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Abstract We investigate the effects of spin-momentum locking on the interference and
diffraction patterns due to a double- or single-slit in an electronic Gedankenexperiment. We
show that the inclusion of the spin-degree-of-freedom, when coupled to the motion direction
of the carrier—a typical situation that occurs in systems with spin–orbit interaction—leads
to a modification of the interference and diffraction patterns that depend on the geometrical
parameters of the system.

1 Introduction

The wave-particle duality is one of the fundamental paradigms introduced by quantum
mechanics, which tells us that every particle or quantum entity may be described as either a
particle or a wave [1]. In one of his “Lectures on physics” books, Feynman et al. [2] proposed
to verify the wave nature of electrons by performing a thought experiment analogous to the
one conducted by Thomas Young, performed in the first decade of the 1800s to show the
wave nature of light. The first experiment implementing the Young experiment with electrons
was realized by Jönsson [3,4] contemporaneously with the preparation of Feynman’s lecture
notes; these results were confirmed a few years later by a team of researchers at the University
of Bologna [5]. In this experiment, the two slits of the setup by Jönsson were substituted by
a biprism. Further refinement came after more than a decade with an experiment performed
at the Hitachi lab by Tonomura et al. [6]. The readers of the magazine “Physics World” of
the Institute of Physics selected these experiments to be the most beautiful ones in physics
of the past century [7].

Although this type of research has now been in large part delegated to the educational
framework [8,9], several groups in recent years tried to push the limits of the understanding
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of the validity of the wave-particle duality towards large quantum objects and molecules.
One of the most complex attempts was realized by considering interference and diffraction
of large C60 molecules [10–12]. This experiment was a breakthrough in the understanding
of the limits of quantum theory because the C60 molecule is close to being a classical object
when considering its many excited internal degrees-of-freedom and also the large possibility
of coupling to the environment that can lead to decoherence effects [10,13,14]. More recent
experiments verified interference effects in more complex molecular aggregates [15]. The
problem of addressing the “wave-particle duality” rationally in the framework of complex
quantum systems has been recently investigated by Carnio et al. [16].

In the standard setup for the double-slit experiment, the spin degree-of-freedom of the
electrons does not play any role. Some recent experiments focusing on electron beams carry-
ing orbital angular momentum [17] showed the appearance of dislocations in the interference
pattern. Here, we note a strong analogy with photons carrying an orbital angular momentum;
in fact these can be generated by a diffraction grating containing a dislocation [18]. Recently,
the role of Rashba spin–orbit interaction (RSOI) [19] was investigated in the interference
pattern in two-dimensional electron gases (2DEGs) [20] in a time-dependent fashion. The
authors conclude that the RSOI does not affect the interference pattern. However, from other
investigations it is known spin–orbit interaction is of importance in various quantum optics
phenomena, such as in spin-dependent double refraction and pumping [21,22].

In this work, we focus on an extreme case of the results presented in Ref. [20] by consider-
ing the surface states of three-dimensional topological insulators (3DTI). These surface states
are described by an effective Hamiltonian similar to the one of a 2DEG with RSOI but with an
infinite effective electron mass so that the parabolic kinetic term is zero [23]. In 2DEG with
RSOI, the surface electron states are characterized by the so-called spin-momentum locking
(SML), i.e., the spin orientation is strongly connected to the motion direction [24]. We study
two fundamental mechanisms of interference: one arising from a wave passing through a
double-slit opening and one by a single slit opening. In the former case, we assume that the
width of each slit is of the same order as the electron Fermi wavelength; in the latter case,
we relax this restriction. Conventionally, interference refers to the case of interaction of a
few waves, whereas diffraction considers the case of a large number of interacting waves.
Nevertheless, they represent the same physical wave mechanisms. Contrary to the results
of Ref. [20], we work only with stationary states, because the time-dependent part of the
wave-function would lead only to an overall intensity prefactor [25]. Throughout this work,
we compare the case of spinless electrons (SEs), i.e., electrons that are spin-degenerate, with
electrons with SML. We find that SML leads to a small but finite correction to the interference
and diffraction pattern in comparison with a SE system. These corrections can be of the order
of a few per cents and tend to disappear in the so-called far-field limit, whereas they are more
significant in the opposite near-field limit. Our results fall in the framework of the so-called
electron quantum optics [26] for ballistic chiral conductors. Extensions to the case of the edge
states of two-dimensional topological insulators have already been proposed [27–31]. The
present work represents an extension of electron quantum optics to the realm of topological
surface states.

The mechanism of modification of the interference patterns we study in this work
plays an important role when studying quasi-particle interference via scanning tunneling
microscopy/spectroscopy (STM/STS) [32] of the surface of 3DTI as Bi2Te3, Bi2Se3 or sim-
ilar topological layered material system when perturbed with normal or magnetic impuri-
ties [33,34].

The article is organized in the following way: in Sect. 2, we develop the general formalism
for studying interference from a double-slit and then diffraction from a single slit for the case
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of spinless electrons. In Sect. 3, we perform the same analysis by considering the surface state
electrons of 3DTI. We first present the low-energy physics of general 3DTIs, before moving
on to the high-energy physics of a more specific case valid for certain 3DTIs. In Sect. 4, we
present a comparison between the different cases and show the presence of a finite correction
due to SML. We end the work with conclusions and outlook in Sect. 5.

2 Case of spinless electrons

We start evaluating the interference and diffraction patterns for SEs in a 2DEG. They are
described by the quadratic Hamiltonian:

HSE = p2

2m∗ + V (r), (1)

wherem∗ is the effective electron mass of the 2DEG under investigation. In this Hamiltonian,
V (r) is a two-dimensional potential describing a wall with one or more slits, given by the
shape of the red lines in Fig. 1. Even though we do not explicitly need this potential in
our theory, as we work with point-like sources at the positions of the slits, some important
physical considerations must be kept in mind. The wall must have a width w that is larger
than the decay length ξ of the wavefunction inside the wall w > ξ , so that no tunneling will
take place. Further, the edges have to be smooth, at least on the order of the long wavelength
approximation [21].

2.1 Interference from double-slit setup

We consider first a double-slit setup: these are separated by a distance d and there is a distance
L between the slits and an observation plane. Here, we consider the case in which the opening
of each single slit h ∼ λF, where λF = 2π/kF is the Fermi wavelength associated with the
electron Fermi energy EF = h̄2k2

F/2m∗. We will relax this condition when we consider
the diffraction pattern in the next section. The two slits opening S1/2 are the source of two
circular plane waves that propagate to the observation point P on the screen at a distance
L—see Fig. 1a. The part of the wave function at the slits that will have an action on the point
P on the screen for a given Fermi momentum can be written as:

Ψ1/2 = eikFr1/2(y) , (2)

where ri is the distance between the corresponding slit Si and the observation point P. From
the geometric sketch in Fig. 1a, we have:

r1/2(y) = S1/2P =
√
L2 +

(
y ∓ d

2

)2

. (3)

In the following, we omit writing the explicit y dependence in the r functions.
The intensity at the observation point P is given by the modulus square of the sum of the

two wave functions in y:

ISE(y) = |Ψ int
tot |2 = |Ψ1 + Ψ2|2

= 2 {1 + cos {kF[r1 − r2]}} (4a)

= 4 cos2
{
kF

2
[r1 − r2]

}
. (4b)
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(a) (b)

Fig. 1 a Sketch of the double-slit setup for performing the interference experiments for the spinless electrons
and for the one with spin-momentum locking. b Sketch of the single slit setup for a diffraction experiment.
Here, the opening h is larger than the Fermi wavelength λF, the points in red in the slit act as secondary wave
source and give rise to a diffraction pattern on the screen

The quantity Δr = r1 − r2 represents the difference in the geometrical paths between the
electron travelling from S1 to P and from S2 to P.

For the difference between the two geometric paths, we find:

Δr = r1 − r2 = − 2yd

r1 + r2
(5a)

� − yd

L
(5b)

The approximation in Eq. (5b) is valid in the limit L > d and in classical optics it corresponds
to the far-field approximation [25]. Throughout the manuscript, we will always present results
using the definition in Eq. (5a).

2.2 Diffraction from a single slit

In this section, we relax the condition h ∼ λF and assume that the opening of the slit h is
larger than the Fermi wavelength λF. Under this assumption, there are N = int[h/λF] points
at a distance a = λF,—see Fig. 1b. Each of these points behaves as a secondary emitter of
an electron wave, analogously to the Huygens–Fresnel principle in optics [25]. Under this
assumption, the global wave function at the single slit Ψ dif

tot that will have an action on a point
P on the screen can be written as:

Ψ dif
tot =

N∑
m=1

eikFrm , (6)

where rm is the path between the secondary emitter and the observation point P—it is
expressed by a generalization of Eq. (3). The intensity DSE at the observation point y is
given by

DSE(y) = |Ψ dif
tot |2

= N +
N∑

m,n=1
n �=m

cos [kF(rn − rm)] . (7)
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We note in passing that if the observation plane is placed at very large distance L � h
and for y � λF, we can assume that the phase difference is kF(rn − rm) → (n − m)ϕ

, the expression for the diffraction pattern can be simplified to the following well-known
expression for the optical case [25]:

DSE =
[

sin
(
N ϕ

2

)
sin

(
ϕ
2

)
]2

(8)

where in leading order in L , we have

ϕ = 2π

λF

ay

L
. (9)

3 Case of spin-momentum-locked electrons

In this section, we consider the surface states of a 3DTI described by the following Hamil-
tonian

HSML = H3DTI + V (r)σz , (10)

where H3DTI is the term describing the surface states of the 3DTI and V (r) is again an
opportune two-dimensional potential describing the single or double-slit setup—see Fig. 1.
The potential V (r) is proportional to the Pauli matrix σz so as to open a gap in the linear
dispersion of the surface states locally in space. In the following, we will first concentrate
on the low-energy physics, with a Hamiltonian describing any generic 3DTI. We will then
move on to the physics at higher energies and include the hexagonal warping of the Fermi
surface, as happens at the surface of 3DTIs with a rhombohedral crystalline structure.

3.1 Low-energy case for the 3DTI

In this section, we will consider the low-energy approximation Hamiltonian describing the
surface states of a generic 3DTI, this reads:

H3DTI = vF (σ × p)z . (11)

This Hamiltonian is characterized by a linear spectrum E±(k) = ±h̄Fκ with κ =
√
k2
x + k2

y ,

and eigenstates

v± = 1√
2

(
1

∓ieiθ

)
, (12)

where θ = arctan(ky/kx ). It is worth noticing that these eigenstates are identical to the ones
that can be obtained for a 2DEG with RSOI [24].

3.1.1 Interference from double-slit setup

In order to study the interference pattern, we consider two plane waves with a spinorial
structure as introduced in Eq. (12):

Ψ̃1/2(y) = eikFr1/2(y)

√
2

(
1

−ieiθ1/2(y)

)
, (13)

where kF is the Fermi momentum of the wave associated with the Fermi energy EF = h̄vFkF,
and ri are the path the waves are propagating before interfering, see Eq. (3). As for the SE
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Fig. 2 The shift Δθ introduced
by SML as a function of the
position of the measurement
plane L for various detection
points y with respect to the center
of the system. The various values
of y from bottom to the top are:
0, 10, 20, 30, 40, 50 λF. We have
fixed d = 10 λF. The plot shows
the crossover from near-field to
far-field where the corrections
Δθ become negligible

case, the expression for the interference as a function of the position y along the detection
plane is given by

ISML(y) = |Ψ̃1 + Ψ̃2|2
= 2 + cos [kF (r1 − r2)]

+ cos [kF (r1 − r2) + θ1 − θ2] . (14)

By introducing Δθ = θ1 − θ2, we can simplify the previous expression in a more insightful
form:

ISML(y) = 2 + cos(kFΔr)[1 + cos(Δθ)]
− sin(kFΔr) sin Δθ. (15)

Here, we observe that for Δθ = 0 the correction due to SML goes to zero, and the interference
pattern reduces to the SE case in Eq. (4), whereas it is maximum for Δθ = ±π/2 and it is
equal to ISML(P) = 2 + cos(kFΔr) − sin(kFΔr).

The expression of the spin angle θi (x) can be obtained by a trigonometric arguments and
reads:

θ1/2(y) = arctan

(
y ∓ d

2

L

)
. (16)

The difference between the two angles can be expressed as

Δθ = θ1 − θ2

= arctan

(
y − d

2

L

)
− arctan

(
y + d

2

L

)
(17a)

= arctan

[
4dL

d2 − 4(L2 − y2)

]
, (17b)

that is an even function of the detector position y. The behavior of this function for fixed d ,
and as a function of L for various position of the detector y, is shown in Fig. 2. This angle
difference is zero for the two asymptotic values y → ±∞ and is largest and negative for
y → 0 with Δθ(0) = −2 arctan [d/2L]. As mentioned above, the first limit can be easily
understood because for measurement points far away from the center of the system, the two
electrons arrive with almost the same propagation direction, thus with parallel spins; on the
contrary, the second limit corresponds to maximizing the orientation difference of the two
spins. We learn from Eq. (17) that the correction to the double slit pattern due to SML depends
only on the geometrical parameters of the system y, d and L , whereas it does not depend on
Fermi wavelength λF.
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Fig. 3 a Shift of the first maximum on the interference for the case with SML as a function of the distance
between the slits d and the distance of the measurement plane L; b Shift of the first maximum on the diffraction
for the case with SML as a function of the number of secondary sources in the slit ni and the distance of the
measurement plane L . In both panels, the shift is expressed in units of the Fermi wavelength λF

Interestingly, the main effect on the interference pattern compared to the SE case is to
produce a shift of the position y0 of the first maximum, see Fig. 3. The shift depends on the
various geometrical parameters, namely the slit distance d and the distance of the observation
plane L . In Fig. 3a, we show how y0 depends on these parameters: we clearly observe that
the shift is very small in terms of the Fermi wavelength λF.

3.1.2 Diffraction from a single slit

As we already did for the case of spinless electrons, we now relax the condition h ∼ λF, to
study the modifications of the diffraction pattern due to the SML. Under this assumption, the
global wavefunction at the slit Ψ̃ dif

tot can be written as:

Ψ̃ dif
tot = 1√

2

N∑
m=1

eikFrm

(
1

−ieiθm

)
, (18)

where rm is the path between the emitter and the observation point P, and θm is the associated
angle of propagation that determines the spin direction imposed by SML. The total intensity
DSE at the observation point P is given by

DSML(y) = |Ψ̃ dif
tot |2

= N +
N∑

m,n=1
n �=m

{cos [kF(rn − rm)]

+ cos [kF(rn − rm) + (θn − θm)]} , (19)

In this expression for the diffraction in the presence of SML, the angles due to the spinorial
structures of the wave function are obtained by a generalization of Eq. (16), with the substi-
tution of the width of the opening d with the distance a between the electron emitters—see
Fig. 1b. It is clear that in the absence of SML, the expression for the diffraction pattern in
Eq. (19) reduces to the one in the case of SE in Eq. (7).
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Here again, we see the main effect of the SML is a shift of the position y0 of the first
maximum of the diffraction pattern, which is depicted in Fig. 3b as a function of the number
of secondary emitters ni within the slit, and the distance of the screen L .

As we did for the SEs in Eq. (8), we can for completeness recast the expression into a more
compact form in the far-field limit, where kF(rn−rm) → (n−m)ϕ and θm −θn → (n−m)χ ;
in this case Eq. (19) reduces to:

DSML = 1

2

[
sin

(
N ϕ

2

)
sin

(
ϕ
2

)
]2

+ 1

2

[
sin

(
N ϕ+χ

2

)
sin

(ϕ+χ
2

)
]2

(20)

where we defined ϕ in Eq. (9), and the shift due to the SML is of geometric origin only, and
given by

χ = a

L
. (21)

3.2 High-energy case for the 3DTI

In this section, we consider a Hamiltonian description of the surface states beyond the low-
energy approximation introduced in Eq. (11). It was observed experimentally that the shape of
the Fermi surface describing the surface states of 3DTIs in layered materials, such as Bi2Te3,
is circular only close to the crossing point of the Dirac dispersion. At higher energies, it departs
from this shape, becoming at first hexagonal and then assuming a snowflake shape [35]. These
changes in the structure of the Fermi surface can be accounted for within k · p theory by adding
an additional spin–orbit term to the Hamiltonian (11) describing the hexagonal warping [36].
This term can be constructed for surface states of rhombohedral crystalline structures solely
from symmetry considerations. It can reproduce the results obtained by ab initio calculations;
however, its simple structure allows for a simplified analysis revealing basic properties of
topological edge states. Within this framework, the effective k · p Hamiltonian describing
the surface states of a 3DTI reads:

H3DTI+w = H3DTI + β

2

(
p3+ + p3−

)
σz, (22)

where β is the strength of the hexagonal warping and p± = px ± i py . A more in-depth
analysis of the k · p Hamiltonian can be found in Ref. [36].

This Hamiltonian is characterized by the following spectrum:

E(κ, θ) = ±h̄
√

v2
Fκ2 + β2κ6 cos2(3θ) (23)

where κ is the modulus of the momentum, and the motion direction is characterized by the
azimuthal angle already defined earlier as θ = arctan(ky/kx ). We learn from this expression
of the spectrum at high energy that the states at the Fermi energy EF can have different values
of the modulus of the momentum κF for different propagation directions θ . This is different
from the circular symmetry configuration we have in the low-energy limit, for which the
modulus of the momentum is the same for all the propagation directions—see the two panels
of Fig. 4. The eigenstates maintain a spinorial structure that reads:

v±(κ, θ) = 1√
2N

(
b∓
β (κ, θ)

ieiθ

)
, (24)

where the normalization factor for the spinor is defined as

2N = [b−
β (κ, θ)]2 + 1, (25)
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(a) (b)

Fig. 4 Fermi surfaces for the low-energy case (a) and the high-energy one (b). The energy is fixed to EF

and the functions b±
β (κ, θ) are defined as

b±
β (κ, θ) = κ2β cos(3θ) ±

√
1 + v−2

F κ4β2 cos2(3θ). (26)

When the warping is absent (β → 0), the states in Eq. (24) coincide with the spinors in the
low-energy approximation in Eq. (12).

3.2.1 Interference from double-slit setup

As we already did in the low-energy approximation, we can define a wave-function at positive
energy EF and fixed propagation direction θ as:

Ψ̄1/2(y) = eiκ1/2r1/2(y)√
2N1/2

(
b−
β (κ1/2, θ1/2)

ieiθ1/2(y)

)
, (27)

where κ1/2 are the modulus of the momenta associated with the propagation directions θ1/2,
respectively (see Fig. 4); proceeding as we did in the previous section, we find the following
expression for the interference pattern:

ĪSML = 2 + 1√N1N2

[
cos(ζ1/2)b

−
β (κ1, θ1)b

−
β (κ2, θ2)

+ cos(ζ1/2 + Δθ)
]
, (28)

where ζ1/2 = κ1r1 − κ2r2. Importantly, we note from this last term that the phase difference
for the electron arriving from the two slits in addition to depending on the different geometric
paths r1 and r2 also depends on the different momenta κ1 and κ2. This is due to the distortion
of the Fermi surface caused by the warping in Hamiltonian (22) and can be considered as
an additional signature of the SML. In Fig. 5, we present the shift of the position of the first
maximum of interference obtained by Eq. (28) as a function of the distance between the
slits d and the position of the measurement plane L . We analyze the shift for two different
values of the warping of the Fermi surface. The value of the shift and the behavior with the
parameters is different for the two values of β.

123



811 Page 10 of 16 Eur. Phys. J. Plus (2020) 135:811

Fig. 5 Shift of the position first maximum of interference y0 for finite hexagonal warping: a β = 0.1 vF and
b β = 0.2 vF

3.2.2 Diffraction from a single slit

In order to define the diffraction pattern in the high-energy limit, we introduce the following
wave function accounting for N secondary emitters in the slit of opening h:

Ψ̄ dif
tot =

N∑
m=1

eiκmrm
√

2Nm

(
b−
β (κm, θm)

ieiθm

)
, (29)

The total intensity D̄SML at the observation point P is given by

D̄SML(y) = |Ψ̃ dif
tot |2

= N +
N∑

n,m=1
n �=m

1√NnNm

{
b−
β (κm, θm)b−

β (κn, θn) cos ζn/m

+ cos
[
ζn/m + (θn − θm)

] }
, (30)

where ζn/m = κnrn − κmrm and the normalization constants are Nm = [b−
β (κm, θm)]2 + 1.

This expression, in the limit of zero warping (β → 0), is identical to the diffraction expression
in Eq. (19). Also in this case we observe a shift of the first maximum of diffraction that behaves
similarly to the interference case we have shown in Fig. 5, as can be seen from Eq. (30) (not
plotted).

4 Comparisons

First, we will compare the case of SE with that of SML at low-energy. In this case, we can
define in a unique way a Fermi wavelength, the interference pattern will be characterized by
a single oscillation pattern, due to the absence of distortion of the Fermi surface. For a fixed
λF, the interference patterns in the two cases are almost identical: the oscillation frequency
is lead by the Fermi wavelength, but we will observe a shift y0 of the first maximum for
the SML case. For this reason, it is more informative to look at the normalized difference
between the interference patterns in the SE and SML cases. For this purpose, we define the
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(a)

(b)

(c)

(d)

Fig. 6 Interference pattern from a double-slit system as a function of the detection point y: a case of spinless
electrons; b case of electrons with spin-momentum locking in the low-energy approximation. For panel a, b,
we have d = 15 λF and L = 75 λF. Panels c, d give the percentage difference of the two previous cases for
100ΔI(y) in Eq. (31). In panel c, the distance between the slits is kept constant at d = 15 λF and the distance
of the L is varied between 50 λF (orange), 75 λF (blue), 100 λF (green). In panel d, the distance between
of the measurement plane is kept constant at L = 75 λF and the distance of the d is varied between 10 λF
(green), 15 λF (blue), 20 λF (orange)

following function

ΔI(y) = ISML(y) − ISE(y)

ISE(0)
. (31)

In Fig. 6a, b, we present the interference pattern for the SE and SML cases for a fixed set of
parameters d and L . In Fig. 6c, d of Fig. 6, we present ΔI(y) for fixed d and different L , and
for fixed L and various d , respectively. We see from Fig. 6c that this difference can be of the
order of almost 7.5%. It is important to note that in the two interference figures in Fig. 6a, b,
a distortion of the oscillation pattern can be observed for large values of the position y. This
distortion is present both in the SE and SML cases, this is a consequence of not considering
the far-field limit in the position function given in Eq. (5).
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(a)

(b)

(c)

(d)

Fig. 7 Diffraction pattern from a single-slit system as a function of the detection point y: a case of spinless
electrons; b case of electrons with spin-momentum locking in the low-energy approximation. For panel a, b,
we have L = 50 λF (blue), L = 100 λF (yellow) L = 500 λF (green), the number of secondary emitter is set
to 8. Panel c, d percentage difference of the two previous case 100ΔD(y) in Eq. (32). In panel c, we consider
the case of 8 secondary emitters and the three distance L as in panel a, b, in panel d the number of secondary
emitters is 15 and the three distance L as in panel a, b

We now perform the same kind of comparison for the case of the single-slit diffraction
pattern; as for the interference case, we introduce an intensity ratio function:

ΔD(y) = DSML(y) − DSE(y)

DSE(y0)
(32)

for a fixed set of geometrical parameters h and L . The comparison of the diffraction pattern
for various sizes of the single slit h is shown in Fig. 7 moving from the near-field to the
far-field case. For an observation plane placed at larger distance, we observe a larger central
maximum, whereas the side maxima are not always visible. Similarly to the double-slit case,
we observe that the corrections (Fig. 7c, d) are larger when the observation plane is placed
at a distance L not too large compared to the overall opening of the slit h. The corrections
can be up to the order of 2.5% in the case of a larger slit in Fig. 7d.
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(d)

(c)

(b)

(a)

Fig. 8 The warping effects from Eq. (22), the interference pattern from a double-slit is shown in panel a–c
for L = 75 λF and d = 15 λF and EF = 2π , in panel a there is no warping, in panel b β = 0.05 and in panel
c β = 0.1. The diffraction pattern from a single slit is shown in panel d for the same energy as in a with 8
secondary emitters and L = 75 λF, the three curves correspond to the same value of β as in panel a–c. In the
inset of panel d, we show the Fermi surface corresponding to the two values of β and EF = 2π

We will now present results of the interference pattern from a double-slit and the diffraction
pattern from a single-slit, for the case with warping corrections as in Hamiltonian (22). We
will compare these results to the SML in the low-energy case with β = 0, other comparisons
are problematic due to the impossibility of defining a unique Fermi wavelength in the high-
energy case, as discussed in Sect. 3.2. We present two different cases with a finite warping
β for the interference pattern in Fig. 8b, c. We immediately observe a second period of
oscillation due to the different momenta characterizing the Fermi surface in the presence of
warping—see inset of Fig. 8d. The main effect in the diffraction pattern from a single-slit,
in addition to introducing a change in the oscillations, is to enlarge the size of the central
maximum.

5 Conclusions and outlook

In this article, we have evaluated the effect of the locking of the spin-degree-of-freedom to
the motion direction, typical for systems with spin–orbit interaction. We have shown that
the spin-momentum locking leads to a small but finite correction to the interference and
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diffraction patterns for electrons going through a single or a double-slit system. In particular,
we have investigated a two-dimensional electron system given by the electrons confined on the
surface of three-dimensional topological insulators. This electron system has the peculiarity
of having a kinetic Hamiltonian that is originating from spin–orbit interaction only. We
considered both the low-energy limit and the high-energy generalization, in which case a
cubic in momentum spin–orbit term takes into account the warping of the Fermi energy. In
the high-energy limit, we found, in addition to a small correction, the appearance of different
oscillatory contributions arising from the warping of the Fermi surface.

Here, we present a proposal for realizing a slit experiment in a solid-state platform based
on using the two-dimensional electron gas of noble metals for the SE case, and a 3DTI for
the case of SML electrons. Both require the use of an STM for the manipulation of atoms
of a surface. In the SE case, we can consider CO molecules placed on Cu(111) [37–40], this
technique allows to place with atomic precision molecules on specific positions of the metal
surface; in general, the CO molecules act as repulsive barriers for the free electrons on the
surface of the noble metal. The CO molecules can be arranged to form two parallel walls,
one containing one or more slits and the opposite without opening. Similar to the case of
a terrace or step edges on the surface Cu(111) the two walls will generate standing plane
waves [41–43]. The tip of the STM can then be used as a local probe for measuring the local
density of states at the detection point P on the screen—see Fig. 1a. In a similar fashion,
we can measure the shift introduced by the SML, by substituting the Cu(111) surface with a
3DTI material such as Bi2Te3 or Bi2Se3. We then also need to substitute the CO molecules
with magnetic molecules [44], so as to locally gap the linear dispersion—see Eq. (10). For
the case of a 3DTI, a weak magnetic field can also be used to enhance some of the physics
discussed in this manuscript. It should lead to an additional shift of the first maximum of
interference for the case of SML, while it will have no significant effect in the case of SEs.
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Appendix A: On the diffraction formula

In this appending, we present the derivation for the diffraction formula in the leading order in
L−1 presented in Eq. (8) or (20). The main step is to expand all the cos[(n −m)ϕ] = cos �ϕ

into exponential functions so that

DSE −→ e−i(N−1)ϕ

(
N∑

m=0

eimϕ

)2

, (A.1a)

= e−i(N−1)ϕ

(
1 − eiNϕ

1 − eiϕ

)2

, (A.1b)

= ei(N−1)ϕ

(
ei (N−1)ϕ

2
sin(Nϕ/2)

sin(ϕ/2)

)2

, (A.1c)
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=
⎡
⎣ sin

(
Nϕ
2

)
sin

(
ϕ
2

)
⎤
⎦

2

, (A.1d)

where in (A.1a) we have used the properties of geometric series:
∑N

n=0 r
n = (1−r N+1)/(1−

r). A similar expression is obtained starting by Eq. (19) with the introduction of the spin
parameter χ .
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