Coherent Quantum Phase-Slip in Josephson junction chains

Gianluca RASTELLI

Zukunftskolleg free • creative • connecting

"Nanophysics: from fundamentals to applications", IXth Rencontres du Vietnam, Quy-Nhon, August 2013

Outline

- 1. Coherent Quantum Phase Slips (CQPS)
- 2. Josephson junction chains (theory & experiments)
- 3. Non-adiabatic dynamics

1. CQPS

Quantum Phase-Slip (QPS)

Incoherent QPS in superconducting nanowires

Arutyunov et al., Phys. Rep. 2008 (review)

Giordano PRL 1988 Zaikin et al., PRL 1997 Bezryadin et al., Nature 2000 Lau et al., PRL 2001 Li et al., PRL 2011 Lehtinen et al., PRB 2012

Quantum Phase-Slip (QPS)

Incoherent QPS in superconducting nanowires

Arutyunov et al., Phys. Rep. 2008 (review)

Giordano PRL 1988 Zaikin et al., PRL 1997 Bezryadin et al., Nature 2000 Lau et al., PRL 2001 Li et al., PRL 2011 Lehtinen et al., PRB 2012

Coherent QPS superconducting nanowires

superconducting loop

theory

Mooij and Harmans, NJP 2005 Mooij and Nazarov, Nat. Physics 2006 Hriscu and Nazarov, PRL 2011 Vanević and Nazarov, PRL 2012

experiments

Astafiev et al., Nature 2012 Lehtinen et al., PRL 2012 Hongisto and Zorin, PRL 2012 Webster et al., PRB 2013

Coherent QPS in Josephson junction chains

theory

Orlando, Mooij et al., PRB 1999 Matveev,Larkin,Glazman, PRL 2002 Guichard and Hekking, PRB 2010 Rastelli et al., PRB 2013 Süsstrunk et al., arXiv:1304.4487

experiments

Mooij et al., Science 1999 Pop et al., Nat. Phys. 2010 Manucharyan et al., Science 2009 arXiv:0910.3039, PRB 2012 A. Ergül et al., arXiv:1305.7157

Persistent current eigenstates

a) Magnetic flux quantization

 $m\Phi_0 = L_g I + \Phi_{ex}$ geometrical inductance

Persistent current eigenstates

a) Magnetic flux quantization

 $m\Phi_0 = L_g I + \Phi_{ex}$ geometrical inductance

b) Fluxoid quantization: $\oint ds (d\varphi/ds) = 2\pi m$ $\Phi_B = L_g I + \Phi_{ex} \simeq \Phi_{ex}$

Superconducting nano-rings

 $I_m = (\Phi_0/L_k) \left(m - \frac{\Phi_B}{\Phi_0}\right)$

kinetic inductance

Josephson junction rings

 $(L_k \gg L_q)$

 $\Phi_{\rm B}$

$$I_m = \left(\Phi_0 / NL_J\right) \left(m - \frac{\Phi_B}{\Phi_0}\right)$$

Josephson inductance

Current eigenstates in JJ rings

Homogeneous ring

$$H_{JJ} = -E_J \sum_n \cos\left(\theta_n - 2\pi \frac{\Phi_B}{N\Phi_0}\right)$$

constraint
$$\varphi_{N+1} = \varphi_0 + 2\pi m \longrightarrow \sum_n \theta_n = 2\pi m$$

- Current states $|m\rangle$: minima of H_{JJ} , $\theta_n^{(m)} = 2\pi m/N$
- Ground state

$$E_{GS} = \frac{E_J}{2N} \min_m \left(2\pi m - 2\pi \frac{\Phi_B}{\Phi_0} \right)^2 \qquad I_{GS} = \partial E_{GS} / \partial \Phi_B$$

2. Josephson junction chains (theory & experiments)

Microscopic model for a JJ ring

Quantum Phase Model $\left[\hat{\varphi}_n, \hat{Q}_n\right] = 2e i$

• Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$

• Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$

 \checkmark Current states |m
angle (unperturbed)

- Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$
- \checkmark Current states |m
 angle (unperturbed)

- Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$
- \checkmark Current states |m
 angle (unperturbed)

- Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$
- \checkmark Current states |m
 angle (unperturbed)

- Multidimensional space
 - v =tunneling amplitude for θ_{n_0}

- Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$
- \checkmark Current states |m
 angle (unperturbed)

- Multidimensional space
 - v =tunneling amplitude for θ_{n_0}

• $v_{ring} = Nv$ amplitude for $|m\rangle \leftrightarrow |m+1\rangle$

- Regime $E_J \gg E_C = \frac{e^2}{2C}, E_0 = \frac{e^2}{2C_0}$
- \checkmark Current states |m
 angle (unperturbed)

- Multidimensional space
 - v =tunneling amplitude for θ_{n_0}

• $v_{ring} = Nv$ amplitude for $|m\rangle \leftrightarrow |m+1\rangle$

Phase-current relation

General

$$\hat{H} = \sum_{m} E_m |m\rangle \langle m| - v_{ring} \sum_{m} (|m+1\rangle \langle m| + h.c.)$$

 $E_{GS}(\Phi_B) \longrightarrow I(\Phi_B) \longrightarrow \bullet I_{max}$

[Matveev,Larkin,Glazman, PRL 2002; Orlando, Mooij et al., PRB 1999]

Single tunneling amplitude \boldsymbol{v}

One particle coupled to an external bath

 θ_{n_0} : center pf QPS { $\theta_{n \neq n_0}$ } : N-1 harmonic oscillators

- Regime $E_J \gg E_C, E_0$, instanton technique (Path Integral)
- Finite size effects v = v(N)

Theoretical results: I_{max}/I_0

Example $(C = 2C_0)$

- Finite size effects: non-monotonic behavior
- Superconductor/Insulator:
 Quantum phase transition for $N \to \infty$

[Rastelli et al., PRB 2013]

Experiments: setup

• Samples $N = 10, 20, 30, \dots, 110$

Voltage-bias configuration

Mechanical analog

Experiments: caveats

$$P_c = \frac{1}{2} = e^{-2\pi \frac{v_{ring}^2}{E_J(2eV_c)}} \longrightarrow V_c \quad \text{threshold}$$

Charged impurities

$$v_{ring} = v \sum_{n} e^{i \frac{2\pi}{2e} q_n} = v N_{eff}$$

(Pop,Douçot,loffe,et al., PRB 2012)

Thermal fluctuations

 $(T_{exp} \sim 50 - 100mK)$

1 junction $E_J \simeq 1000 mK$

Experiments: results

Example N = 50

- Chains of SQUIDS: 1 element \equiv 1 SQUID $E_J = E_J^{Squid} \cos\left(\pi \Phi_{Squid} / \Phi_0\right)$ experimentally tunable
 - **Current-scale:** 1 junction $I_J \simeq 50nA \longrightarrow JJ$ chains $I_{max} \simeq 0.1nA$

[Weissl, Rastelli et al., (unpublished)]

3. Non-adiabatic dynamics

Incoherent QPSs

Dynamics

- Incoherent QPSs
- Coherent QPSs

Dynamics

- Incoherent QPSs
- Coherent QPSs

 $\upsilon \longrightarrow$ quantum amplitude

QPS in JJ rings

1 Josephson junction coupled to the harmonic modes $\{\omega_k\}$

Dynamics

- Incoherent QPSs
- Coherent QPSs

- $v \longrightarrow$ quantum amplitude

QPS in JJ rings

1 Josephson junction coupled to the harmonic modes $\{\omega_k\}$

a) Adiabatic coherent dynamics $v \ll \omega_{min}$

- finite-size systems
- renormalized v_N

- b) Incoherent dynamics in the thermodynamic limit $N=\infty$
 - Caldeira-Leggett dissipative model
 - $\omega = vk$ ohmic friction, $Z_{line} = \sqrt{L_J/C_0}$

a) Adiabatic coherent dynamics $v \ll \omega_{min} \sim 1/N$

b) Incoherent dynamics in the thermodynamic limit $N=\infty$

a) Adiabatic coherent dynamics $v \ll \omega_{min} \sim 1/N$

b) Incoherent dynamics in the thermodynamic limit $N=\infty$

← intermediate regime → $N^* < N < \infty$ c) Non-adiabatic dynamics

N discrete: no dissipation

Systems

Inhomogeneous ring with a weak element

Superconducting loop with a weak link

- short coherent conductor
- finite loop L: Mooij-Schön modes $\{\omega_k\}$

[[]Rastelli, Vanević, Belzig, unpublished]

Thanks for your attention

collaborators:

Grenoble		Konstanz
LDIMC	(experiments)	Universität Konstanz
F. W. J. Hekking	W. Guichard	W. Belzig
	I. Pop (Yale)	M. Vanević
	T. Weissl	
	O. Feofanov (EPF Lausanne)	
	I. Matei (CEA-Grenoble)	
	O. Buisson	

• conjugate (charge) operator $[\hat{m}, \hat{q}] = 2ei \qquad e^{i\frac{2\pi}{2e}\hat{q}} = |m\rangle \langle m+1| \qquad \frac{d\hat{q}}{dt} = \frac{\partial\hat{H}}{\partial\Phi} = \hat{I}$ $\hat{H} = -\left(\frac{\hbar^2}{2L}\right)\frac{\partial^2}{\partial\hat{q}^2} - 2\upsilon\cos\left(\frac{2\pi}{2e}\hat{q}\right) - V_{bias}\hat{q}$

duality with current-bias Josephson Junction

$$\hat{H} = \frac{\hat{Q}^2}{2C} - E_J \cos(\hat{\theta}) - \frac{\hbar}{2e} I\hat{\theta}$$

(Likharev & Zorin, J. Low Temp. Phys. 1985)

(Mooij & Nazarov, Nat. Phys. 2006)

Quantum metrology

• classical dynamics for θ in JJ \rightarrow Shapiro steps $V = n \frac{\hbar}{2e} \omega$

ullet classical dynamics for q in QPS-J ightarrow dual steps $I=\,n\,rac{2e}{2\pi}\,\omega$

$$V + V_{mw}(\omega) = R\frac{dq}{dt} + L\frac{d^2q}{dt^2} + V_x \sin\left(\frac{2\pi}{2e}q\right)$$

$$- \bigvee_{V} \left[- \bigvee_{R} & \bigvee_{R} & \bigcup_{L} & \bigcup_{U} & \bigcup_{U} & \cdots & \bigcup_{L} & \bigcup_{U} & \bigcup_{U} & \cdots & \bigcup_{U} & \bigcup_{$$

Experiments QPS Junction

Inhomogeneous chains

N = 18, 28, 38, 48, 88, 108+1 weak element $E_J \ll E_0$

Measurements (no microwaves irradiation)

activation

$$I = \left\langle \frac{d\hat{q}}{dt} \right\rangle = 2e\left(\Gamma_{+} - \Gamma_{-}\right)$$

quantum/classical

structures under microwaves irradiation (but no steps...)

[Guichard, Rastelli et al., unpublished]