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Abstract 

Electron correlation in a quantum many-body state appears as peculiar scattering behaviour at its 

boundary, symbolic of which is Andreev reflection at a metal-superconductor interface. Despite being 

fundamental in nature, dictated by the charge conservation law, however, the process has had no 

analogues outside the realm of superconductivity so far. Here, we report the observation of an Andreev-

like process originating from a topological quantum many-body effect instead of superconductivity. A 

narrow junction between fractional and integer quantum Hall states shows a two-terminal conductance 

exceeding that of the constituent fractional state. This remarkable behaviour, while theoretically 

predicted more than two decades ago but not detected to date, can be interpreted as Andreev reflection 

of fractionally charged quasiparticles. The observed fractional quantum Hall Andreev reflection 

provides a fundamental picture that captures microscopic charge dynamics at the boundaries of 

topological quantum many-body states. 

 

 

 

 

 

 

 



When a two-dimensional electron system (2DES) is subjected to a perpendicular magnetic field 

at low temperatures, electrons condense into the strongly correlated phase of the fractional quantum 

Hall (FQH) state1. Quasiparticles in FQH systems have fascinating properties, such as fractional 

charge2 and anyonic statistics3. Furthermore, for particular states such as that at Landau-level filling 

factor v = 5/2, theory predicts that quasiparticles obey non-Abelian braiding statistics that provide the 

basis of fault-tolerant quantum computation4,5. The fractional charge6-9 and anyonic nature10-12 of the 

quasiparticles have been revealed experimentally by shot-noise measurements and Fabry-Pérot 

interferometry. These studies have elucidated the behaviour of quasiparticles within the FQH state—

either bulk or edges—that gives their defining properties. On the other hand, one may expect the 

quasiparticles to exhibit unique behaviour at an interface between the FQH state and another 

topologically distinct system, in a similar way as the Cooper-pair correlation in a superconductor 

manifests itself as Andreev reflection, where an electron incident from a normal metal to a 

superconductor is reflected as a hole13,14. This, in turn, poses a fundamental question as to whether 

electron correlation in a topological quantum many-body state shows up as a unique interface 

phenomenon. FQH Andreev reflection, which we demonstrate in this paper, is an elementary process 

that answers this question. 

The FQH Andreev process has been predicted by theories examining charge transport across a 

narrow junction between quantum Hall (QH) states with different filling factors. The most intensively 

studied system is one comprised of the v = 1/3 Laughlin state and the v = 1 integer QH (IQH) state15,16. 

The charge transport can be modelled as the tunnelling between the v = 1/3 and 1 edge channels, which 

can be treated as a chiral Luttinger liquid and a Fermi liquid, respectively17. When the channels are 

coupled through a single scatterer, the problem can be solved analytically by transforming it into that 

of tunnelling between edge states with Luttinger parameter g = 1/218,19. The exact solution predicts that 

in the strong-coupling regime the two-terminal conductance G exceeds the conductance e2/3h (e: 

electron charge, h: Planck’s constant) of the v = 1/3 state, reaching e2/2h in the strong-coupling 

limit15,16,18-21. The enhancement of G can be interpreted as the result of the Andreev process, where 

two incoming charge-e/3 quasiparticles are scattered into a transmitted electron with charge e and a 

reflected quasihole with charge e/315. This theoretical prediction, however, has not yet been 

confirmed experimentally, despite recent progress in experiments on related systems22-26. 

In this paper, we present evidence of the FQH Andreev process, namely G exceeding e2/3h in 

a narrow junction between v = 1/3 and 1 states. As the junction width is varied using the split-gate 

voltage applied to form the junction, G oscillates around e2/3h, exhibiting several peaks where G 

overshoots the bulk conductance e2/3h, reaching G  1.2  e2/3h. The conductance oscillations indicate 



several Andreev processes at multiple scatterers present between the v = 1/3 and 1 edges. The evidence 

is also reinforced by demonstrating that the junction operates as a dc-voltage transformer generating a 

negative voltage output for positive input.  

 

Figure 1 Fractional-integer quantum Hall junction. a-b, False-colour scanning electron 

micrograph of the Hall-bar sample with measurement configurations (a) and magnified view near 

the narrow junction (b). A perpendicular magnetic field B = 9 T is applied from the back to the front 

of the sample. The v = 1 states develop over the wide blue regions in the 2DES with the front-gate 

voltages, including VR, set at 0 V. Meanwhile, electron density below one of the front gates (red 

region) is reduced to form the v = 1/3 state by applying VL = 0.42 V. A narrow 1/3-1 junction is 

formed by depleting the 2DES under the split gate electrodes (yellow) with negative VS. Chiral edge 

states are displayed by arrows (blue, between v = 1 and v = 0; red, between v = 1/3 and v = 0). Vin is 

the applied source-drain voltage, I is the measured current, and Vi (i = 1-4) are the measured voltages 

of the incoming and outgoing channels of the 1/3-1 junction. c, Schematic of the experimental setup. 

A narrow junction is formed between v = 1/3 and v = 1 states.  



Our QH device, formed in a Hall bar containing a 2DES in a GaAs quantum well, has several 

top gates and pairs of split gates in between (Fig. 1a). A perpendicular magnetic field of B = 9 T sets 

the bulk of the 2DES at v = 1. We then use the leftmost top gate (VL = 0.42 V) to form a v = 1/3 region 

Figure 2 Signatures of Andreev reflection. a, Two-terminal conductance G as a function of split-

gate voltage VS, taken with VL = 0.42 V. Below VS  0.55 V (indicated by a dashed line), the 

2DESs underneath the split gate electrodes are depleted to form a narrow 1/3-1 junction. 

Conductance oscillations with G > e2/3h, the evidence of the Andreev reflection, are observed. 

(Inset) G as a function of leftmost top gate voltage VL measured with VS = 0, indicating that a v = 

1/3 state forms at VL = 0.42 V in the region immediately to the left of the junction (red region in 

Figs. 1a and 1b). b-c, VS dependence of the voltages on the incoming (V1 and V3) and outgoing (V2 

and V4) channels, measured in the same setup as in a on the v = 1/3 (b) and v = 1 (c) sides of the 

junction. The vertical axes are normalised by the source-drain voltage Vin. Both negative output (V2 

< 0) in the reflected channel and overshoot (V4 > Vin/3) in the transmitted channel are the signatures 

of the Andreev reflection. 



underneath (see the inset in Fig. 2a). A narrow 1/3-1 junction is formed by applying a negative gate 

bias VS to both electrodes of the split gate located immediately to the right of v = 1/3 region and 

depleting the 2DES underneath (Fig. 1b). In this situation, the setup for transport measurements can 

be expressed schematically as in Fig. 1c [see Supplementary Note 1]. We measured the two-terminal 

differential conductance dI/dVin by applying a source-drain voltage Vin = Vin
dc + Vin

ac on the v = 1/3 

side of the junction and measuring the transmitted current I on the v = 1 side using a standard lock-in 

technique.  

Figure 2a presents the central result of this paper, where we plot the zero-bias conductance G, 

i.e., dI/dVin at Vin
dc = 0 V, as a function of VS. A narrow junction forms at VS < 0.55 V. As VS is 

decreased below 0.55 V, the junction width decreases and G starts to oscillate around e2/3h with the 

amplitude growing with decreasing VS. The most striking observation is that G overshoots e2/3h at 

several oscillation peaks before the junction is pinched off at VS  1.4 V. The maximum G reaches 

1.2  e2/3h at VS  1.1 V. Such a two-terminal conductance, enhanced by narrowing the junction and 

exceeding the conductance of the constituent element, is nontrivial and counter-intuitive. We note that 

these features appear only in 1/3-1 junctions and not in 1/3-1/3 or 1-3 junctions (see Supplementary 

Note 7).  

The peculiarity of the charge-transfer process is revealed alternatively by probing the potentials, 

or voltages Vi (i = 1-4) of the incoming and outgoing edge channels. Figures 2b and 2c display Vi 

measured at Vin
dc = 0 V normalized by Vin, plotted as a function of VS. The voltages V1 and V3 of the 

incoming channels are, respectively, equal to potentials Vin and 0 V of the electrodes on their upstream, 

independent of VS. In contrast, the voltages V2 and V4 of the outgoing channels vary with VS. The most 

remarkable feature is the negative voltage that appears in V2. Phenomenologically, this demonstrates 

that the junction operates as a dc-voltage transformer generating negative voltage output (V2 < 0) for 

a positive input (Vin > 0).  

From the Landauer-Büttiker formalism, V2 and V4 are related to G as 

  12
2 in[1 / 3 ]V G e h V


  , (1) 

  12
4 in/ 3V G e h V


 . (2) 

These formulas show that both V2 < 0 and V4 > Vin/3 correspond to G > e2/3h. Within the picture of 

Andreev reflection, the negative voltage (V2 < 0) of the back-reflected channel is a direct manifestation 

of the quasihole reflection. 

While it is evident that the Andreev reflection is responsible for the observed G > e2/3h, to 

understand microscopic processes therein, we need to explain the origin of the conductance oscillations, 



which is not predicted from the original models based on the tunnelling through a single scatterer18,19. 

Resonant tunnelling through unintentional discrete levels in the junction, which is responsible for the 

oscillations in the low-conductance regime near VS = 1.3 V (see Supplementary Note 4), cannot 

account for the conductance oscillations with G > e2/3h. In the following, we present the dependence 

of the conductance on Vin and temperature T and discuss the oscillation mechanism. 

Figure 3a displays a colour plot of differential conductance dI/dVin as a function of VS and Vin
dc. 

The oscillations with dI/dVin > e2/3h are seen only at |Vin| < 40 V. For illustration, we plot in Fig. 3b 

the pinch-off trace at Vin
dc = 100 V, where dI/dVin < e2/3h over the entire range of VS. Figure 3c shows 

Figure 3 Source-drain-voltage and temperature dependence of conductance oscillations. a, 

Colour plot of dI/dVin as a function of VS and Vin
dc, indicating oscillations with dI/dVin > e2/3h at 

|Vin| < 40 V. b, Comparison of dI/dVin vs VS traces at zero and finite bias, indicating that the feature 

dI/dVin > e2/3h is absent at Vin
dc = 100 µV. c, Vin

dc dependence of dI/dVin at several VS. Zero-bias 

conductance enhancement (suppression) is observed at VS = 1.113 V (0.985 V), whereas no 

feature is seen without forming a narrow junction (VS = 0 V). d, G vs. VS traces measured at several 

temperatures. The amplitudes A of the oscillations in periods 1 and 2 are estimated as the peak-to-

valley values. e, Temperature dependence of A/A0 for periods 1 and 2. The curves of the form 

exp(T/T0) well fit the data using similar characteristic temperatures (T0 = 170 and 190 mK).  



the Vin
dc dependence of dI/dVin at VS = 1.113 and 0.985 V. At VS = 1.113 (0.985) V, which 

corresponds to the peak (valley) of the oscillations in Fig. 3b, we observe a pronounced zero-bias 

enhancement (suppression) of the conductance. In contrast, at VS = 0 V, where the v = 1/3 and 1 regions 

form a long junction spanning across the 80-m-wide Hall bar, dI/dVin remains constant at e2/3h. These 

results clearly show that the Andreev process is observed only in narrow junctions at low bias. The 

data also reveal that not only the conductance enhancement but also its suppression are low-bias 

anomalies. 

Figure 3d shows the T dependence of the conductance oscillations. The oscillation amplitude 

decreases with increasing T, and the signature of the Andreev process, G > e2/3h, disappears above 

200 mK. We focus on two single periods of the oscillations near VS = 1.113 and 1.095 V and extract 

the amplitude A as the peak-to-valley value of G in each period. The two sets of A vs. T data are well 

fitted by an exponential function A0exp(T/T0), as shown in Fig. 3e, where A0 is the amplitude at T = 

0 and T0 is the characteristic temperature. The exponential temperature dependence bears analogy with 

that seen in various electronic interferometers27. The T0 values (170 and 190 mK) are close to each 

other, indicating that these oscillations share the same origin in nature. The data in Fig. 3 also 

demonstrate that the conductance oscillations with G > e2/3h are highly reproducible (similar 

conductance oscillations were reproduced for different cool-downs and in different samples, see 

Supplementary Note 3, 5, and 6). 

We argue that several Andreev processes in the junction are responsible for the conductance 

oscillations, as predicted in theories involving multiple scatterers or a line junction of finite 

width18,19,28-32. We consider N scatterers along the counter-propagating v = 1/3 and 1 channels and 

incoherent transport between them. N is proportional to the junction width (i.e., length of the counter-

propagating channels) and hence varies with VS. Here, “incoherent transport” means that the N 

scatterers give independent scattering events, where the outgoing channels are characterized by a 

chemical potential that defines the input for the next scatterer. With this assumption the voltage of the 

v = 1/3 (1) channel incoming to the nth scatterer is given by Vn1 = in1 × 3h/e2 (WNn = jNn × h/e2), 

where in1 (jNn) is the current in the incoming channel. With this setup, one can use the exact solution 

for the single-scatterer model19 to define the conductance gn for each scatterer as a function of the 

applied bias Vn1  WNn and evaluate the current In flowing through it. Notably, as shown for the 

single-scatterer case, the charge conservation law and the requirement that the outgoing power be equal 

to or less than the incoming one lead to 0 ≤ gn ≤ 1/221. Here, the charge transport through the nth 

scatterer becomes dissipationless only when gn = 0 or 1/2. The latter (former) corresponds to the strong-



coupling limit (complete decoupling). Namely, tunnelling for any intermediate gn values is 

accompanied by energy dissipation.  

The conductance G of the whole junction is obtained by solving a non-linear system of 

equations numerically. The results are shown in Fig. 4a for three representative cases: strong (Tk = 0, 

black open circles), intermediate (Tk = 1.5 mK, red filled circles), and weak couplings (Tk = 36 mK, 

blue diamonds) under the experimental condition with an applied voltage of 20 µV and a temperature 

of 9 mK. Here, Tk is the crossover energy scale between strong- and weak-coupling regimes19 (for 

details, see Supplementary Note 8). In the strong-coupling limit, where we have gn = 1/2 for all n, each 

scatterer only switches the sign of the voltage between the channels without causing energy dissipation. 

Figure 4 Simulation of conductance oscillations using incoherent N scatterers model. a, N 

dependence of G for several coupling strengths: strong-coupling limit (Tk = 0, black open circles), 

intermediate (Tk = 1.5 mK, red filled circles), and weak couplings (Tk = 36 mK, blue diamonds). b, 

Simulations taking the effects of the confining potential and the randomness in the positions of the 

scatterers into account. A window function was used to relate the split-gate voltage with the number 

and strength of scatterers (for details, see Supplementary Note 8). The three traces (1-3) are 

obtained for different configurations of the scatterers’ positions.  



Consequently, G oscillates as a function of N between 0 (N even) and e2/2h (N odd) (black circles). 

This oscillation can be regarded as the result of successive dissipationless Andreev processes, where 

the tunnel current switches direction at each scatterer without changing magnitude. When the coupling 

weakens to give gn < 1/2, each scatterer equilibrates the channels, which results in the reduced output 

voltage at each scatterer and hence damping of the conductance oscillations (red circles). The damping 

is significant particularly for large N, where the channels experience equilibration many times. When 

the coupling weakens further to give gn < 1/3 for all n, the tunnel current flows only in one direction. 

In this case, G monotonically increases with N, asymptotically approaching G = e2/3h30 (blue 

diamonds). The simulation for the intermediate coupling (red circles) captures essential features of the 

experimental data in Fig. 2a. If we take into account more realistic experimental situations, including 

the confining potential of the split gate and randomness in the positions of the scatterers, the simulation 

can even better reproduce the experimental features (Fig. 4b). In the simulation, the confining potential 

controls the effective width of the junction by multiplying a position-dependent window function to 

the coupling strength of the scatterers, resulting in weaker coupling near the junction ends and hence 

reduced oscillation amplitude (for details, see Supplementary Note 8).  

While the above multiple-scatterer model well explains the VS dependence of G, it still fails to 

account for the observed Vin and T dependence. Since the model inherits the Vin and T dependence of 

the conductance from the single-scatterer model18,19, which gives dI/dVin as an increasing function of 

Vin and T, it remains incapable of reproducing oscillations decaying with Vin or T. This, in turn, suggests 

that coherent processes neglected in the above model, such as interference between successive 

scattering events33, play an important role. We speculate that constructive (destructive) interference of 

tunnelling amplitudes can enhance (suppress) the coupling strengths of several scatterers in some range 

of VS. Indeed, a theory considering coherent interference predicts that a 1/3-1 junction with Coulomb 

interaction shows conductance oscillations up to e2/2h as a function of the junction width28. In this 

view, conductance enhancement or suppression at the extrema of the oscillations is partly due to the 

interference enhancement of the coupling. This picture explains why the oscillations appear only at 

low Vin and T. Furthermore, it helps to understand why the simulation for the weak-coupling regime 

of the incoherent model can mimic the VS dependence of G at high Vin (Fig. 3b) or high T (Fig. 3d).  

Finally, we discuss a related interesting issue, namely the mixing of the v = 1/3 and 1 edge 

modes expected for a wide junction. Counter-propagating v = 1/3 and 1 channels studied here is a basic 

setup in the model for the edge modes of the hole-conjugate v = 2/3 FQH state34. There, inter-channel 

Coulomb interaction and disorder-assisted tunnelling govern the mixing of the channels and thus 

determine their fate in the low-temperature and long-channel limit. The conductance oscillations with 

G exceeding e2/3h observed in our experiment can be interpreted as a precursory phenomenon of the 



mixing process, namely the “mesoscopic fluctuation” predicted in Ref. 32, suggesting the presence of 

the neutral-mode physics of counter-propagating channels at the 1/3-1 junction31,32. Our findings 

indicate that the Andreev process is a vital ingredient therein. 

We have demonstrated FQH Andreev reflection, which is one of the essential concepts for 

understanding edge transport at the boundaries of topological quantum many-body systems. We expect 

to observe similar Andreev processes in various FQH junctions with different electronic systems, 

including non-quantum Hall systems such as normal metals and superconductors35,36. 

 

Methods 

Sample fabrication. We fabricated the sample in a 2DES in a GaAs quantum well of 30 nm width. 

The centre of the well is located 190 nm below the surface. The sample was patterned using e-beam 

lithography for fine gate structures and photolithography for chemical etching, coarse metalized 

structures, and ohmic contacts formed by alloying Au-Ge-Ni on the surface.  

Measurement setup. We set electron density in the 2DES at 2.2  1011 cm2 by applying a back-gate 

voltage of 1.29 V at a refrigerator temperature of 9 mK, except for the data in Figs. 3d and 3e. A 

perpendicular magnetic field B = 9 T was applied from back to front of the sample. The lock-in 

measurements were performed with the ac modulation of Vin
ac = 20 V RMS at 31 Hz. The 

experimental results demonstrated in the main text were obtained for the split-gate device with the 

opening of 300 nm. The data from the devices with wider apertures are available in Supplementary 

Note 6. 
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Supplementary Note 1: Landauer-Büttiker edge transport picture 
 

Supplementary Fig. 1 is a schematic of the experimental setup showing the whole of the Hall-bar 
device, where the blue and red arrows show the v = 1 and 1/3 edge channels, respectively. When the 
counter-propagating v = 1 and 1/3 channels are fully equilibrated at the wide junction across the Hall 
bar, a chiral one-dimensional channel of conductance 2e2/3h is formed at the junction, as shown by a 
black arrow. The channels incoming to the narrow junction do not experience equilibration with any 
other channels before impinging on it, because both bulk v = 1 and 1/3 states are insulating 
(incompressible). Therefore, the incoming voltages V1 and V3 correspond to the voltages of the 
electrodes at their upstream. Actually, we observe V1 = Vin and V3 = 0 over the entire range of VS, as 
shown in Figs. 2b and 2c. When the narrow junction has conductance g, the transmitted current I is 
given by I = g(V1 – V3) = gVin; hence, we find g = G. This justifies the picture in Fig. 1c. Resultantly, 
the outgoing voltages V2 and V4 are expressed as V2 = Vin – I  (3h/e2) = [1  G(e2/3h)1]Vin and V4 = I 
 (h/e2) = G(e2/h)1Vin, as described in the main text. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 1. Schematic of experimental setup. 



Supplementary Note 2: Longitudinal and vertical resistances of the two-dimensional electron 
system 
 

Supplementary Fig. 2a shows the longitudinal (Rxx) and vertical (Rxy) resistances of the bulk 
two-dimensional electron system (2DES) as a function of the perpendicular magnetic field B at the 
back-gate voltage VBG = 1.29 V. Supplementary Fig. 2b shows a colour plot of Rxx in the VBG-B plane. 
The experimental results presented in the main text were obtained at B = 9.0 T and VBG = 1.29 V (ν  
1), indicated by the dotted line in Supplementary Fig. 2a and the white circle in Supplementary Fig. 
2b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Note 3: Asymmetric split-gate biasing 
 

Supplementary Figs. 3a and 3b show the colour plots of G measured as a function of the gate 
voltages VS1 and VS2 independently applied to the upper and lower split-gate electrodes (see 
Supplementary Fig. 3d). The two graphs show the same experimental results in different ranges: 0.9 × 
e2/3h ≤ G ≤ 1.1 × e2/3h in Supplementary Fig. 3a; 0 ≤ G ≤ 1.25 × e2/3h in Supplementary Fig. 3b. 
Whereas G = e2/3h at VS1 > 0.55 V and/or VS2 > 0.55 V, G deviates from e2/3h when both VS1 and 
VS2 are below 0.55 V, because the 2DESs under the split-gate metals are depleted near 0.55 V. In 
this area, we observe the conductance oscillations with G > e2/3h (shown in red in Supplementary Fig. 
3a) that are the signatures of several Andreev processes. Some peaks and dips in the conductance 
oscillations are likely to appear parallel to either VS1 or VS2 axis [e.g. along the line (i) in 
Supplementary Fig. 3b], suggesting that the number of scatterers in the junction decreases one by one 
with these gate voltages. Supplementary Fig. 3c shows G traces as a function of the split-gate voltages 
swept along the four lines in Supplementary Fig. 3b. We observe a variety of conductance oscillations 
that reflect the positions of scatterers in the 1/3-1 junction. 

 

Supplementary Figure 2. a, Magnetic field dependence of Rxx and Rxy. b, Colour 
plot of Rxx as a function of VBG and B. 



Supplementary Note 4: Resonant tunnelling through discrete levels 
 
While our experimental results can be well understood with the multiple-scatterer model, here we 

complement our discussion by excluding the possibility that the conductance oscillations originate 
from resonant tunnelling through unintentionally formed discrete levels. Such discrete levels could 
form when puddles of different filling factors exist near the junction1. First of all, the presence of a 
discrete level by itself cannot induce G > e2/3h, because in the absence of the Andreev process the 
conductance is upper-limited to e2/3h of the v = 1/3 region. Second, the increase in the oscillation 
amplitude with decreasing VS (Fig. 2a) is inconsistent with the VS dependence of the tunnel barrier 
height that increases with decreasing VS. Third, when we independently sweep the split-gate voltages 
VS1 and VS2 (Supplementary Fig. 3d), no features of resonant tunnelling are seen in the region of G > 
0.8 × e2/3h (Supplementary Fig. 3a); the conductance peaks and dips are likely to appear parallel to 
either VS1 or VS2. This observation indicates that the position of the scatterers within the junction, not 
the energy level, is essential. This contrasts with the conductance peaks near the pinch-off where G is 
well below e2/3h; they shift diagonally with the asymmetric biasing, which is the behaviour expected 
for resonant levels (see Supplementary Fig. 3b). Thus, we conclude that the conductance oscillations 
around G = e2/3h are not caused by the resonant tunnelling but by the Andreev processes in the 
multiple-scatterer system. 

Supplementary Figure 3. a,b, Colour plots of G as a function of VS1 and VS2 in different G 
ranges: 0.8 × e2/3h ≤ G ≤ 1.2 × e2/3h in a and 0 ≤ G ≤ 1.25 × e2/3h in b. c, Pinch-off 
characteristics of G obtained by the split-gate voltage sweeps along the dashed lines in b 
(horizontally shifted for clarity). d, Gate voltages VS1 and VS2 applied to the split gate. 



Supplementary Note 5: Magnetic field dependence 
 

 We examined the B dependence of the pinch-off characteristics of the 1/3-1 junction. 
Supplementary Fig. 4a shows a colour plot of G in the VS-B plane. The conductance oscillations with 
G > e2/3h are observed over the measured range of 8.8 T < B < 9.2 T, indicating the Andreev processes 
remain present with a slight change in B. Near VS = 1.113 V, G seems to oscillate as a function of B 
showing G > e2/3h at several peaks (Supplementary Fig. 4b). The oscillating B dependence may be 
related to the Aharonov-Bohm interference between tunnelling amplitudes through different scatterers.  

 
Supplementary Note 6: Different samples 
 

The signature of the Andreev process, G > e2/3h, is observed not only in the split-gate device 
demonstrated in the main text, which has the split-gate opening of 300 nm, but also in other samples 
having wider openings. We examined two samples, one with 600 and the other with 900-nm openings, 
fabricated on the same wafer. Supplementary Fig. 5 shows the pinch-off characteristics of these 
samples. Like the 300-nm device, both of them show the conductance oscillations with G > e2/3h, 
manifesting the Andreev reflection. It is worth noting that their oscillation amplitudes are smaller than 
those for the 300-nm device, suggesting enhanced equilibration or weaker couplings due to strong 
negative VS in the wider samples. 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 4. a, Colour plot of G as a function of VS and B. b, B dependence of G at VS = 
1.113 V. 

Supplementary Figure 5. Signatures of the Andreev reflection in different samples. 



Supplementary Note 7: Transport properties of different quantum Hall junctions  
 

It is instructive to look at the transport properties of other QH junctions having different sets of 
filling factors. Supplementary Fig. 6a shows the pinch-off characteristics of a junction between v = 1/3 
states formed by applying the top-gate voltages VL = VR = 0.42 V at VBG = 1.29 V and B = 9 T. Note 
that G never exceeds the conductance e2/3h over the entire range of VS. At VS > 0.55 V, where the 
2DES under the split gate is not depleted, we observe G < e2/3h, which results from the enhanced 
backscattering through puddles of different filling factors. Below VS = 0.55 V, the conductance 
through the narrow junction is maintained at G  e2/3h down to VS = 0.95 V. Below 0.95 V, it 
decreases to zero, indicating that the junction is completely pinched off at VS  1.2 V. Supplementary 
Fig. 6b displays another result obtained from an IQH junction between v = 1 and v = 3 states. The 
system was prepared by applying VL = 0.42 V at VBG = 1.29 V and B = 3 T. Likewise, in this case, G 
decreases from e2/h to zero without showing G > e2/h over the entire range of VS. Thus, the signature 
of Andreev reflection is neither observed for a junction between the same v = 1/3 states nor between 
different IQH states. This, in turn, clearly exhibits that the conductance oscillations with G > e2/3h, 
demonstrated in the main text, are responsible for the Andreev reflection at the 1/3-1 junction. 

 

 
 
 
 
 
 
 
 
 
 

Supplementary Figure 6. a, VS dependence of G of junction between v = 1/3 states. b, VS 
dependence of G of junction between v = 1 and v = 3 states. 



Supplementary Note 8: Theoretical discussion 
 

The tunnelling problem through a single scatterer between v = 1/3 and v = 1 edge states has been 
studied and solved in the literature2. By using a Luttinger liquid representation for the edge states, one 
can show that this system can be mapped on a junction between two v = 1/2 edge states, which can be 
solved exactly using a refermionisation procedure. The total current through the junction, for a bias 
voltage Vin and temperature T, can be written as 
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with ψ the digamma function. 
The most important result is that the conductance of the junction is e2/2h in the strong-coupling 

limit (corresponding to Tk  0), and the effective quasiparticles in the transport process are collective 
excitations with a charge e/2, which is different from the charge of the individual excitations existing 
at each edge. The fact that the conductance reaches e2/2h means that the output voltage on the v = 1/3 
can be larger than the input one and can be understood in terms of Andreev reflection. 

When the junction between the two edge states is wide, it cannot be modelled as a single scatterer, 
and a model with many scatterers can be used. While the problem becomes much more complicated, 
one regime where results can be obtained easily is the incoherent regime (we defined “incoherent” in 
the main text). There, all interference effects are neglected, and the current through a given scatterer 
depends only on the incoming voltage on the two edges. The incoherent multiple-scatterer model is 
illustrated in Supplementary Fig. 7 for the case of four scatterers. The voltages V1, …VN and W1, …WN 
can be obtained by solving the non-linear system of equations for n = 1, …N: 
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where In is given by Eq. (1), and V0 and W0 are the incoming voltages. One can solve the Eqs. (3) and 
(4) numerically to obtain the outgoing voltages VN and WN, or the output currents from the junction. 

When the scatterers are weak, the system can be linearized and solved exactly by going to the 
continuum limit3. For the conductance as a function of the junction width, or the length L of the 
counter-propagating channels, one obtains 
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where l is an effective equilibration length, which is related to the coupling strength. This result shows 
that, in the regime of many weak scatterers, the conductance never goes above e2/3h, and it reaches 
this value on a length scale ~ l. This is the behaviour shown in Fig. 4a with the blue diamonds 
obtained from the numerical calculation (Tk = 36 mK). It is also the behaviour observed 



experimentally, for the conductance as a function of the split-gate voltage at high Vin or T (where 
oscillations are washed out), in Figs. 3b and 3d. A very different regime is obtained in the 
strong-coupling limit, where Tk,n go to zero to give gn = 1/2 for all n. There, G becomes e²/2h for an 
odd N and 0 for an even N, as shown by the black open circles in Fig. 4a. Between these regimes, for 
scatterers strong enough, a typical behaviour is shown by the red filled circles in Fig. 4a (Tk = 1.5 mK), 
namely, as a function of N, the conductance G oscillates around the value e²/3h, with G > e²/3h for odd 
N, and G < e²/3h for even N. The amplitude of these oscillations decreases as N increases, and G 
reaches eventually e²/3h for large N. 

In the experiment, one does not have direct access to the number of scatterers. However, the 
number of scatterers should be roughly proportional to the junction width, which is controlled by the 
applied split-gate voltage VS. We model the continuous VS dependence of the conductance by making 
the following reasonable assumptions: 
 - When no split-gate voltage is applied, the junction consists of a large number N, randomly 
placed inside the junction. In practice, we put 40 scatterers, with equal strength Tk, inside the range 
[10,10] on the x-axis. 
 - The effect of VS is modelled as a window function which reduces the effective width of the 
junction, with the strength of each scatterer going smoothly from Tk to ∞ (= zero-strength scatterer) 
when the scatterer position goes from inside to outside the effective width determined by VS. In 
practice, the strength of a given scatterer at position x is provided by the following function of VS: 
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where f is a sigmoid function 
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Supplementary Figure 7. Multiple-scatterer model, shown for the case of N = 4 scatterers. 



where w defines the width of the transition region of the window function (in practice, we have chosen 
w = 0.2). With this choice of window function, all scatterers are suppressed for negative VS 
(corresponding to completely pinched-off junction), and the number of active scatterers increases as 
VS increases, with all scatterers fully active when VS > 10. 

Choosing a relatively strong coupling strength Tk = 1.1 mK, with an applied voltage 20 µV at 
temperature 9 mK (for a single scatterer, these parameters give the conductance ~ 0.49 e²/h), we 
obtain the curves in Fig. 4b, each curve corresponding to a different random realization of the position 
of the scatterers. One can see that the major qualitative features of the experimental results are 
present; the amplitude of conductance oscillations around e²/3h decreases as VS is increased, while the 
inherent oscillating pattern depends on the fine details of the positions of the scatterers. 
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