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We theoretically investigate spin transport at the interface between a ferromagnetic insulator (FI) and a
superconductor (SC). Considering a simple FI-SC interface model, we derive formulas for the spin current
and spin-current noise induced by microwave irradiation (spin pumping) or the temperature gradient (the spin
Seebeck effect). We show how the superconducting coherence factor affects the temperature dependence of the
spin current. We also calculate the spin-current noise in thermal equilibrium and in nonequilibrium states induced
by the spin pumping and compare them quantitatively for an yttrium iron garnet–NbN interface.
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I. INTRODUCTION

Spin transport in hybrid systems composed of supercon-
ductors (SCs) and ferromagnetic metals has been investigated
for a long time [1–4]. In a superconductor, charge and spin
imbalances may have different characteristic length scales
due to spin-charge separation [5–7]. The interplay between
superconductivity and magnetism also offers the potential for
novel spintronic devices, in which fast logic operation can be
performed with minimum Joule heating [8]. One of the key
ingredients there is the injection of spin-polarized carriers into
SCs [7,9–12]. For conventional s-wave superconductors, spin
injection is suppressed by opening a superconducting gap in
the electronic spectrum. Thermally excited quasiparticles in
SC, however, can carry a spin current over long distances, as
spin excitations in SCs have long lifetimes [13–18].

There are several techniques for spin injection into SCs.
Recently, it has been realized by taking advantage of the
spin Seebeck effect (SSE) induced by a temperature gradient
[19–25] or by applying a spin-pumping (SP) protocol using
ferromagnetic resonance (FMR) under microwave irradiation
[26–30]. The latter technique has successfully been used
in experiments to realize spin injection from ferromagnetic
metals into a SC [31–33]. These recent advances indicate a
new path for spin injection into a wide class of SC materials.
Remarkably, spin-current injection from a ferromagnetic in-
sulator (FI) into a superconductor has also been performed re-
cently [34], as revealed by the inverse spin Hall effect (ISHE)
[35–37]. This last study opens up possible applications for
novel superconducting spintronic devices using FI.

In contrast to progress in experiments, the spin current
at the FI-SC interface has been studied theoretically, to our
knowledge, only by Inoue et al. [38]. They formulated the
spin-pumping signal in terms of the local spin susceptibility
of the SC and showed that the signal is peaked below the
transition temperature due to the coherence factor in the BCS
theory. In order to calculate the local spin susceptibility of the
SC, they employed the Abrikosov-Gor’kov theory for dirty

SCs taking spin diffusion into account [39–41]. The dynamic
spin susceptibility thus obtained is, however, correct only for
small wave numbers, whereas the local spin susceptibility,
which involves all wave numbers, is dominated by the large
wave number contribution [42] (for details, see Appendix A).
Therefore, although their discovery of the coherence peak in
spin transport is remarkable, their theory is expected to be
insufficient for a quantitative description of the spin-current
generation.

In this paper, we consider a bilayer system composed of an
s-wave singlet SC and a FI, as shown in Fig. 1. We formulate
the spin current at the interface and study its temperature
dependence above and below the superconducting transition
temperature. We also discuss the noise power of the pure spin
current following the theory developed by three of the present
authors and one collaborator [43] and estimate it using the
experimental parameters for the yttrium iron garnet(YIG)–
NbN interface [29,34].

This paper is organized as follows. We introduce the model
for the FI-SC interface in Sec. II and derive dynamic spin sus-
ceptibilities in Sec. III. By using a second-order perturbative
expansion with respect to the interface exchange coupling,
we calculate the spin current and the spin-current noise in
Secs. IV and V, respectively. It should be stressed that we
evaluate the spin current just at the FI-SC interface. For ex-
perimental detection, one needs a nanostructure for converting
the spin current into an electronic response, a mechanism
which depends, in general, on details of spin relaxation in the
superconductor. We briefly discuss such a possible experimen-
tal setup for detecting the spin current in Sec. VI. Finally, we
summarize our results in Sec. VII. Detailed discussions of the
impurity effect and the spin susceptibility of the SC are given
in Appendixes A and B, respectively.

II. MODEL

The system Hamiltonian is given by H = HSC + HFI +
Hex. The first term, HSC, describes a bulk SC and is given by

2469-9950/2019/99(14)/144411(8) 144411-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.144411&domain=pdf&date_stamp=2019-04-15
https://doi.org/10.1103/PhysRevB.99.144411


T. KATO et al. PHYSICAL REVIEW B 99, 144411 (2019)

FIG. 1. Schematic picture of the FI-SC bilayer system. A spin
current IS is generated in the SC by spin pumping using an external
microwave irradiation or by the spin Seebeck effect induced by a
temperature gradient (TFI �= TSC). The large green arrow in the FI
illustrates the magnetization, which can precess due to the applied
microwave at frequency �. The arrows in the SC show an example
of electron reflection at the interface, with a spin flip due to the
exchange interaction.

the mean-field Hamiltonian

HSC =
∑

k

(c†
k↑, c−k↓)

(
ξk �

� −ξk

)(
ck↑

c†
−k↓

)
, (1)

where ckσ (c†
kσ

) is the annihilation (creation) operator of
the electrons in the superconductors and ξk is the energy of
conduction electrons measured from the chemical potential.
The order parameter of the SC � is determined by the gap
equation

ln

(
T

Tc

)
� = 2πT

∑
εn>0

(
�√

ε2
n + �2

− �

εn

)
, (2)

where εn = (2n + 1)πT is the Matsubara frequency and Tc is
the SC transition temperature [38].

The second term HFI describes a bulk FI and is given by
the Heisenberg model

HFI =
∑
〈i, j〉

Ji jSi · S j − h̄γ hdc

∑
i

Sz
i

− h̄γ hac

2

∑
i

(e−i�t S−
i + ei�t S+

i ), (3)

where Si is the localized spin at site i in the FI, Ji j is the
exchange interaction, hdc is a static magnetic field, hac and
� are the amplitude and frequency of the applied microwave
radiation, respectively, and γ is the gyromagnetic ratio. Using
the Holstein-Primakoff transformation [44] and employing the
spin-wave approximation (Sz

j = S0 − b†
jb j , S+

j � (2S0)1/2b j),
the Hamiltonian of the FI is rewritten as

HFI � const +
∑

k

h̄ωkb†
kbk

− h̄γ hac

2

√
2S0NF(e−i�t b†

k=0 + ei�t bk=0), (4)

where h̄ωk is the magnon dispersion, bk is the Fourier trans-
form of b j , S0 is the magnitude of the localized spin, and NF

is the number of spins in the FI. For simplicity, we assume

a parabolic dispersion h̄ωk = Dk2 + E0, where E0 = h̄γ hdc is
the Zeeman energy.

The last term in the system Hamiltonian, Hex, describes the
exchange coupling at the interface. In this paper, we employ a
simple model using the following tunneling Hamiltonian for
spins:

Hex =
∑
k,q

[Tk,qS+
k s−

q + H.c.], (5)

where Tk,q is the tunneling amplitude, S+
k = (2S0)1/2bk, and

s−
q is an operator defined as

s−
q :=

∑
k

c†
k↓ck+q↑. (6)

In what follows, we study the spin transport by considering a
second-order perturbative expansion with respect to Hex.

III. DYNAMIC SPIN SUSCEPTIBILITY

In this section, we summarize the results for the dynamic
spin susceptibilities for the unperturbed system, i.e., the de-
coupled FI and SC, which are later used in the second-order
perturbation calculation of the spin current and spin-current
noise.

A. Retarded component

We define the retarded components of the spin susceptibil-
ity of the SC and the magnon propagator in the FI as

χR(q, t ) := i(h̄NS)−1θ (t )〈[s+
q (t ), s−

q (0)]〉, (7)

GR(k, t ) := −ih̄−1θ (t )〈[S+
k (t ), S−

k (0)]〉, (8)

where NS is the number of unit cells in the SC. Their Fourier
transformations are defined as

χR(q, ω) :=
∫ ∞

−∞
dt eiωtχR(q, t ), (9)

GR(k, ω) :=
∫ ∞

−∞
dt eiωt GR(k, t ). (10)

We first consider the magnon propagator of the FI. By
using the Holstein-Primakoff transformation [44] and em-
ploying the spin-wave approximation [S+

k � (2S0)1/2bk], the
magnon propagator in the FI is calculated in the absence of
the external field (hac = 0) as

GR(k, ω) = 2S0/h̄

ω − ωk + iαω
, (11)

where we have introduced the phenomenological dimension-
less damping parameter α, which originates from the Gilbert
damping.

Next, we consider the dynamic spin susceptibility of the
SC in the BCS theory. We define the local spin susceptibility
as

χR
loc(ω) := 1

NS

∑
q

χR(q, ω). (12)
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In the BCS theory, the local spin susceptibility is calculated as
[45]

ImχR
loc(ω) = −πN (εF)2

∫
dE

[
1 + �2

E (E + h̄ω)

]
× [ f (E + h̄ω) − f (E )]D(E )D(E + h̄ω), (13)

D(E ) = |E |√
E2 − �2

θ (E2 − �2), (14)

where N (εF) is the density of states per spin and per unit
cell, f (E ) = (eE/kBT + 1)−1 is the Fermi distribution func-
tion, D(E ) is the (normalized) density of states of quasi-
particles, and θ (x) is the Heaviside step function (for a de-
tailed derivation, see Appendix B). We note that the factor
[1 + �2/E (E + h̄ω)] in Eq. (13) is the so-called coherence
factor, which produces singular behavior near the transition
temperature [45]. For the normal metal (� = 0), the local spin
susceptibility becomes

Im χR
loc,�=0(ω) = πN (εF)2h̄ω. (15)

B. Lesser component

We define the lesser components of the spin susceptibilities
for bulk SC and FI as

χ<(q, t ) := i(h̄NS)−1〈s−
q (0)s+

q (t )〉, (16)

G<(k, t ) := −ih̄−1〈S−
k (0)S+

k (t )〉. (17)

Their Fourier transformations are defined as

χ<(q, ω) =
∫ ∞

−∞
dteiωtχ<(q, t ), (18)

G<(k, ω) =
∫ ∞

−∞
dteiωt G<(k, t ). (19)

The lesser components include the information on the distri-
bution function; we define the distribution functions as

f SC(q, ω) := χ<(q, ω)/(2i)Im χR(q, ω), (20)

f FI(k, ω) := G<(k, ω)/(2i)Im GR(k, ω). (21)

In the setup of the SP, the SC is in equilibrium with the
temperature T , whereas magnons in FI are excited by the
external microwave irradiation. We split the Hamiltonian of
the FI as HFI = H0 + V , where

H0 =
∑

k

h̄ωkb†
kbk, (22)

V = −h+
ac(t )b†

0 − h−
ac(t )b0, (23)

h±
ac(t ) = h̄γ hac

2

√
2S0NF e∓i�t . (24)

While the perturbation V does not change the retarded com-
ponent of the dynamic spin susceptibility of FI, it does modify
the lesser component. The second-order perturbation with
respect to V gives the correction:

δG<(k, ω) = GR
0 (k, ω)�(k, ω)GA

0 (k, ω), (25)

�(k, ω) = δk,0

∫
dt (−ih̄−1)〈h−

ac(t )h+
ac(0)〉eiωt , (26)

where GR
0 (k, ω) is the unperturbed spin susceptibility of FI.

One can then straightforwardly obtain

δ f FI(k, ω) = δG<(k, ω)/(2i)ImGR
0 (k, ω)

= 2πNFS0(γ hac/2)2

αω
δk,0δ(ω − �). (27)

In the setup of the SSE, FI and SC are in equilibrium with
temperatures TFI and TSC, respectively. Using their Lehmann
representation, we can prove the relations [46,47]

χ<(q, ω) = 2i Im χR(q, ω) nB(ω, TSC), (28)

G<(k, ω) = 2i Im GR(k, ω) nB(ω, TFI ), (29)

where nB(ω, T ) is the Bose distribution function defined as

nB(ω, T ) = 1

eh̄ω/kBT − 1
. (30)

This result leads to the distribution functions of the FI and the
SC [defined in Eqs. (20) and (21)] as

f SC(q, ω) = nB(ω, TSC), (31)

f FI(k, ω) = nB(ω, TFI ). (32)

IV. SPIN CURRENT

A. Formulation

The spin current at the SC-FI interface is defined by
〈ÎS〉, where 〈· · · 〉 denotes the statistical average and ÎS is the
operator for the spin current flowing from the SC to the FI,
defined as

ÎS := −h̄ ∂t
(
sz

tot

) = i[sz
tot, H], (33)

sz
tot := 1

2

∑
k

(c†
k↑ck↑ − c†

k↓ck↓). (34)

By substituting the expression for the system Hamiltonian, we
obtain

ÎS = −i
∑
k,q

(Tk,qS+
k s−

q − H.c.). (35)

We consider the second-order perturbation calculation by
taking HFI + HSC as an unperturbed Hamiltonian and Hex as
a perturbation. The average of the spin-current operator is
written as

〈ÎS〉 = Re

⎡
⎣−2i

∑
k,q

Tk,q〈s−
q S+

k 〉
⎤
⎦

= lim
t1,t2→0

Re

⎡
⎣−2i

∑
k,q

Tk,q〈s−
q (t2)S+

k (t1)〉
⎤
⎦, (36)

where the average 〈· · · 〉 is taken for the full Hamiltonian. By
using the formal expression of perturbation expansion, the

144411-3



T. KATO et al. PHYSICAL REVIEW B 99, 144411 (2019)

time

FIG. 2. The Keldysh contour C.

spin current can be rewritten as [47,48]

〈ÎS〉 = Re

⎡
⎣−2i

∑
k,q

Tk,q

〈
TKs−

q (τ2)S+
k (τ1)

× exp

(
− i

h̄

∫
C

dτ Hex(τ )

)〉
0

⎤
⎦, (37)

where the average 〈· · · 〉0 is now taken for the unperturbed
Hamiltonian and TK is the time-ordering operator on the time
variable τ on the Keldysh contour C, which is composed
of the forward path C+ running from −∞ to ∞ and the
backward path C− from ∞ to −∞ (see Fig. 2). We have put
the time variables τ1 and τ2 on the contour C− and C+ and
have removed the limit operation for operator ordering.

Expanding the exponential operator in Eq. (37) and keep-
ing the lowest-order term with respect to Hex, we obtain

〈ÎS〉 = −2

h̄

∫
C

dτ Re

⎡
⎣∑

k,q

|Tk,q|2〈TKs+
q (τ )s−

q (τ2)〉0

×〈TKS+
k (τ1)S−

k (τ )〉0

]
. (38)

Using the real-time representation [46–48], we can rewrite the
spin current in terms of the dynamic spin susceptibilities of FI
and SC as

〈ÎS〉 = −2h̄ Re
∫ ∞

−∞
dt

∑
k,q

|Tk,q|2NS

× [χR(q, t )G<(k,−t ) + χ<(q, t )GA(k,−t )], (39)

where GA(k, t ) is the advanced component. Using the defini-
tions of the distribution functions and performing the Fourier
transformation for the dynamic spin susceptibilities, we obtain

〈ÎS〉 = 4h̄
∫

dω

2π

∑
k,q

|Tk,q|2NSIm χR(q, ω)

× [−Im GR(k, ω)][ f FI(k, ω) − f SC(q, ω)]. (40)

Setting Tk,q = T for simplicity, we obtain

〈ÎS〉 = h̄A
∫

d (h̄ω)

2π

1

NSNF

∑
k,q

Im χR(q, ω)

× [−Im GR(k, ω)][ f FI(k, ω) − f SC(q, ω)], (41)

where A = 4|T |2N2
S NF/h̄.

B. Spin pumping

We first consider the case of spin pumping driven by
microwave irradiation, keeping the same temperature for both

SC and FI. From Eq. (27), the difference of the distribution
functions is given by

f FI(k, ω) − f SC(q, ω) = 2πNF S0(γ hac/2)2

αω
δk,0 δ(ω − �) .

(42)

The spin current generated by SP is then given by

ISP
S = h̄ A g(�) ImχR

loc(�), (43)

g(�) := (γ hacS0)2/2

(� − ω0)2 + α2�2
, (44)

where the local spin susceptibility χR
loc(ω) is given by

Eqs. (13) and (14) and ω0 = γ hdc is the angular frequency
of the spin precession.

For the normal-metal case (� = 0), we obtain for the spin
current, using Eq. (15),

ISP,N
S = π h̄Ag(�)N (εF)2h̄�, (45)

which is temperature independent for arbitrary values of �.
We will use this expression as a normalization factor to
compare the results at finite � for various frequencies �.

Before showing the results obtained in the superconducting
case, we point out that in the low-frequency limit (� →
0), the expression for the spin current generated by SP is
similar to the one obtained when computing the nuclear spin
resonance (NMR) signal [45]. It is known in the theory of
the NMR measurement that the BCS singularity in the density
of states leads to a coherence peak below the SC transition
temperature [49,50]. As a consequence, one can expect a
similar coherence peak in the temperature dependence of
the spin current at low frequency. However, the spin current
contains more information than the NMR expression since
� can be controlled arbitrarily up to high frequencies of the
order of the transition temperature Tc.

In Fig. 3, we show the temperature dependence of the
spin current induced by spin pumping. Here, the tempera-
tures of both FI and SC are set to T , and the spin current
is normalized by the value obtained for the normal-metal
case ISP,N

S . For low excitation frequency �, the temperature
dependence of ISP

S clearly shows a coherence peak below the
SC transition temperature Tc, as expected. For h̄� < 2�(T =
0) � 3.54kBTc, the spin current is strongly reduced at low
temperatures [kBT � 2�(T )] because spin-flip excitations
in the SC are suppressed due to the energy gap 2� in the
one-electron excitation spectrum. As � increases, the coher-
ence peak becomes insignificant, while a kink appears at the
temperature satisfying 2�(T ) = h̄�. For h̄� > 2�(T = 0),
the spin current shows a plateau at low temperature corre-
sponding to its zero-temperature value, ultimately recovering
the normal-state value (dashed line) as h̄� is increased further.

C. Spin Seebeck effect

We now turn to the alternative technique for generating a
spin current, namely, the spin Seebeck effect, which relies on
the presence of a temperature gradient between the FI and SC
layers. Using Eqs. (31) and (32), the spin current induced by
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FIG. 3. Temperature dependence of the spin current induced by
spin pumping ISP

S (T ), normalized by the current obtained in the
normal case ISP,N

S (T ), for different values of h̄�/Tc, as indicated near
each curve. (a) shows h̄�/Tc from 0.1 to 2. (b) shows h̄�/Tc from 3.0
to 10.

the spin Seebeck effect is given by

ISSE
S = h̄A

∫
d (h̄ω)

2π
Im χR

loc(ω)
[ − Im GR

loc(ω)
]

× [nB(ω, TFI ) − nB(ω, TSC)], (46)

where GR
loc(ω) := N−1

F

∑
k GR(k, ω) is the local spin suscep-

tibility in the FI. For simplicity, we consider the spin Seebeck
effect up to the linear term with respect to the temperature
difference δT = TFI − TSC:

ISSE
S

ISSE
S,0

=
∫ EM

E0

dE DM(E )F (E )
(E/2kBT )2

sinh2(E/2kBT )
, (47)

F (E ) := ImχR
loc(E/h̄)/ImχR

loc,�=0(E/h̄)

=
∫ ∞

−∞
dE ′

[
1 + �2

E ′(E ′ + E )

]

×
[

f (E ′) − f (E ′ + E )

E

]
D(E ′)D(E ′ + E ), (48)

where T = TSC � TFI and ISSE
S,0 = h̄AS0kBδT N (εF)2. The den-

sity of states per site for a magnon is given by

DM(E ) := 1

NF

∑
k

δ(E − h̄ωk)

= −(2πS0)−1Im GR
loc(E/h̄), (49)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

I SS
SE
(T
)/
I S
,0

T/Tc

3

1

FIG. 4. Temperature dependence of the spin current in-
duced by the spin Seebeck effect ISSE

S , normalized by IS,0 =
ISSE
S,0 η(kBTc/EM)3/2, for SCs (solid lines) and normal metals (dashed

lines) with EM/kBTc = ∞, 3, and 1 (as indicated near each curve),
where EM is the high-energy cutoff of the magnon density of states.
As we consider E0 � kBTc, the Zeeman energy E0 is set to zero for
simplicity.

taking the limit α → 0, and EM (� E0) is the high-energy cut-
off of the magnon dispersion relation, which is of the order of
the exchange interaction in the FI. Under a uniform magnetic
field, the local spin susceptibility is evaluated for the parabolic
magnon dispersion as DM(E ) = (3/2)(E − E0)1/2E−3/2

M . For
normal metals (� = 0), the spin current at low temperatures
(kBT � EM) is given by ISSE

S /ISSE
S,0 = η(kBT/EM)3/2, where

η � 6.69 is a numerical factor.
In Fig. 4, we show the temperature dependence of ISSE

S .
The solid and dashed lines show ISSE

S for the SC and the nor-
mal metal (� = 0), respectively. For simplicity, the Zeeman
energy is set to zero by assuming that it is much smaller than
kBT . When EM is much larger than kBTc, the spin current
monotonically decreases as the temperature is lowered. Below
the transition temperature Tc, the spin current at the FI-SC
interface is suppressed due to the opening of the energy gap
in the SC. When EM is comparable to kBTc, the spin current
shows a small maximum below Tc and saturates above Tc.

V. SPIN-CURRENT NOISE

The noise of the pure spin current has been studied for an
interface between a FI and a nonmagnetic metal [43,51,52], as
well as for several hybrid nanostructures [53–56]. It includes
useful information on spin transport, as suggested from stud-
ies of the (electronic) current noise [57]. In this section, we
calculate the spin-current noise for the FI-SC interface.

A. Formulation

The noise power of the pure spin current is defined as [43]

S := lim
T →∞

1

T

∫ T

0
dt1

∫ T

0
dt2

1

2
〈{ÎS (t1), ÎS (t2)}〉, (50)

where ÎS (t ) := eiHt ISe−iHt and {A, B} = AB + BA. The spin-
current noise is calculated within the second-order perturba-
tion calculation with respect to Hex as

S = h̄2
∫ ∞

−∞

dω

2π

∑
k,q

|Tk,q|2NS[χ<(q, ω)G>(k, ω)

+χ>(q, ω)G<(k, ω)]. (51)
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Using Tk,q = T , Eqs. (20) and (21), and the relations

χ>(q, ω)/(2i)Im χR(q, ω) = 1 + f SC(q, ω), (52)

G>(k, ω)/(2i)Im GR(k, ω) = 1 + f FI(k, ω), (53)

the spin-current noise is calculated as

S = h̄2A
∫

d (h̄ω)

2π

1

NFNS

∑
k,q

[−ImGR(k, ω)]ImχR(q, ω)

× [ f SC(q, ω)[1 + f FI(k, ω)]

+ [1 + f SC(q, ω)] f FI(k, ω)]. (54)

In the absence of both the external microwave excitation
and the temperature gradient, the noise power is determined
by the equilibrium noise:

Seq = 2h̄2A
∫ ∞

−∞

d (h̄ω)

2π

ImχR
loc(ω)[−ImGR

loc(ω)]

4 sinh2(h̄ω/2kBT )
. (55)

Under the microwave radiation, the noise power is calculated
from Eq. (42) as

S = Seq + SSP, (56)

SSP = h̄ coth

(
h̄�

2kBT

)
ISP
S , (57)

where SSP is the nonequilibrium noise induced by spin pump-
ing. While the nonequilibrium noise can similarly be induced
by SSE, we do not discuss it here as it requires us to consider
a large temperature gradient.

B. Estimate

As in the metal-FI bilayer system [43,51,52], the noise
power of the pure spin current includes useful information
also in the case of the SC-FI interface. At low temperatures
(kBT � h̄�), the ratio SSP/ISP

S approaches h̄, indicating that
each magnon excitation carries the angular momentum h̄. At
high temperatures (kBT � h̄�), this ratio becomes propor-
tional to kBT due to the nature of the Bose statistics. To illus-
trate their temperature dependence, we estimate and compare
the noise powers, Seq and SSP, in realistic experiments. We
use the parameters of the spin-pumping experiment for YIG
[29]: α = 6.7 × 10−5, S0 = 16, hac = 0.11 Oe, γ = 1.76 ×
107 Oe−1s−1, and �/2π = 9.4 GHz. We consider NbN for the
SC (Tc � 10 K) and set D = 532 meV Å2 following Ref. [58].
Figure 5 shows the results for the noise power, normalized
by S0 = SSP(T = 0) for normal metals. For this parameter
set, the nonequilibrium noise associated with spin pumping is
much larger than the equilibrium noise. For both Seq and SSP,
the temperature dependence peaks below the superconducting
transition temperature.

VI. EXPERIMENTAL SETUP FOR DETECTION

In the previous sections, we evaluated the spin current
and its noise at the FI-SC interface. For their experimental
detection, we need to consider a setup for converting the spin
imbalance induced by the spin current into a charge signal.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

S
/S
0

T /Tc

SSP

Seq(x100)

FIG. 5. Temperature dependence of the equilibrium noise Seq

and the nonequilibrium noise in the spin-pumping case SSP for SCs
(solid lines) and normal metals (dashed lines). The noise power is
normalized by the nonequilibrium noise in the spin-pumping case S0

for the normal metals at T = 0. For better visualization, data for the
equilibrium noise have been multiplied by 100.

There are several ways to perform such a spin-charge conver-
sion. Here, we explain one possible way using the ISHE. It
was theoretically predicted that such spin current flowing in
a SC can be detected by the ISHE [35,36]. Indeed, a giant
signal of the ISHE was recently observed by spin injection
from ferromagnetic metals into an s-wave superconductor
NbN using the technique of the lateral spin valve [37].

Let us consider spin injection into a SC wire with a width w

and a length 2d from a FI at x = 0 (see Fig. 6). By spin-orbit
interaction in the SC, the spin current IS is converted into a
quasiparticle current IQ in the direction perpendicular to both
IS and the ordered spin in the FI S. This quasiparticle current
induces a charge imbalance in the SC and produces a voltage
between the two edges located at x = ±d . The amplitude of
the ISHE voltage depends on the spin relaxation in the SC
as well as the spin Hall angle, so that the coefficient between
the spin current at the interface and the ISHE voltage is, in
general, temperature dependent. Here, we introduce a simple
formula employed in Ref. [37]:

VISHE = |e|
h̄

IS
x

w

[
a

ρxx

2 f0(�)
+ b

(
ρxx

2 f0(�)

)2
]

e−d/λQ , (58)

f0(�) = 1

e�/kBT + 1
. (59)

This expression for the ISHE voltage has been derived assum-
ing an extrinsic spin Hall effect due to spin-orbit scattering in
the SC. Here, λQ is the charge relaxation length, a and b are
coefficients determined by the strength of the skew scattering

FI

SC

FIG. 6. A setup for detection of the spin current using the inverse
spin Hall effect.
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and side jump, respectively, and ρxx is the resistivity of the
SC. The correction due to nonuniform current distribution is
represented by a shunting length x, which is determined by w,
λQ, and the shape of the junction [37]. Combining Eqs. (58)
and (59) with careful determination of the parameters, we can
obtain IS from the measurement of VISHE. In principle, the
spin-current noise can also be measured within the same kind
of setup via the fluctuations of VISHE [43].

VII. SUMMARY

In summary, we discussed the spin current and the spin-
current noise for a bilayer system composed of a supercon-
ductor and a ferromagnetic insulator. The spin current induced
by spin pumping has a maximum below the transition temper-
ature when the pumping frequency � is much smaller than
kBTc/h̄. As the ratio h̄�/kBTc increases, the peak disappears,
and the spin current at low temperatures is enhanced. We
also discussed the spin current induced by the spin Seebeck
effect and the noise power of the pure spin current. Our
study provides a fundamental basis for the application of
spintronics using superconductors. Extension to spin injection
from antiferromagnetic insulators is left for a future problem
[59–62].
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APPENDIX A: EFFECT OF IMPURITY SCATTERING

Here, we explain that the diffusive behavior of conduc-
tion electrons, which is taken into account in Ref. [38],
can be neglected in the calculation of ImχR

loc(ω) following
Ref. [42]. We neglect the Coulomb interaction effect dis-
cussed in Ref. [42] for simplicity. For a qualitative discussion,
it is convenient to start with the interpolation formula (Eq. (6)
in Ref. [42])

χR
D (q, ω) � χ0(q, ω)

Dq2

Dq2 − iω
, (A1)

where q = |q|, χ0(q, ω) is the spin susceptibility per volume
of the electron gas, D = vF l/3 is the diffusion constant, l =
vF τ is the mean free path, vF is the Fermi velocity, and τ is
the relaxation time. The leading behavior for small ω is (see

Eq. (7) in Ref. [42])

Im χ (q, ω)

h̄ω
= N (εF)

h̄

(
π

2vF q
+ 1

Dq2

)
(0 < q < 2kF ),

(A2)
where kF is the Fermi wave number. Then, the local spin
susceptibility is calculated as

Im χloc(ω)

h̄ω
=

∫
d3q

(2π )3

Im χ (q, ω)

h̄ω

= 2πN (εF )2

(
1

2
+ 3

πkF l

)
. (A3)

Since kF l � 1 for usual metals, the second term due to the
diffusive Green’s function is usually a correction. Therefore,
the leading contribution is obtained only by considering a
clean system without impurities. For superconductors, a simi-
lar discussion leads to the same conclusion.

APPENDIX B: SPIN SUSCEPTIBILITY OF THE SC

The dynamic spin susceptibility of the SC is calculated in
the standard BCS theory as [45]

χR(q, ω) = 1

NS

∑
k

∑
λ=±1

∑
λ′=±1

[
1

4
+ ξξ ′ + �2

4EλE ′
λ′

]

× f (E ′
λ′ ) − f (Eλ)

h̄ω + iδ + Eλ − E ′
λ′

, (B1)

where ξ = ξk, ξ ′ = ξk+q, Eλ = λ
√

�2 + ξ 2, E ′
λ′ =

λ′√�2 + ξ ′2, and f (E ) = [exp(E/kBT ) + 1]−1 is the Fermi
distribution function. For the normal state (� = 0), the spin
susceptibility becomes

χR(q, ω) = 1

NS

∑
k

f (ξk+q) − f (ξk)

h̄ω + iδ + ξk − ξk+q
. (B2)

The imaginary part of the local spin susceptibility is obtained
for the SC as

ImχR
loc(ω) = − π

N2
S

∑
k,k′

∑
λ,λ′

[
1

4
+ ξξ ′

4EλE ′
λ′

]

× [ f (E ′
λ′ ) − f (Eλ)]δ(h̄ω + Eλ − E ′

λ′ ), (B3)

where ξ ′ = ξk′ and E ′
λ′ = λ′Ek′ . For h̄ω � εF (εF is the Fermi

energy), we can replace the wave number summation accord-
ing to

1

NS

∑
k

(· · · ) → N (εF)
∫ ∞

−∞
dξ (· · · ), (B4)

where N (εF) is the density of states per spin and per unit cell.
Changing the integral variable from ξ to E =

√
�2 + ξ 2, we

finally obtain Eqs. (13) and (14).
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