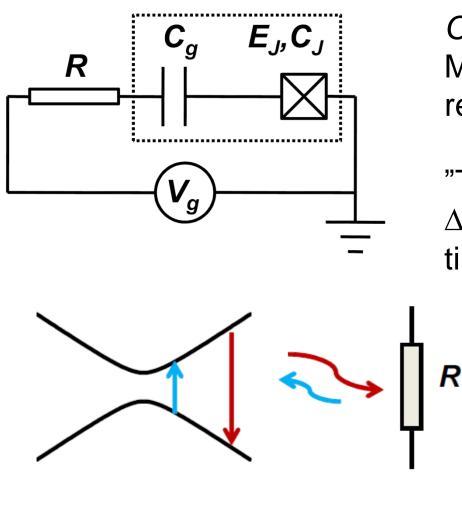
Distribution of dissipation in a quantum system: calorimetry

Work in a quantum system?

We propose to measure the photons exchanged between the system and environment

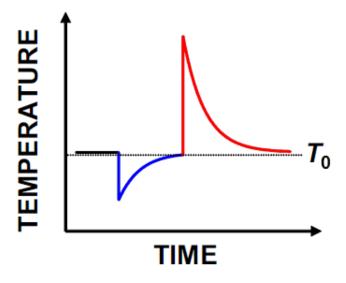


Measurement of work distribution of a two-level system (CPB)



Calorimetric measurement. Measure temperature of the resistor after relaxation.

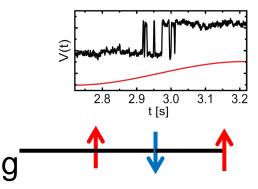
"Typical parameters": $\Delta T_R \sim 10$ mK over 0.01 - 1 ms time



Quantum jump approach for dissipation

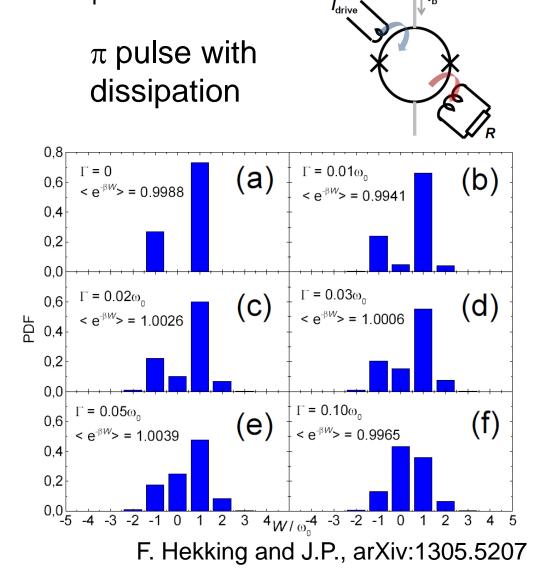
The jump method: Dalibard et al., PRL **68**, 580 (1992); Plenio and Knight, RMP **70**, 101 (1998). We apply the jump method to a driven qubit

Classical evolution



Quantum evolution

g



Summary

Distribution of dissipation measured and analyzed in a single-electron box via charge counting statistics. Possibility to realize Maxwell's demon

Work and dissipation in a quantum two-level system: a calorimetric measurement proposed for a superconducting qubit, quantum jump analysis briefly presented