Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Claire Wahl, J. Rech, T. Jonckheere and T. Martin

IXth Rencontres du Vietnam, Quy-Nhon, August 8, 2013

CPT, Marseille

C. Wahl et al., arXiv:cond-mat/1307.5257

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Table of Contents

1 Injection and fractionalization

2 Hong Ou Mandel interferometry

Hong Ou Mandel interferometry

Electronic Quantum Optics

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Hong Ou Mandel interferometry

Electronic Quantum Optics

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Hong Ou Mandel interferometry

Electronic Quantum Optics

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferomete

Hong Ou Mandel interferometry

Electronic Quantum Optics

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Hong Ou Mandel interferometry

Electronic Quantum Optics

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferomete

Hong Ou Mandel interferometry

Electronic Quantum Optics

Electrons

• effect of interactions ?

Photons

• bunching

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferomete

Hong Ou Mandel interferometry

Electronic Quantum Optics

E. Bocquillon et al., Science 339, 2013

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferomete

Hong Ou Mandel interferometry

Table of Contents

1 Injection and fractionalization

2 Hong Ou Mandel interferometry

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Bosonization framework

• Finite temperature: $\Theta = 0.1 \text{K}$

J. von Delft and H. Schoeller, Annalen Phys., 1998

Bosonization framework

- Finite temperature: $\Theta = 0.1 \text{K}$
- 2 channels per edge :

$$H_{\rm kin} = \frac{\hbar}{\pi} \sum_{r=R,L} \int dx \, v_1 \left(\partial_x \phi_{1,r}\right)^2 + v_2 \left(\partial_x \phi_{2,r}\right)^2 \tag{1}$$

J. von Delft and H. Schoeller, Annalen Phys., 1998

Bosonization framework

- Finite temperature: $\Theta = 0.1 \text{K}$
- 2 channels per edge :

$$H_{\rm kin} = \frac{\hbar}{\pi} \sum_{r=R,L} \int dx \, v_1 \, (\partial_x \phi_{1,r})^2 + v_2 \, (\partial_x \phi_{2,r})^2 \tag{1}$$

• coupled via Coulomb interaction :

$$H_{\rm int} = 2\frac{\hbar}{\pi} u \sum_{r=R,L} \int dx (\partial_x \phi_{1,r}) (\partial_x \phi_{2,r}) \tag{2}$$

J. von Delft and H. Schoeller, Annalen Phys., 1998

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferomete

$$H_{\rm kin} + H_{\rm int} = \frac{\hbar}{\pi} \sum_{r=R,L} v_+ (\partial_x \phi_{+,r})^2 + v_- (\partial_x \phi_{-,r})^2 \qquad (3)$$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

$$H_{\rm kin} + H_{\rm int} = \frac{\hbar}{\pi} \sum_{r=R,L} v_+ (\partial_x \phi_{+,r})^2 + v_- (\partial_x \phi_{-,r})^2 \qquad (3)$$

• Eigenmodes $\phi_{+,r}$ and $\phi_{-,r}$

$$H_{\rm kin} + H_{\rm int} = \frac{\hbar}{\pi} \sum_{r=R,L} v_+ (\partial_x \phi_{+,r})^2 + v_- (\partial_x \phi_{-,r})^2 \qquad (3)$$

- Eigenmodes $\phi_{+,r}$ and $\phi_{-,r}$
- Rotation of angle θ : $\tan(2\theta) = 2u/(v_1 v_2)$

$$H_{\rm kin} + H_{\rm int} = \frac{\hbar}{\pi} \sum_{r=R,L} v_+ (\partial_x \phi_{+,r})^2 + v_- (\partial_x \phi_{-,r})^2 \qquad (3)$$

- Eigenmodes $\phi_{+,r}$ and $\phi_{-,r}$
- Rotation of angle θ : $\tan(2\theta) = 2u/(v_1 v_2)$

No coupling: $\theta = 0$

 $\begin{array}{l} \phi_{+,r} = \phi_{1,r} \\ \phi_{-,r} = \phi_{2,r} \\ v_{+} = v_{1} \\ v_{-} = v_{2} \end{array}$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferomete

$$H_{\rm kin} + H_{\rm int} = \frac{\hbar}{\pi} \sum_{r=R,L} v_+ (\partial_x \phi_{+,r})^2 + v_- (\partial_x \phi_{-,r})^2 \qquad (3)$$

- Eigenmodes $\phi_{+,r}$ and $\phi_{-,r}$
- Rotation of angle θ : $\tan(2\theta) = 2u/(v_1 v_2)$

No coupling: $\theta = 0$

$$\begin{split} \phi_{+,r} &= \phi_{1,r} \\ \phi_{-,r} &= \phi_{2,r} \\ v_{+} &= v_{1} \\ v_{-} &= v_{2} \end{split}$$

Strong coupling: $\theta = \pi/4$ $\phi_{+,r} = \sqrt{2}/2(\phi_{1,r} + \phi_{2,r})$ $\phi_{-,r} = \sqrt{2}/2(\phi_{1,r} - \phi_{2,r})$ $v_1 = v_2 = v_F = 1$ $v_{\pm} = 1 \pm u$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

$$|\phi_L\rangle = \int dx \varphi_L(x) \psi^{\dagger}_{s,L}(x+L,0)|0\rangle \tag{4}$$

$$|\phi_L\rangle = \int dx \varphi_L(x) \psi^{\dagger}_{s,L}(x+L,0)|0\rangle \tag{4}$$

$$|\phi_L\rangle = \int dx \varphi_L(x) \psi^{\dagger}_{s,L}(x+L,0)|0\rangle \tag{4}$$

 $\frac{\text{Exponential packet}}{\varphi_L(x) = \sqrt{2\Gamma} e^{-i\epsilon_0 x} e^{-\Gamma x} \theta(x)}$

wide in energy space $\gamma = \epsilon_0/\Gamma = 1$ $\epsilon_0 = 175 \text{mK}$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

$$|\phi_L\rangle = \int dx \varphi_L(x) \psi^{\dagger}_{s,L}(x+L,0)|0\rangle \tag{4}$$

Exponential packet $\varphi_L(x) = \sqrt{2\Gamma} e^{-i\epsilon_0 x} e^{-\Gamma x} \theta(x)$

wide in energy space $\gamma = \epsilon_0/\Gamma = 1$ $\epsilon_0 = 175 \text{mK}$

energy-resolved

$$\gamma = 8$$

 $\epsilon_0 = 0.7 \text{K}$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Charge fractionalization

$$q_{s,L}(x,t) = e/\pi \partial_x \phi_{s,L}(x,t) \tag{5}$$

E. Berg et al., PRL 102, 2009 P. Degiovanni et al., PRB 81, 2010

Charge fractionalization

$$q_{s,L}(x,t) = e/\pi \partial_x \phi_{s,L}(x,t) \tag{5}$$

Outer injection

Inner injection

E. Berg et al., PRL 102, 2009 P. Degiovanni et al., PRB 81, 2010

interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Charge fractionalization

$$q_{s,L}(x,t) = e/\pi \partial_x \phi_{s,L}(x,t) \tag{5}$$

Outer injection

Inner injection

E. Berg et al., PRL 102, 2009 P. Degiovanni et al., PRB 81, 2010

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Charge fractionalization

$$q_{s,L}(x,t) = e/\pi \partial_x \phi_{s,L}(x,t) \tag{5}$$

Outer injection

Inner injection

• fast charged mode: $\oplus \oplus$

 $\oplus \oplus$

E. Berg et al., PRL 102, 2009 P. Degiovanni et al., PRB 81, 2010

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Charge fractionalization

$$q_{s,L}(x,t) = e/\pi \partial_x \phi_{s,L}(x,t) \tag{5}$$

Outer injection

Inner injection

E. Berg et al., PRL 102, 2009 P. Degiovanni et al., PRB 81, 2010

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Hong Ou Mandel interferometry

Table of Contents

1 Injection and fractionalization

2 Hong Ou Mandel interferometry

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Hong Ou Mandel interferometry

HBT setup

- Inner (outer) injections
- Backscattering: inner channels

Hong Ou Mandel interferometry

HBT setup

$$S_{\text{HBT}} = \int dt dt' \langle I_1(t) I_1(t') \rangle - \langle I_1(t) \rangle \langle I_1(t') \rangle$$
(6)
averages performed on $|\phi_L\rangle$

H. Lee and L. Levitov, arXiv:cond-mat/9312013, 1993

Hong Ou Mandel interferometry

HOM setup

- Inner (outer) injections
- Backscattering: inner channels
- $\bullet~$ Time delay $\delta\,T$

$$S_{\text{HOM}} = \int dt dt' \langle I_1(t) I_1(t') \rangle - \langle I_1(t) \rangle \langle I_1(t') \rangle$$
(6)
averages performed on $|\phi_L\rangle \otimes |\phi_R\rangle$

G. Burkard and D. Loss, PRL 91, 2003 Ol'khovskaya et al., PRL 101, 2008

HBT Calculation

$$S_{\text{HBT}} = -\frac{2e^2\mathcal{R}\mathcal{T}}{(2\pi a)^3\mathcal{N}} \text{Re}\left\{\int dy_L dz_L \,\varphi_L(y_L)\varphi_L^*(z_L)g(0, z_L - y_L)\right.$$
$$\int dt \,d\tau \,\text{Re}\left[g(\tau, 0)^2\right] \left[\frac{h_s(t; y_L + L, z_L + L)}{h_s(t + \tau; y_L + L, z_L + L)} - 1\right]\right\}$$
(7)

HBT Calculation

$$S_{\text{HBT}} = -\frac{2e^2\mathcal{R}\mathcal{T}}{(2\pi a)^3\mathcal{N}} \text{Re}\left\{\int dy_L dz_L \ \varphi_L(y_L)\varphi_L^*(z_L)g(0, z_L - y_L)\right\}$$
$$\int dt \ d\tau \text{Re}\left[g(\tau, 0)^2\right] \left[\frac{h_s(t; y_L + L, z_L + L)}{h_s(t + \tau; y_L + L, z_L + L)} - 1\right]\right\}$$
(7)

$$\mathcal{N} = \langle \phi_L | \phi_L \rangle$$

HBT Calculation

$$S_{\text{HBT}} = -\frac{2e^2\mathcal{R}\mathcal{T}}{(2\pi a)^3\mathcal{N}} \text{Re}\left\{\int dy_L dz_L \,\varphi_L(y_L)\varphi_L^*(z_L)g(0, z_L - y_L)\right.$$
$$\int dt \, d\tau \, \text{Re}\left[g(\tau, 0)^2\right] \left[\frac{h_s(t; y_L + L, z_L + L)}{h_s(t + \tau; y_L + L, z_L + L)} - 1\right]\right\}$$
(7)

$$g(t,x) = \left[\frac{\sinh\left(i\frac{\pi a}{\beta v_{+}}\right)}{\sinh\left(\frac{ia+v_{+}t-x}{\beta v_{+}/\pi}\right)}\frac{\sinh\left(i\frac{\pi a}{\beta v_{-}}\right)}{\sinh\left(\frac{ia+v_{-}t-x}{\beta v_{-}/\pi}\right)}\right]^{1/2}$$
(8)
$$h_{s}(t;x,y) = \left[\frac{\sinh\left(\frac{ia-v_{+}t+x}{\beta v_{+}/\pi}\right)}{\sinh\left(\frac{ia+v_{+}t-y}{\beta v_{+}/\pi}\right)}\right]^{\frac{1}{2}} \left[\frac{\sinh\left(\frac{ia-v_{-}t+x}{\beta v_{-}/\pi}\right)}{\sinh\left(\frac{ia+v_{-}t-y}{\beta v_{-}/\pi}\right)}\right]^{\frac{3}{2}-s}$$
(9)

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

HOM Calculation

$$S_{\text{HOM}}(\delta T) = -\frac{2e^2 \mathcal{RT}}{(2\pi a)^4 \mathcal{N}} \text{Re} \left\{ \int dy_L dz_L \,\varphi_L(y_L) \varphi_L^*(z_L) g(0, z_L - y_L) \right.$$

$$\times \int dy_R dz_R \,\varphi_R(y_R) \varphi_R^*(z_R) g(0, y_R - z_R) \int d\tau \,\text{Re} \left[g(\tau, 0)^2 \right] \right.$$

$$\times \int dt \left[\frac{h_s(t; y_L + L, z_L + L)}{h_s(t + \tau; y_L + L, z_L + L)} \frac{h_s(t + \tau - \delta T; L - y_R, L - z_R)}{h_s(t - \delta T; L - y_R, L - z_R)} - 1 \right] \right\}$$

$$(10)$$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

HOM Calculation

$$S_{\text{HOM}}(\delta T) = -\frac{2e^2 \mathcal{R} \mathcal{T}}{(2\pi a)^4 \mathcal{N}} \text{Re} \left\{ \int dy_L dz_L \,\varphi_L(y_L) \varphi_L^*(z_L) g(0, z_L - y_L) \right.$$

$$\times \int dy_R dz_R \,\varphi_R(y_R) \varphi_R^*(z_R) g(0, y_R - z_R) \int d\tau \, \text{Re} \left[g(\tau, 0)^2 \right] \right.$$

$$\times \int dt \left[\frac{h_s(t; y_L + L, z_L + L)}{h_s(t + \tau; y_L + L, z_L + L)} \frac{h_s(t + \tau - \delta T; L - y_R, L - z_R)}{h_s(t - \delta T; L - y_R, L - z_R)} - 1 \right] \right\}$$

$$(10)$$

$$\mathcal{N} = \langle \phi_L | \phi_L \rangle \langle \phi_R | \phi_R \rangle$$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

HOM Calculation

$$S_{\text{HOM}}(\delta T) = -\frac{2e^2\mathcal{R}\mathcal{T}}{(2\pi a)^4\mathcal{N}} \text{Re} \left\{ \int dy_L dz_L \,\varphi_L(y_L)\varphi_L^*(z_L)g(0, z_L - y_L) \right. \\ \left. \times \int dy_R dz_R \,\varphi_R(y_R)\varphi_R^*(z_R)g(0, y_R - z_R) \int d\tau \,\text{Re} \left[g(\tau, 0)^2 \right] \right. \\ \left. \times \int dt \left[\frac{h_s(t; y_L + L, z_L + L)}{h_s(t + \tau; y_L + L, z_L + L)} \frac{h_s(t + \tau - \delta T; L - y_R, L - z_R)}{h_s(t - \delta T; L - y_R, L - z_R)} - 1 \right] \right]$$
(10)

Numerics: quasi Monte Carlo algorithm

T. Hahn, Comput. Phys. Commun., 2005

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

(Hong Ou Mandel interferometry

Interferometry

Inner injections

 $\frown \frown \frown \land \leftarrow \frown \frown \frown$

Outer injections

(Hong Ou Mandel interferometry

Interferometry

Inner injections

• $\delta T = 0$

Hong Ou Mandel interferometry

Interferometry

• $\delta T = 0$ HOM dip

Hong Ou Mandel interferometry

Interferometry

• $\delta T = 0$ HOM dip

HOM dip

Hong Ou Mandel interferometry

Interferometry

• $\delta T = 0$ HOM dip

HOM dip

• $\delta T = +2Lu/(1-u^2)$

Hong Ou Mandel interferometry

Interferometry

Inner injections

• $\delta T = 0$ HOM dip

HOM dip

• $\delta T = +2Lu/(1-u^2)$ S_{HBT} + asymmetric dip

T. Jonckheere et al., PRB 86, 2012

Hong Ou Mandel interferometry

Interferometry

Inner injections

• $\delta T = 0$ HOM dip

HOM dip

• $\delta T = +2Lu/(1-u^2)$ S_{HBT} + asymmetric dip

 $S_{\rm HBT}$ + asymmetric peak

T. Jonckheere et al., PRB 86, 2012

Hong Ou Mandel interferometry

Interferometry

Inner injections

• $\delta T = 0$ HOM dip

• $\delta T = +2Lu/(1-u^2)$ S_{HBT} + asymmetric dip

•
$$\delta T = -2Lu/(1-u^2)$$

 S_{HBT} + asymmetric dip

HOM dip

$S_{\rm HBT}$ + asymmetric peak

 $S_{\rm HBT}$ + asymmetric peak

T. Jonckheere et al., PRB 86, 2012

Current correlations

Wide packets in energy

 $\epsilon_0 = 175 \text{mK}$ $\gamma = 1$

Current correlations

Wide packets in energy

 $\epsilon_0 = 175 \text{mK}$ $\gamma = 1$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Current correlations

Energy resolved packets

 $\epsilon_0 = 0.7 \mathrm{K}$ $\gamma = 8$

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Current correlations

Energy resolved packets

 $\epsilon_0 = 0.7 \mathrm{K} \quad \gamma = 8$

• dramatic loss of contrast (agreement with experimental results) !!

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Current correlations

Energy resolved packets

 $\epsilon_0 = 0.7 \mathrm{K} \quad \gamma = 8$

• dramatic loss of contrast (agreement with experimental results) !!

• no peaks

Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

Hong Ou Mandel interferometry

Conclusion

• Interactions account for the observed loss of contrast!

Hong Ou Mandel interferometry

Conclusion

• Interactions account for the observed loss of contrast!

• The contrast depends on the energy resolution and the injection energy of the packet.

Hong Ou Mandel interferometry

Conclusion

• Interactions account for the observed loss of contrast!

- The contrast depends on the energy resolution and the injection energy of the packet.
- Fast and slow excitations interference \rightarrow lateral dips/peaks

Lateral peaks

$\nu = 1: \text{ electron-hole interferometry}$ $\frac{S_{\text{HOM}}(\delta T)}{2S_{\text{HBT}}} = 1 + \left| \frac{\int_0^\infty dk \,\phi_e(k)\phi_h^*(k)e^{-ik\delta t}f_k(1-f_k)}{\int_0^\infty dk \,|\phi_e(k)|^2(1-f_k)^2} \right|^2 \quad (11)$

Wide in energy

Energy-resolved

Lateral peaks

$\nu = 1: \text{ electron-hole interferometry}$ $\frac{S_{\text{HOM}}(\delta T)}{2S_{\text{HBT}}} = 1 + \left| \frac{\int_0^\infty dk \,\phi_e(k)\phi_h^*(k)e^{-ik\delta t}f_k(1-f_k)}{\int_0^\infty dk \,|\phi_e(k)|^2(1-f_k)^2} \right|^2 \quad (11)$

Wide in energy

Energy-resolved

