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Crystallization of levitons in the fractional quantum Hall regime
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Using a periodic train of Lorentzian voltage pulses, which generates solitonlike electronic excitations called
levitons, we investigate the charge density backscattered off a quantum point contact in the fractional quantum
Hall regime. We find a regular pattern of peaks and valleys, reminiscent of analogous self-organization recently
observed for optical solitons in nonlinear environments. This crystallization phenomenon is confirmed by
additional side dips in the Hong-Ou-Mandel noise, a feature that can be observed in present-day electron quantum
optics experiments.
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I. INTRODUCTION

The emergence of self-organized ordered patterns is a wide
and fascinating field of physics, including, among its most in-
triguing examples, the formation of structures repeating them-
selves with a regular shape in time. In this context, observations
of optical solitons in a nonlinear background propagating with
a spontaneously ordered temporal profile have been recently
reported [1–3]. In the framework of electron quantum optics
[4–6], a train of Lorentzian voltage pulses naturally emerges
as the best candidate to realize the solid-state analog of optical
solitons, namely, robust ballistically propagating wave packets
carrying a single electron with no additional particle-hole pairs
[7–11]. These minimal excitations, called levitons, represent
one of the most reliable tools to inject single electronic
states into ballistic channels of mesoscale devices [12–15]
and have been recently exploited to reproduce some famous
quantum-optical experiments, such as Hanbury Brown–Twiss
(HBT) and Hong-Ou-Mandel (HOM) interferometries, at
the fermionic level [16,17]. These fascinating experimental
results open up the possibility of exploiting levitons as flying
qubits with appealing applications for quantum information
processing [11,18]. Moreover, similar to solitons, q different
levitons travel unhindered along one-dimensional electronic
edge states and can be controllably superimposed, thus
forming many-body states called multielectron levitons, or,
simply, q-levitons [18,19].

However, it is well known that one-dimensional electronic
systems are drastically affected by electron-electron interac-
tions. The latter can induce, for instance, the arrangement of
electrons in a static regular pattern in space, a phenomenon
known as Wigner crystallization [20–27]. A seminal example
of strongly interacting electron systems is provided by the frac-
tional quantum Hall (FQH) effect [28]. Here, one-dimensional
channels at the boundaries of the Hall bar are described in terms
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of chiral Luttinger liquids [29], whose direction of propagation
is imposed by the external magnetic field. In these systems
the connection between time and space given by chirality
opens the way to the possible realization of the real-time
version of the interaction-induced crystallization by applying
time-dependent voltage pulses directly to the edge channels.

In this paper, we propose FQH states belonging to the
Laughlin sequence [30], where a single mode exists on each
edge, as a test bed to observe the crystallization of robust
q-leviton excitations in condensed-matter systems. Here, the
charge density reflected by a quantum point contact (QPC)
shows a q-peaked structure as a consequence of the interaction-
induced rearrangement in the time domain, openly in con-
trast to the featureless profile observed in the integer case.
To confirm the correlated character of the crystal state, we
demonstrate that these features generate unexpected side dips
in the noise profile of HOM collisional experiments, which are
within reach for present-day technology [16,31–35].

This paper is organized as follows. Section II exposes the
model and the setup. In Sec. III, we present the derivation
of the excess density, and we discuss the crystallization of
levitons. Then, in Sec. IV, we describe possible experimental
signatures of the crystallization of levitons in the HOM setup.
Finally, Sec. V is devoted to our conclusion. An Appendix is
devoted to technical details concerning the equation of motion
in presence of a voltage drive.

II. MODEL

We consider a four-terminal FQH bar in the presence of a
QPC, as shown in the inset of Fig. 1. The Hamiltonian H =
H0 + Hs + HT consists of edge states and source and tunneling
terms, respectively. For a quantum Hall system with filling fac-
tor ν in the Laughlin sequence ν = 1/(2n + 1) [30], with n ∈
N, a single chiral mode emerges at each edge of the sample. The
effective Hamiltonian for the edge states reads (h̄ = 1) [29]

H0 =
∑

r=R,L

v

4π

∫
dx[∂x�r (x)]2. (1)
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FIG. 1. Inset: sketch of the setup. The pulses originate from
contacts 1 (top edge, x � −d) and 4 (bottom edge, x � +d) and
propagate along the edge states of a FQH system. They may be
either reflected or transmitted at x = 0 due to the presence of a QPC.
Main panels: Excess charge density �ρL(−d, t ) evaluated in terminal
2 (i.e., x = −d) in the presence of a single source for q = 5 and
q = 6, in units of e|�|2ωc

2πv3 . Two different filling factors are considered:
ν = 1

3 (solid lines) and ν = 1
5 (dashed lines). The other parameters

are W = 0.04T , kBθ = 10−3ω, and ω = 0.01ωc.

Here, bosonic fields �R/L, satisfying [�R/L(x),�R/L(y)] =
±iπsgn(x − y), describe right- and left-moving excitations
propagating at velocity v along the edge. Annihilation fields
for Laughlin quasiparticles carrying fractional charge −νe

(with e > 0) are defined through the standard procedure of
bosonization [29]. They read

ψR/L(x) = FR/L√
2πa

e−i
√

ν�R/L(x), (2)

where a is a short-distance cutoff and FR/L are the Klein
factors [29,36,37]. The source term

Hs =
∑

r=R,L

∫
dx �(∓x − d )Vr (t )ρr (x) (3)

couples charge densities ρR/L(x) = ± e
√

ν

2π
∂x�R/L(x) with two

voltage gates acting separately on the right- and left-moving
excitations. Here, the step function �(∓x − d ) describes the
experimentally relevant situation of infinite, homogeneous
contacts. Equations of motion for the bosonic fields in the
presence of the source term are solved in terms of the
single-variable fields φR/L in the equilibrium configuration

VL = VR = 0. The solutions read (see the Appendix)

�R/L(x, t ) = φR/L

(
t ∓ x

v

)
− e

√
ν

∫ t∓ x
v

0
dt ′VR/L(t ′). (4)

This characteristic chiral dynamics is a consequence of the
linear dispersion of edge states for all filling factors in the
Laughlin sequence.

The soliton crystal phase in the FQH regime is at its
best when considering purely electronic excitations devoid of
additional particle-hole pairs, i.e., the aforementioned levitons
[16]. As both theory and experiments indicate, such unique
states emerge in response to well-defined voltage pulses of
Lorentzian shape [7–9,16]. To make contact with experiments,
we will thus consider a periodic train of Lorentzian pulses,

V (t ) =
+∞∑

k=−∞

V0

π

W 2

W 2 + (t − kT )2
, (5)

with period T = 2π
ω

, amplitude V0, and width 2W . In partic-
ular, we will focus on quantized pulses carrying an integer
charge −qe = e2ν

2π

∫ T
0 dtV (t ), here named q-levitons.

Finally, the tunneling between the two edges occurs through
a QPC at x = 0. Assuming that the QPC is working in
the weak backscattering regime, the tunneling of Laughlin
quasiparticles between opposite edges is the only relevant
process [38–41]. The corresponding Hamiltonian is HT =
�ψ

†
R (0)ψL(0) + H.c., with � being the constant tunneling

amplitude.

III. DENSITY AND LEVITON CRYSTALLIZATION

The formation of a q-leviton crystal can be seen from the
behavior of the excess charge density, defined as

�ρR/L(x, t ) = 〈ρR/L(x, t )〉 − 〈
ρ

(0)
R/L(x, t )

〉
. (6)

Here, density operators evolve in time according to Eq. (4),
and

ρ
(0)
R/L(x, t ) = ±e

√
ν

2π
∂xφR/L(t∓) (7)

is the charge density operator at equilibrium (VR = VL = 0).
The assumption of the weak-backscattering regime allows
us to calculate the excess charge density perturbatively in
the tunneling Hamiltonian HT . Thermal averages are thus
performed over the initial equilibrium density matrix in the
absence of tunneling.

Calculations are usefully carried out in terms of quasipar-
ticle correlation functions G

(qp)
R/L(x ′, t ′; x, t ) = 〈ψ†

R/L(x ′, t ′)
ψR/L(x, t )〉. The equilibrium quasiparticle correlation func-
tions can be evaluated through the standard bosonization
technique and yield G

(0)
R/L(x ′, t ′; x, t ) = G0(t ′∓ − t∓), with (we

use the notation t∓ = t ∓ x
v

throughout the paper)

G0(τ ) = 1

2πa

[
πkBθτ

sinh (πkBθτ )(1 + iωcτ )

]ν

. (8)

Here, θ is the temperature, and ωc = v
a

is the high-energy

cutoff. The fact that G
(0)
R/L effectively depends on a single-

variable function is a joint consequence of the chirality of
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Laughlin states and translational invariance at equilibrium. De-
viations from the equilibrium correlators, defined as �G

(qp)
R/L =

G
(qp)
R/L − G

(0)
R/L, carry all the information about the propagation

of levitons.
Let us initially create only right-moving excitations by

imposing VR (t ) = V (t ) and VL(t ) = 0. This experimental
configuration, in which pulses from a single source are par-
titioned against a beam splitter, is usually termed the HBT
setup [12,42,43]. In this configuration the right-moving excess
correlator reads

�G
(qp)
R (x ′, t ′; x, t )

= −2iG0(t ′− − t−) sin

(
π (t ′− − t−)

T

) q∑
k=1

ϕk (t−)ϕ∗
k (t ′−),

(9)

where the functions

ϕk (t ) =
√

sinh
(
2π W

T
)

2

sink−1
(
π t−iW

T
)

sink
(
π t+iW

T
) (10)

are periodic wave functions with period 2T [18,44]. They gen-
eralize the set of single-electron wave functions introduced for
the Lorentzian pulse [13,45,46] and form a complete orthonor-
mal basis, thus satisfying the condition

∫ T
0

dt
T ϕk (t )ϕ∗

k′ (t ) =
δk,k′ . Let us notice that Eq. (9) reduces to the so-called single-
electron coherence function (a crucial tool in the context of
electron quantum optics) in the limit of free fermions (ν = 1)
and infinite period [13,45]. Excess correlators for quasiholes
can be defined similarly as �G

(qh)
R = 〈ψR (x ′, t ′)ψ†

R (x, t )〉 −
G

(0)
R , yielding

�G
(qh)
R = 2iG0(t ′− − t−) sin

(
π

t ′− − t−
T

) q∑
k=1

ϕ∗
k (t−)ϕk (t ′−).

(11)

The excess density in Eq. (6) varies significantly when evalu-
ated before and after the scattering of injected particles at the
QPC. Indeed, before the scattering we have �ρL(x, t ) = 0,
while �ρR (x, t ) can be readily obtained by evaluating the
excess quasiparticle correlator at equal times and positions.
In the region −d < x < 0 (that is, downstream of the contact
but still before the QPC) we find

�ρR (x, t ) = e

vT

q∑
k=1

|ϕk (t−)|2 = e2ν

2πv
V (t−) (12)

since |ϕk (t )|2 = eνV (t )
qω

for each k. We note that Eq. (12) is
nothing but the single-particle density of a q-particle state
described by a Slater determinant formed by the set of wave
functions {ϕk}, k = 1, . . . , q [13]. Remarkably, this excess
density does not display any qualitative difference between
the integer and fractional cases.

Nonlinear tunneling, typical of the interacting FQH phase,
is, however, expected to influence the propagation of levitons
after the scattering at the QPC [38,47]. We thus focus on
the excess density backscattered into the left-moving channel,
namely, �ρL(x, t ), with x < 0. Since the QPC is assumed to
work in the weak-backscattering regime, we are allowed to

set up a perturbative expansion in the tunneling amplitude �

for the charge density operator ρL(x) = − e
√

ν

2π
∂x�L(x), which

reads

ρL(x, t ) = − e2ν

2πv
VL

(
t ∓ x

v

)
+ ρ

(0)
L (x, t ) + ρ

(1)
L (x, t )

+ ρ
(2)
L (x, t ) + o(�3). (13)

Here, ρ
(0)
L (x, t ) is given by Eq. (7), while subsequent contri-

butions are given by

ρ
(1)
L (x, t ) = i

∫ t

−∞
dt ′

[
HT(t ′), ρ (0)

L (x, t )
]

=−�(−x)iνe

{
�

v
ψ

†
R (0, t+)ψL(0, t+) − H.c.

}
,

(14)

ρ
(2)
L (x, t )

= i2
∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

[
HT(t ′′),

[
HT(t ′), ρ (0)

L (x, t )
]]

= i

∫ t+

−∞
dt ′′

[
�ψ

†
R (0, t ′′)ψL(0, t ′′) + H.c. , ρ (1)

L (x, t )
]
.

(15)

Note that the step function in ρ
(1)
L (x, t ) is directly related to

the effect of backscattering at x = 0.
We thus get the excess charge density to lowest nonvanish-

ing order in the tunneling, which reads

�ρL(x, t ) = −eν|�|2
v

∫ t+

−∞
dt ′

[
�G

(qp)
R (0, t ′; 0, t+)

− �G
(qh)
R (0, t ′; 0, t+)

]
G0(t ′ − t+) + H.c. (16)

According to the completeness of the set {ϕk}, the above result
can be recast in the more compact and physically insightful
form

�ρL(x, t ) = e|�|2
v3T

q∑
k=1

+∞∑
p=1

Re[ck,pϕk (t+)ϕ∗
p(t+)], (17)

where coefficients ck,p depend on the temperature θ and the
filling factor ν. In terms of the overlap integrals gkp(t̄ ) =∫ T

0
dt
T ϕk (t + t̄ )ϕ∗

p(t ), they are given by

ck,p = −16πνv2

ω

∫ 0

−∞
dt ′g∗

kp(t ′) sin

(
πt ′

T

)
Im

[
G2

0(t ′)
]
.

(18)

In an ordinary metallic system (ν = 1), they reduce to
ck,p = δk,p, so that Eq. (17) becomes simply �ρL(x, t ) =
e|�|2
v3T V (t+). Thus, backscattered pulses at ν = 1 maintain the

same Lorentzian shape as the injected ones.
Conversely, the excess density in a Laughlin FQH system

departs strongly from the trivial metallic result, as we show in
Fig. 1 for ν = 1

3 and ν = 1
5 and different values of q. Here, we

focus on the excess density measured in terminal 2, i.e., for
x = −d [48]. Due to the strongly correlated background, the
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q-leviton state backscattered off the QPC is rearranged into
an oscillatory pattern with the number of peaks exactly equal
to q, regardless of any other parameter. The amplitude of the
oscillations increases with decreasing filling factor (that is, for
stronger correlations). These patterns suggest that scattering
at the QPC creates a correlated structure of q separated and
comoving levitons. In analogy with other strongly correlated
phases in condensed matter [22,49,50], we interpret this
structure as a crystallization of the q-leviton state. However,
in contrast to Wigner crystallization, the arrangement induced
by interaction does not show a static profile, but rather a
propagating one, thus leading to the emergence of a regular
structure in time and not only in space. Due to the solitonlike
nature of levitons [7], this process presents an intriguing
analogy with the formation of the optical soliton crystal in the
presence of a nonlinear environment [1], albeit in a completely
different context.

In passing, let us comment on the parity of excess density
shown in Fig. 1. In this light, it is useful to further manipulate
Eq. (16) in such a way that

�ρL(x, t ) = e|�|2
v3T

q∑
k=1

+∞∑
p=1

{Re[ck,p]Re[ϕk (t+)ϕ∗
p(t+)]

− Im[ck,p]Im[ϕk (t+)ϕ∗
p(t+)]}. (19)

Here, Re[ϕk (τ )ϕ∗
p(τ )] and Im[ϕk (τ )ϕ∗

p(τ )] are, respectively,
an even function and an odd function of τ since ϕk (τ ) =
−ϕ∗

k (−τ ) [see Eq. (10)]. It is thus clear that the excess density
does not have a definite parity with respect to t+ = t + x

v
for a

generic value of ν, as both an even term and an odd component
are present in Eq. (19). In the noninteracting case (ν = 1), the
coefficients ck,p are real valued, and the excess density reduces
to an even function of t+.

IV. EXPERIMENTAL SIGNATURES IN CURRENT NOISE

A direct observation of the oscillating density would require
a real-time measurement of the backscattered current with

extremely high temporal resolution. Moreover, this observa-
tion alone would not be conclusive proof of the crystallization
process. In order to indubitably relate the oscillations of the
density to the crystallization of levitons, one has to further
investigate the density-density or current-current correlators
[23,51]. The very special nature of the q-leviton crystal, which
is not confined to a finite spatial region, but rather moves
rigidly along the edges, lets us envisage an experimental
test based on the cross correlations of two flying crystallized
patterns. In this light, we propose to perform a much more
feasible zero-frequency measurement of current noise in a
HOM experimental setup [12,32,52]. In this configuration, a
second train of levitons (identical to the first one) is generated
in terminal 4 and delayed by a tunable time shift tD . We
describe the HOM setup by setting VR (t ) = V (t ) and VL(t ) =
V (t + tD ). A genuine crystallization process is expected to
manifest as oscillations in the current noise analyzed as a
function of the delay tD . As a side note, let us observe that
intensity-intensity correlation measurements are analogously
performed to probe the crystallization of solitons in the optical
domain [1].

We thus focus on the zero-frequency cross correlation
between terminals 2 and 3, defined as

S23 = v2
∫ T

0

dt

T

∫ +∞

−∞
dτ [〈ρR (d, t + τ )ρL(−d, t )〉

− 〈ρR (d, t + τ )〉〈ρL(−d, t )〉]. (20)

A standard procedure is to normalize the HOM signal with
respect to the HBT one [32,53]. We thus define the ratio

R = SHOM
23 (tD ) − Svac

23

2SHBT
23 − 2Svac

23

, (21)

where SHOM
23 and SHBT

23 are the cross correlators measured,
respectively, in the HOM and HBT configurations discussed
above and read

SHOM
23 = (νe)2|�|2

∫ T

0

dt

T

∫ +∞

−∞
dτ

[
G

(qp)
R

(
0, t + τ − d

v
; 0, t − d

v

)
G

(qh)
L

(
0, t + τ − d

v
; 0, t − d

v

)

+ G
(qh)
R

(
0, t + τ − d

v
; 0, t − d

v

)
G

(qp)
L

(
0, t + τ − d

v
; 0, t − d

v

)]
, (22)

SHBT
23 = (νe)2|�|2

∫ T

0

dt

T

∫ +∞

−∞
dτ

[
G

(qp)
R (0, t + τ ; 0, t ) + G

(qh)
R (0, t + τ ; 0, t )

]
G0(τ ). (23)

Note that we have isolated the desired signal by subtracting equilibrium fluctuations

Svac
23 = 2(νe)2|�|2

∫ +∞

−∞
dτG2

0(τ ), (24)

obtained with both sources off. As for the excess charge density, these quantities are evaluated to lowest order in the tunneling in
terms of quasiparticle and quasihole correlators. The result reads [54]

R = 1 +
∫ T

0 dt
∫ +∞
−∞ dt ′

[
�G

(qp)
R (0, t ′; 0, t )�G

(qh)
L (0, t ′; 0, t ) + �G

(qp)
L (0, t ′; 0, t )�G

(qh)
R (0, t ′; 0, t )

]
2

∫ T
0 dt

∫ +∞
−∞ dt ′

[
�G

(qp)
R (0, t ′; 0, t ) + �G

(qh)
R (0, t ′; 0, t )

]
G0(t ′ − t )

, (25)
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where we have used the relation �G
(qp)/(qh)
L (0, t ′; 0, t ) =

�G
(qp)/(qh)
R (0, t ′ + tD; 0, t + tD ). We now note that the com-

pleteness of the orthonormal set of wave functions guarantees
that ϕk (t + tD ) = ∑+∞

p=1 gkp(tD )ϕp(t ). By using this result,
the ratio can be conveniently formulated in terms of overlap
integrals

R = 1 −
∑q

k,k′=1

∑+∞
p,p′=1 Re

[
wk

pp′gk′p(tD )g∗
k′p′ (tD )

]
vq

, (26)

where the coefficients wk
pp′ and vq encode the dependence on

interaction and temperature and are given by

wk
pp′ =

∫ T

0

dt

T

∫ +∞

−∞
dτ ϕk (t )ϕ∗

k (t + τ )

× ϕp(t )ϕ∗
p′ (t + τ ) sin2

(πτ

T
)
G2

0(τ ), (27)

vq =
q∑

k=1

∫ +∞

−∞
dτ sin

(πτ

T
)
g∗

kk (τ )G2
0(τ ). (28)

In the free-fermion case and low-temperature limit we find
wk

pp′ = δk,pδk,p′ and vq = q. Then, Eq. (26) reduces to R =
1 − 1

q

∑q

k=1

∑q

k′=1 |gk′k (tD )|2, in accordance with previous
results [18,53].

The HOM ratio at ν = 1 consists of a single, smooth dip
shown with dashed lines in Fig. 2 for different values of q.
The absence of any additional structure at ν = 1 confirms
the uncorrelated nature of levitons in the Fermi-liquid state.

FIG. 2. Ratio R as a function of the time delay tD for q = 1, q =
4, q = 5, and q = 6. The integer case (dashed lines) and the fractional
case for ν = 1

3 (solid lines) are compared. The other parameters are
W = 0.04T , kBθ = 10−3ω, and ω = 0.01ωc.

Conversely, solid lines in Fig. 2 show the behavior of R(tD )
at fractional filling ν = 1

3 for the same values of q. We first
notice that completely destructive interference between the
two signals always occurs at tD = 0 (as demonstrated by the
total central dip), whether the system is interacting or not.
This shows that electron-electron interactions in single-edge-
mode Laughlin states do not induce decoherence effects, in
contrast to the role played by interactions in the ν = 2 integer
quantum Hall effect, where two copropagating edge states
exist [33,55]. At q = 1, the ratio exhibits the same behavior
for integer and fractional filling factors [9]. This is related
to the fact that backscattering of a single leviton generates a
simple signal with no internal peak/valley structure. For higher
values of q, rearrangement of q-leviton excitations generates
peculiar features that distinguish between the noninteracting
and strongly correlated phases. Plots at ν = 1

3 clearly show
the presence of oscillations in the current-current correlators
for q > 1, with 2q − 2 new dips aside from the principal one
at tD = 0. It is interesting to notice that their arrangement
bears similarities to the behavior of �ρL(x, t ) shown in Fig. 1.
Indeed, as for the excess density, the spacing between maxima
and minima of R(tD ) tends to widen while approaching the
ends of the period. These features unambiguously identify
the effects of the strongly correlated FQH phase on leviton
excitations, in striking contrast to the uncorrelated Fermi-
liquid phase. A similar pattern was predicted in Ref. [33]
and experimentally observed in Ref. [34], where the internal
peak-valley structure is generated by a fractionalization effect

FIG. 3. Ratio R as a function of the time delay tD for q = 3, q =
4, q = 5, and q = 6. The integer case (dashed lines) and the fractional
case for ν = 1

3 (solid lines) are compared. The other parameters are
W = 0.1T and ω = 0.01ωc.
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FIG. 4. Ratio R as a function of W/T for q = 3, q = 4, q = 5,
and q = 6. The integer case (dashed lines) and the fractional case for
ν = 1

3 (solid lines) are compared. The other parameters are tD = 0.5T
and ω = 0.01ωc.

in a ν = 2 quantum Hall interferometer. Here we argue that the
new side dips must be related to the unprecedentedly reported
process of crystallization of q-levitons in FQH edge states, as
no fractionalization occurs in the single-edge-mode Laughlin
sequence. Therefore, the appearance of local maxima and
minima in the current-current correlators at fractional filling
factors proves the existence of a q-leviton crystal in the time
domain induced by interactions.

By increasing the ratio between the width of the pulses
and the period, the peak-to-valley amplitude of oscillations is
enhanced for fractional filling factors, while for the integer case
the situation is qualitatively unchanged, as depicted in Fig. 3.
The principal downside is that some of the oscillations that
are clearly visible for sharper pulses are now lost since pulses
belonging to neighboring periods start to overlap significantly.
Therefore, the choice of increasing the ratio W/T makes it
easier to observe the presence of oscillations in the current-
current correlators, even though some dips inevitably dis-
appear. Complementary information can be drawn by fixing
a value of the delay tD and inspecting the shape of the
ratio R as the ratio W/T is varied. The plots of R as a
function of W/T for different values of q are shown in
Fig. 4, where we set tD = 0.5T since the signal is bigger
and oscillations are more pronounced for such a value of
the delay. Interestingly, the integer and fractional cases show
dramatically different behavior. In the former case, the ratio
is smoothly decreasing without any particular feature. In the
latter, conversely, it oscillates for quite a large interval of

W/T , before eventually decreasing. Furthermore, the number
of peaks appearing for fractional filling factors is exactly
equal to q. This additional experimental investigation could
significantly help in discriminating between the crystallized
and the noncrystallized regimes. Finally, it is worth noting that
the same behavior of the ratio can be observed for all filling
factors in the Laughlin sequence. Such universality tells us that
interactions in Laughlin FQH states are always strong enough
to induce a complete crystallization.

V. CONCLUSIONS

The strongly correlated phase of FQH systems is able to
crystallize levitons, solitonlike excitations in the realm of
condensed matter, after their tunneling at a QPC. This process
rearranges the excess density of levitons in a regular oscillating
pattern, showing as many peaks as the number of injected
particles. The amplitude of the oscillation gets enhanced by
increasing the strength of interactions. The crystallization of
levitons represents an electronic counterpart of soliton crystals
realized with photons in optical fiber setups. Experimental
evidence of this effect can be found in a Hong-Ou-Mandel
interferometer, where unexpected dips in the noise reveal the
crystallization mechanism. This kind of experiment is within
reach for present-day technology. Possible extensions include
the investigations of related setups as optimal sources for frac-
tionally charged single anyons [56], as well as crystallization
of levitons in the exotic 5/2 FQH state [57].
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APPENDIX: EQUATIONS OF MOTION IN THE PRESENCE
OF A VOLTAGE DRIVE

We consider the edge modes �R/L in the presence of two
generic voltages VR/L(x, t ) coupled separately with right- and
left-propagating states, respectively. The Hamiltonian reads

H0 + Hs =
∑

r=R,L

{
v

4π

∫
dx[∂x�r (x)]2

± e
√

ν

2π

∫
dx Vr (x, t )∂x�r (x)

}
, (A1)
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with the upper (lower) sign referring to mode R (L). Equations
of motion for bosonic fields are

(∂t ± v∂x )�R/L(x, t ) = −e
√

νVR/L(x, t ) (A2)

and are solved by

�R/L(x, t ) = φR/L(t∓) − e
√

ν

∫ t

0
dsVR/L[x ∓ v(t − s), s],

(A3)

where φR/L(t∓) are the fields at equilibrium. Due to the linear
dispersion relation of quantum Hall edge states in the Laughlin
sequence, they evolve chirally and can be written as a function
of one single variable t∓ = t ∓ x

v
. Using the factorization

VR/L(x, t ) = �(∓x − d )VR/L(t ), which is reasonable in the

case of two homogeneous, semi-infinite contacts driven with
time-dependent pulses VR/L(t ), we get

�R/L(x, t ) = φR/L(t∓) − e
√

ν

∫ t∓− d
v

0
dsVR/L(s). (A4)

The constant time shift d/v has no physical effect in our
calculations, and we can safely neglect it. It is worth noticing
that from the bosonization identity one has

ψR/L(x, t ) = FR/L√
2πa

e−i
√

νφR/L(t∓ )eiνe
∫ t∓

0 dsVR/L(s). (A5)

Thus, quasiparticle fields ψR/L(x, t ) experience a phase shift
due to the presence of the oscillating voltage VR/L(t ).
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