

Investigation of dynamic quantum dot initialization by electron counting

Lukas Fricke

- Introduction to dynamic quantum dots \rightarrow electron pumping
- Characterization of a dynamic dot by charge detection
- Series operation of 3 pumps with charge detectors

SI base unit: Ampere (A)

- present definition: force between wires
- not used for realisation

SI base unit: Ampere (A)

- present definition: force between wires
- not used for realisation

Volt (V)

- realised by Josephson effect
- fixed proportionality: 2e/h = 483 597.9X GHz/V

$$U = n \cdot \frac{h}{2e} \cdot f$$

$$R_{H} = \frac{1}{n} \frac{h}{e^{2}} \qquad \mathbf{\Omega}$$

SI base unit: Ampere (A)

- present definition: force between wires
- not used for realisation

Volt (V)

- realised by Josephson effect
- fixed proportionality:
 2e/h = 483 597.9X GHz/V

Ohm (Ω)

- quantum Hall effect
- $h/e^2 = 25712.807 \times \Omega$

$$U = n \cdot \frac{h}{2e} \cdot f \quad \mathbf{V}$$

 $R_{H} = \frac{1}{n} \frac{h}{e^{2}}$ $\mathbf{\Omega}$

SI base unit: Ampere (A)

- present definition: force between wires
- not used for realisation

Volt (V)

- realised by Josephson effect
- fixed proportionality: 2e/h = 483597.9X GHz/V

Ohm (Ω)

- quantum Hall effect
- $h/e^2 = 25712.807 \times \Omega$

new Ampere (A):

- 1 A = 6.24150X-10¹⁸ e / 1s
 - fix elementary charge e
 - quantised electron pumping

Non-adiabatic quantum dot

- GaAs/AlGaAs 2D electron gas channel
- Top gates define quantum dot
- Modulation of entrance barrier
- Capture electrons from source
- Lift electrons over exit barrier
- Directed pumping without bias
- Quantized current: $I = e \cdot f$
- Advantages:
- GHz frequencies
 → high currents
- Prospect for high precision
- Simple device & operation
 - \rightarrow Parallelization

Phys. Rev. B 77, 153301 (2008)

Non-adiabatic quantum dot

- GaAs/AlGaAs 2D electron gas channel
- Top gates define quantum dot
- Modulation of entrance barrier
- Capture electrons from source
- Lift electrons over exit barrier
- Directed pumping without bias
- Quantized current: $I = e \cdot f$
- Advantages:
- GHz frequencies
 → high currents
- Prospect for high precision
- Simple device & operation
 - \rightarrow Parallelization

Phys. Rev. B 77, 153301 (2008)

Non-adiabatic quantum dot

Phys. Rev. B 77, 153301 (2008)

- GaAs/AlGaAs 2D electron gas channel
- Top gates define quantum dot
- Modulation of entrance barrier
- Capture electrons from source
- Lift electrons over exit barrier
- Directed pumping without bias
- Quantized current: $I = e \cdot f$
- Advantages:
- GHz frequencies
 → high currents
- Prospect for high precision
- Simple device & operation
 - \rightarrow Parallelization

- Introduction to dynamic quantum dots \rightarrow electron pumping
- Characterization of a dynamic dot by charge detection
- Series operation of 3 pumps with charge detectors

B. Kaestner et al., Phys. Rev. B 77, 153301 (2008)V. Kashcheyevs and B. Kaestner, Phys. Rev. Lett. 104, 186805 (2010)

B. Kaestner et al., Phys. Rev. B 77, 153301 (2008)V. Kashcheyevs and B. Kaestner, Phys. Rev. Lett. 104, 186805 (2010)

B. Kaestner et al., Phys. Rev. B 77, 153301 (2008)V. Kashcheyevs and B. Kaestner, Phys. Rev. Lett. 104, 186805 (2010)

PB

~)

PB

~

Capture probability

Pump probabilities

Capture probabilities

Calculated current

Model calculation

Time-dependent potential on left gate affects

- Barrier between source and dot (Tunneling rate Γ_n)
- Chemical potential of the dot μ_n

Phys. Rev. Lett. 110, 126803 (2013)

- Population of the dot follows adiabatically the lead's thermal distribution
- Then sudden decoupling freezes the states of the dot

- At low temperatures, $f(\mu_n)$ may go to zero much faster than Γ_n
- Gradual decoupling limit

- Population of the dot follows adiabatically the lead's thermal distribution
- Then sudden decoupling freezes the states of the dot

- At low temperatures, $f(\mu_n)$ may go to zero much faster than Γ_n
- Gradual decoupling limit

- Population of the dot follows adiabatically the lead's thermal distribution
- Then sudden decoupling freezes the states of the dot

- At low temperatures, $f(\mu_n)$ may go to zero much faster than Γ_n
- Gradual decoupling limit

- Population of the dot follows adiabatically the lead's thermal distribution
- Then sudden decoupling freezes the states of the dot

- At low temperatures, $f(\mu_n)$ may go to zero much faster than Γ_n
- Gradual decoupling limit

- Population of the dot follows adiabatically the lead's thermal distribution
- Then sudden decoupling freezes the states of the dot

- At low temperatures, $f(\mu_n)$ may go to zero much faster than Γ_n
- Gradual decoupling limit

$$P_{n} = \left(1 - f\left[\mu_{n+1}(t_{n+1}^{c})\right]\right) \prod_{m=1}^{n} f\left[\mu_{m}(t_{m}^{c})\right] \qquad P_{n} = e^{-X_{n}} \prod_{j=n+1}^{N} \left(1 - e^{-X_{j}}\right)$$
$$f(\mu_{n}) \equiv \frac{1}{1 + e^{(\mu_{n} - \mu)/k_{\mathrm{B}}T}} \qquad X_{n} \equiv \int_{t_{b}}^{\infty} \Gamma_{n}(t')dt'$$

Ansatz:
$$\begin{aligned} \mu_m(t_m^c)/k_{\rm B}T &= -\alpha_{\mu,n}V_{\rm GD} + \Delta_{\mu,n} \\ \ln X_n &= -\alpha_{X,n}V_{\rm GD} + \Delta_{X,n} \end{aligned}$$

Capture probabilities

Model fits

Phys. Rev. Lett. 110, 126803 (2013)

Model fits

Phys. Rev. Lett. 110, 126803 (2013)

Optimization strategies

Thermal model	Decay cascade model
Pump fidelity may profit from further lowering of	Lowering the temperature will not increase fidelity
temperature Reduced coupling between barrier and plunger necessary	Instead increase the separation of decay steps by
	• Large ratio of tunneling rates
May be achieved by applying compensation pulses onto the 2 nd gate	Large energy separation
	for different n

- Introduction to dynamic quantum dots \rightarrow electron pumping
- Characterization of a dynamic dot by charge detection
- Series operation of 3 pumps with charge detectors

No errors: Constant node signals

If all pumps work without errors, the charge on all nodes is constant

Consecutive error by second pump

Red detector switches back to initial state, blue detector changes by one node's electron

Simultaneous series pumping

PB

Pump error by P4: Only blue SET affected

PIB

The charge transfer error is reduced by ~2 orders of magnitude by error accounting

New design

Summary

Counting measurements on the non-adiabatic electron pump

• Microscopic insights into the dynamics of electron capture

- First demonstration of a self-referenced current source
 - Road towards error reduction by accounting for (rare) errors

Philipp Mirovsky Bernd Kästner Frank Hohls Klaus Pierz Hans W. Schumacher Ralf Dolata Brigitte Mackrodt Peter Duda

Thomas Weimann Peter Hinze

Vyacheslavs Kashcheyevs Janis Timoshenko Pavel Nazarov

Michael Wulf (*1978 - *2012)

Theoretical treatment of error accounting:

Error accounting algorithm for electron counting experiments *Phys. Rev. B* 87, 035312 (2013)

Experiments on counting statistics :

Counting statistics for electron capture in a dynamic quantum dot

Phys. Rev. Lett. 110, 126803 (2013)

Experiments on serial pumps with error detection:

Series Operation of Single-Electron Sources with Charge Detection

CPEM (2012)

Thank you for your attention **PB**

