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Johnson Noise 

John B. Johnson, Nature 119, 50 
(1927); Phys. Rev. 32, 97 (1928). 

Johnson-Nyquist (J-N) relation 

Harry Nyquist, Phys. Rev. 32, 110 
(1928). 

Deviations appear below 200 mK 

SI = 2kBTG

SV = 2kBTR

 

 

 

 

 

 

final part of the following section, we will show the comparative experiment between the 

measurements in 0 T and 0.2 T magnetic fields.  

3.  Results and discussions 

3.1.  Calibration of the noise measurement system 

The measured noise in a QPC is the sum of the 

thermal noise and the shot noise. At first, we calibrated the 

developed measurement system by measuring the thermal 

noise at the zero-bias state. Figure 2 shows the noise power 

of the QPC whose conductance G was set to 

heG 2
2 (transmission of the QPC: T = 1.0) and 

heG 2
22 u  (T = 2.0) at various temperatures. The noise 

power between 200 and 800 mK have a linear dependence 

on the system temperature. From the slopes of the linear 

fitting functions, we obtain both the impedance Z and the 

square of the gain A of the measurement system, as the 

measured noise power (P0) is represented as the following 

function, 

gate
VS and

gate
IS  are the voltage- and current- gate noises of the amplifier, respectively, kB is the 

Boltzmann constant, and R is the impedance of the sample. From the fitting, the values of A and Z are 

evaluated to be A = 1.45u10
5
 V

2
/V

2
 and Z = 68 kǡ. These values are comparable to the calculated 

values from the impedance and the gain of each amplifier line (A1 = 1.75u10
5
, A2 = 1.08u10

5
, Z1 = 120 

kǡ, and Z2 = 190 kǡ) with less than 10 % error. Below 200 mK, the measured noise power dose not 

reduce linearly with the system temperature, because the cooling of the sample through the coaxial 

cables is not sufficient. At the lowest base temperature of the refrigerator (45 mK), the electron 

temperature is estimated to be 125 mK from the noise power.   

3.2.  Quantum shot noise in the QPC 

Figure 3 (a) presents the conductance of the QPC at zero bias voltage as a function of the 

gate voltage. We carried out the quantum shot noise measurements at the red (T = 1.5), green (T = 1), 
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Fig. 2 Temperature dependence 

of the thermal noise of the QPC. 

The data is fitted by linear function 

for the points over 200 mK. 

Fig. 3 (a) Conductance of the QPC as a function of the gate voltage. (b) Shot noise vs. source-

drain voltage plot. Solid lines are fitted curves. These noise measurements were carried out at the 

gate voltages shown in Fig. (a). (c) Evaluated Fano factor at the various conductance.  

3

M. Hashisaka, Y. Yamauchi, S. Nakamura, S. Kasai, K. 
Kobayashi, and T. Ono, J. Phys.: Conf. Ser. 109, 012013 
(2008). 
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Temperature (mK) 

QPC 

Left: Current/Voltage Noise in equilibrium 
Right: Temperature x Conductance/Resistance 

Apparent Deviation from the expected 
value of Johnson noise at very low T. 

Fluctuatioin-Dissipation Theorem 



Deviations at Early 1970’s 

Noise "l'nermometry at Ultralow Temperatures 415 

5.3. Results 

At a relatively high temperature, 27 mK, when the drift rate was almost 
zero we made a series of measurements of ~ as a function of COL in an 
effort to determine the device noise temperature. We averaged each 
for 1000 sec and, following the procedure outlined in Section 3, determined 
the device noise temperature to be approximately (50-t-8) x 10-6K, 
only 2½ % of our lowest temperature. 

The results of the third and fourth demagnetization are shown in Fig. 17. 
We plot the logarithm of Tj as a function of the logarithm of the magnetic 
temperature T* of CMN. The solid and open circles are the data taken on 
the third and fourth demagnetizations, respectively. Below 11 mK a 2000-sec 
averaging time was used for each Tj, and the magnetic temperature plotted 
is the average of T* during the measuring interval. Above 11 mK each Tj 
represents the average over a 4000-sec interval. The 0.05 mK device noise 
temperature has been subtracted from each T~ plotted. The straight line 
drawn through the data is Tj = T*. 

At our lowest temperatures we observed a time constant associated with 
the noise thermometer of ~ 800 sec, much longer than the 2-sec time constant 
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Fig. 17. Johnson noise temperatures plotted agairlst the 
magnetic temperature of CMN. Solid circles arc data 
taken on the third demagnetization; opvn circles arc the 
data taken on the fourth demagnetization. A 0.05 mK 
device noise temperature has been subtracted from each 
noise tempcratur¢. The straight line is Tj = T*. 

R. A. Webb, R. P. Giffard, and J. C. Wheatley, J. Low. Temp. Phys. 13, 383 (1973). 

Deviations appear below 5.5 mK 

A possible explanation is a Heat Leak. 
Second condition is not satis!ed. 

Simple! But it has  not been directly con!rmed. 

cerium magnesium nitrate 
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(Lorentz force)
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1. J-N relation 
2. 

One of these conditions is not satis!ed! 



Motivation 

Can we obtain the intrinsic values by actual measurement 
devices, in principle?  

 Johnson-Nyquist relation 
“Intrinsic Noise” and “Intrinsic Current” 
of the target system. 

6= 6= But, we obtain the information about the current and  
noise with measurement devices which may affect 
outputs. 

“Resolution” has a close relation to the fact that we always have a 
smallest detectable change in every measurements. 

This problem is not clear! 

ideal 

intrinsic intrinsic 

measured measured 

? ? 



Our Main Results 
Limited Resolution does not affects the measured Current 
but, increases the measured Noise! do not always satisfy the J-N relation 

Limited resolution becomes a possible explanation of deviations 

Resonant level model (Single channel QPC with perfect transmission) 

Intrinsic
Measured



Resonant Level Model 

Reservoir 
A 

Reservoir 
B 

Spinless Electrons 

given by

Ĥ(t) = Ĥ0 + V̂ (t) (20)

Ĥ0 = ĤA + ĤB + ĤS (21)

ĤA =
∑

x∈A

εAx ĉ
†
xĉx (22)

ĤB =
∑

x∈B

εBx ĉ
†
xĉx (23)

ĤS = ε0d̂
†d̂ (24)

V̂ (t) = V̂A(t) + V̂B(t) (25)

V̂X(t) =
∑

x∈X

(tXθ(t)d̂
†ĉx +H.c.) for X = A,B, (26)

where θ(t) is a step function. d̂† creates a spinless electron at the resonant level ε0, while

ĉ†x∈X denotes the creation operator of a spinless electron at the wave vector x in the reservoir

X=A or B. The resonant level is coupled to the reservoir X with a hybridization tX. Since

the reservoirs are in the thermal equilibrium states for t ≤ 0, the density matrix at t = 0 is

given by

ρ̂(0) =
e−β(ĤA−µAN̂A)

Tr
[
e−β(ĤA−µAN̂A)

] ⊗ e−β(ĤB−µAN̂B)

Tr
[
e−β(ĤB−µAN̂B)

] ⊗ ρ̂0S, (27)

where N̂X is the total number operator of the reservoir X, β is the inverse temperature of

the system, and ρ̂0S is the initial density matrix of the resonant level. We observe the particle

current as the net change of the particle number in the reservoir A by using the projective

measurement with a finite resolution ∆ ∈ N. The probability that the measured change of

the particle in A during a fixed time interval T is equal to k∆ is given by

P(k, T ) ≡
∑

i

〈〈
I
∣∣P̆i+kŬ(T , 0)P̆i

∣∣ρ̂(0)
〉〉
, (28)

where P̆i ≡ P̆iLP̆iR, P̆iα ≡
∫ χi+

∆
2 +η

χi−∆
2 +η

dxδ(x − N̆Aα) for α = L,R.前章で説明したので、ここ
では ηの必要性の説明を省略。The characteristic function is given by

M(λ, T )

=
∞∑

m1,m2=−∞
sinc(

λ+ 2πm1

2
) sinc(

λ+ 2πm2

2
)

× Tr[Û(T , 0)ρ̂(0)e−i
N̂A
∆ (λ+2πm2)Û †(T , 0)ei

N̂A
∆ (λ+2πm1)]. (29)

9

Density matrix at t=0 



Model of Current Measurement: 
Two-point measurement model 

Reservoir 
A 

Reservoir 
B 

T

�

The probability that  N = k� is given by 
is the particle number change of reservoir A during T. 

measurement time 

particle measurement  
resolution 

k is a integer 

Projection Operator Time evolution operator 

-particles 



Eigen values of
0 1 2 3 4 5 6

Outcome is 3.

Outcome

Projection Operator

Projection Operator 

      means the smallest detectable 
change in the particle number 
measurement. 

of a particle number measurement in reservoir A 

zero point deviation 

arXiv:1307.7535 

M. Esposito, U. Harbola, and S. 
Mukamel, Rev. Mod. Phys. 81, 
1665 (2009). 

� = 1 �0 = 0



Cumulant Generating Function 

arXiv:1307.7535 

Cumulant Generating Function 

Degrees of Freedom of the initial density matrix 
within the resolution 

is a Levitov-Lesovik type CGF obtained from Full Counting Statistics. 
L. S. Levitov and G. B. Lesovik,JETP Lett. 58, 230 (1993); arXiv cond-mat/9401004 (1994). 

Current at a time Current:	  I D
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Initial particle 
number of 
reservoir A 



Cumulant Generating Function 

� = 1 We can distinguish electrons, one by one. 

arXiv:1307.7535 

Full Counting Statistics 

Our quantum measurement scheme is an extension of FCS. 

Random averaging (analogy of quenched random systems). 

We cannot obtain the initial information practically 



Current and Noise  

I = I0

S = S0 + h�Si�
Measured current 

Measured noise 

Intrinsic 

Intrinsic Excess noise 

Johnson-Nyquist relation is not satis"ed between S and G 

h�Si� � 0

h�Si� � 0

Always positive 

Full counting statistics 
independent of  

J-N relation is satis"ed! 



Temperature Dependence 

ü  Strong enhancement at very low temperatures  
ü  Cannot be calibrated by usual empirical methods! 

T � = 1000

� = 10

"0 = 0

r = 1

S0 = 2kBTG



Deviation from J-N relation 

The deviation is enhanced and  
saturated at very low temperature 

Saturated value of deviation 

⇠ �

T � = 1000

� = 10

"0 = 0

r = 1

Measurable in experiment 
Directly indicates the deviation 

Ratio of Noises 

S

2kBTG
� 1 = h�Si�/S0

Deviation from J-N relation between S and G 



Delta Dependence  

Excess noises are increased by increasing Delta. 

poor resolution 



T Dependence 

Maximum Detectable 
Frequency of measurement 
device 

Long time 
measurement 

Limitation of Frequency band of measurement device improves 
detectability of  S0



σ≡S0/SM=2kBTG/SM

ln
Single-parameter Scaling of Deviation 

B/
p
�

criterion whether the deviation 
practically appears or not.  

⇠ �



Summary 
Resolution	  effects	  on	  Current	  Statistics	  

ü  Noise enhancement by limited resolution 

ü  Deviation from Jonson-Nyquist relation 

ü  Scaling behavior of deviation 

ü  Consistent with experimental results 

arXiv:1307.7535 

~�/kB = 1K

"0/~� = 0

r = 1

T = 1µs

� = 130

Intrinsic
Measured

0.1/Δ2 σ≡S0/SM=2kBTG/SM0.01 1

Deviation From the Johnson-Nyquist Relation S / 2kBTG -1


