Supplemental material for "Anyonic statistics revealed by the Hong-Ou-Mandel dip for fractional excitations"

T. Jonckheere, J. Rech, B. Grémaud, T. Martin

Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

GREEN FUNCTIONS AND THEIR PROPERTIES

The quasiparticle Green function is defined as

$$\mathcal{G}_{R/L}\left(x, x'; t^{\eta}, t'^{\eta'}\right) = \left\langle T_{K}\psi_{R/L}^{\dagger}\left(x, t^{\eta}\right)\psi_{R/L}\left(x', t'^{\eta'}\right)\right\rangle.$$
(S1)

Using the properties of time ordering, and the linear dispersion along the edge, this can be recast under the simplified form

$$\mathcal{G}_{R/L}\left(x, x'; t^{\eta}, t'^{\eta'}\right) = \mathcal{G}_{R/L}\left(\sigma_{tt'}^{\eta\eta'}\left(t - t' \mp \frac{x - x'}{v_F}\right)\right),\tag{S2}$$

where $\sigma_{tt'}^{\eta\eta'} = {\rm sign}(t-t')(\eta+\eta')/2 + (\eta'-\eta)/2$ and

$$\mathcal{G}_{R/L}(t) = \left\langle \psi_{R/L}^{\dagger}(0,t)\psi_{R/L}(0,0) \right\rangle.$$
(S3)

Invoking the bosonization identity, this is further reduced as

$$\mathcal{G}_{R/L}(t) = \frac{1}{2\pi a} \left\langle e^{i\sqrt{\nu}\phi^{\dagger}_{R/L}(0,t)} e^{-i\sqrt{\nu}\phi_{R/L}(0,0)} \right\rangle = \frac{1}{2\pi a} e^{\nu G_{R/L}(t)},$$
(S4)

where we introduced the bosonic Green function $G_{R/L}(t) = \left\langle \phi_{R/L}^{\dagger}(0,t)\phi_{R/L}(0,0) \right\rangle$.

From the free Hamiltonian H_0 , one can readily extract the corresponding Green function for the bosonic modes as

$$G_{R/L}(t) = -\log\left[\frac{\sinh\left(i\frac{\pi a}{\beta v_F} - \frac{\pi t}{\beta}\right)}{\sinh\left(i\frac{\pi a}{\beta v_F}\right)}\right],\tag{S5}$$

so that the quasiparticle Green function ultimately reads

$$\mathcal{G}_{R/L}(t) = \frac{1}{2\pi a} \left[\frac{\sinh\left(i\frac{\pi a}{\beta v_F}\right)}{\sinh\left(i\frac{\pi a}{\beta v_F} - \frac{\pi t}{\beta}\right)} \right]^{\nu}$$
(S6)

One can easily show that this Green function is identical for right- and left-movers, so that we can safely drop the R/L subscript from this point onward.

As anyons obey fractional statistics, they show nontrivial exchange properties which ensure that, at equal time, one has

$$\psi_R^{\dagger}(0,t)\psi_R(x,t) = e^{-i\pi\nu\operatorname{Sign}(x)}\psi_R(x,t)\psi_R^{\dagger}(0,t)$$
(S7)

Making use of the linear dispersion along the edge, this is rewritten as

$$\psi_R^{\dagger}(0,t)\psi_R\left(0,t-\frac{x}{v_F}\right) = e^{-i\pi\nu\operatorname{Sign}(x)}\psi_R\left(0,t-\frac{x}{v_F}\right)\psi_R^{\dagger}(0,t)$$
(S8)

Since this is valid for any set of parameters (x, t), one can choose $x = v_F t$, without loss of generality. Taking then the quantum average, this yields

$$\left\langle \psi_R^{\dagger}(0,t)\psi_R(0,0)\right\rangle = e^{-i\pi\nu\operatorname{Sign}(t)} \left\langle \psi_R(0,0)\psi_R^{\dagger}(0,t)\right\rangle$$
$$\mathcal{G}(t) = e^{-i\pi\nu\operatorname{Sign}(t)}\mathcal{G}(-t)$$
(S9)

It follows that the value of the ratio $\mathcal{G}(t)/\mathcal{G}(-t)$ can be viewed as a direct consequence of the exchange statistics of anyons.

COMPUTING THE TUNNELING CURRENT

Tunneling current when injecting a single quasiparticle

The tunneling current operator reads $I_T(t) = ie^*(\Gamma \psi_R^{\dagger}(0,t)\psi_L(0,t) - \text{H.c.})$. Here, we consider the situation where a single quasiparticle is incoming along the right edge, described by a prepared state of the form $|\varphi\rangle = \psi_R^{\dagger}(-x_0, -\mathcal{T})|0\rangle$. To lowest order in Γ , the mean current is thus given by

$$\langle I_T(t) \rangle = -\frac{i}{2} \int dt' \sum_{\eta,\eta'} \eta' \left\langle \varphi \left| T_K \ I_T(t^{\eta}) H_T(t'^{\eta'}) \right| \varphi \right\rangle$$

$$= \frac{e^*}{2} \int dt' \sum_{\epsilon,\epsilon'} \sum_{\eta,\eta'} \epsilon \eta' \langle 0 | T_K \ \psi_R(-x_0, -\mathcal{T}^-) \left(\Gamma \psi_R^{\dagger}(0, t^{\eta}) \psi_L(0, t^{\eta}) \right)^{(\epsilon)}$$

$$\times \left(\Gamma \psi_R^{\dagger}(0, t'^{\eta'}) \psi_L(0, t'^{\eta'}) \right)^{(\epsilon')} \psi_R^{\dagger}(-x_0, -\mathcal{T}^+) | 0 \rangle$$
(S10)

where $\epsilon = \pm$ is used to include the Hermitian conjugated terms, such that for $\epsilon = +$, one has for any operator O, $O^{(+)} = O$ while for $\epsilon = -$, one has $O^{(-)} = O^{\dagger}$.

Here, T_K ensures the time-ordering along the Keldysh contour, and $\eta, \eta' = \pm$ are Keldysh indices. Note that we consider the injection of QP to have happened in the distant past. The Kelsdysh indices added to the times $-\mathcal{T}$ have been chosen to ensure that the $\psi_R(-x_0, -\mathcal{T}^-)$ and $\psi_R^{\dagger}(-x_0, -\mathcal{T}^+)$ operators remain in the same position after time ordering, independently of the values of t and t', for \mathcal{T} large enough. In particular, keeping in mind that $x_0 = v_F \mathcal{T}$ (corresponding to a quasiparticle reaching the QPC at t = 0), this allows us to simplify some of the resulting Green functions as

$$\mathcal{G}(-x_0, 0; -\mathcal{T}^-, t^\eta) = \mathcal{G}(-t) \tag{S11}$$

$$\mathcal{G}(0, -x_0; t^{\eta}, -\mathcal{T}^+) = \mathcal{G}(t), \tag{S12}$$

independently of η and t, provided that $t \ll \mathcal{T}$.

Using the bosonized form of the quasiparticle operators, we have

$$\langle I_T(t) \rangle = \Gamma^2 \frac{e^*}{2} \int dt' \sum_{\epsilon} \sum_{\eta,\eta'} \epsilon \eta' \left[\mathcal{G} \left(\sigma_{tt'}^{\eta\eta'} \left(t - t' \right) \right) \right]^2 \left(\frac{\mathcal{G}(-t')\mathcal{G}(t)}{\mathcal{G}(t')\mathcal{G}(-t)} \right)^{\epsilon}$$
(S13)

Using the properties of the Green function derived in Eq. (S9), this then becomes

$$\langle I_T(t)\rangle = 2ie^*\Gamma^2 \int_{-\infty}^t dt' \,\sin\left(2\pi\nu \int_{t'}^t d\tau \,\delta(\tau)\right) \times \left[\mathcal{G}(t-t')^2 - \mathcal{G}(t'-t)^2\right] \tag{S14}$$

Changing the integration variable to $\tau = -t'$, and using the expression of the Green function, we get:

$$\langle I_T(t)\rangle = \theta(t)2ie^* \frac{\Gamma^2}{(2\pi a)^2} \sin(2\pi\nu) \int_0^\infty d\tau \left[\left(\frac{\sinh(i\pi T\tau_0)}{\sinh(\pi T(i\tau_0 - t - \tau)} \right)^{2\nu} - \left(\frac{\sinh(i\pi T\tau_0)}{\sinh(\pi T(i\tau_0 + t + \tau)} \right)^{2\nu} \right]$$
(S15)

where $\tau_0 = a/v_F$, $T = 1/(k_B\beta)$ is the temperature, and we use $k_B = \hbar = 1$. Defining the reduced variables $\alpha = \pi T \tau_0$, $u = \pi T \tau$ and $z = \pi T t$, the first term in the integral can be written as

$$\int_0^\infty du \left(\frac{\sinh(i\alpha)}{\sinh(i\alpha - z - u)}\right)^{2\nu} = \int_0^\infty du \left(\frac{e^{i\alpha} - e^{-i\alpha}}{-e^{-i\alpha}e^z} \frac{1}{1 - e^{2i\alpha}e^{-2z}e^{-2u}}\right)^{2\nu} e^{-2\nu u} \tag{S16}$$

$$= \left(e^{-z}\left(1-e^{2i\alpha}\right)\right)^{2\nu} \int_0^\infty du \left(1-e^{2i\alpha}e^{-2z}e^{-2u}\right)^{-2\nu} e^{-2\nu u}$$
(S17)

$$= \frac{1}{2} \left(e^{-z} \left(1 - e^{2i\alpha} \right) \right)^{2\nu} \left(\frac{1}{\nu} \right) {}_{2}F_{1} \left(2\nu, \nu, \nu + 1, e^{2i\alpha - 2z} \right)$$
(S18)

where $_{2}F_{1}$ is the hypergeometric function. Using this result, the current can eventually be recast as

=

$$\langle I_T(t) \rangle = \theta(t) \ 2e^* \left(\frac{\Gamma}{2\pi v_F \tau_0}\right)^2 \frac{\sin(2\pi\nu)}{2\pi\nu T} e^{-2\nu\pi Tt} \ (2\sin(\pi T\tau_0))^{2\nu} \\ \times 2\mathrm{Im} \left[{}_2F_1 \left(2\nu, \nu, \nu+1, e^{-2\nu\pi Tt} e^{-2i\pi T\tau_0}\right) e^{i\pi\nu(1-2T\tau_0)} \right]$$
(S19)

Taking then the leading order in the cutoff parameter τ_0 leads to

$$\langle I_T(t) \rangle = \theta(t) \ 2e^* \left(\frac{\Gamma}{2\pi v_F}\right)^2 \tau_0^{2\nu-2} \ \frac{2\sin(\pi\nu)\sin(2\pi\nu)}{\nu} \ e^{-2\nu\pi Tt} (2\pi T)^{2\nu-1} \ _2F_1\left(2\nu,\nu,\nu+1,e^{-2\nu\pi Tt}\right) \tag{S20}$$

We see that this is a function of $2\nu\pi Tt = 2\nu\pi t/\beta$, which implies that the typical length scale for this function is $\sim \beta$. The behavior of the current in the two limits $t \ll \beta$ and $t \gg \beta$ is obtained by using the asymptotic behavior of the hypergeometric function:

$$2F_1\left(2\nu,\nu,\nu+1,e^{-2\nu\pi Tt}\right) = \begin{cases} \nu \frac{\Gamma(\nu)^2}{\Gamma(2\nu)} \frac{\sin(\pi\nu)}{\sin(2\pi\nu)} - \frac{\nu}{1-2\nu} \left(1 - e^{-2\nu\pi Tt}\right) & t \ll \beta\\ 1 + \frac{2\nu^2}{\nu+1} e^{-2\nu\pi Tt} & t \gg \beta \end{cases}.$$
 (S21)

Tunneling current when injecting a single electron

It is instructive to repeat the same kind of derivation, only this time considering the situation where a single electron is incoming along the right edge. The prepared state now takes the form $|\varphi\rangle = \Psi_R^{\dagger}(-x_0, -\mathcal{T})|0\rangle$, where the electron operator Ψ_R satisfies the bosonization identity $\Psi_R(x) = \frac{U_R}{2\pi a} e^{ik_F x} e^{-i\frac{1}{\sqrt{\nu}}\phi_R(x)}$.

Following a similar derivation to the one above, one obtains instead of Eq. (S13), the following expression for the tunneling current

$$\langle I_T(t)\rangle = \Gamma^2 \frac{e^*}{2} \int dt' \sum_{\eta,\eta'} \epsilon \eta' \left[\mathcal{G} \left(\sigma_{tt'}^{\eta\eta'}(t-t') \right) \right]^2 \left[\left(\frac{\mathcal{G}(-t')\mathcal{G}(t)}{\mathcal{G}(t')\mathcal{G}(-t)} \right)^{1/\nu} - \left(\frac{\mathcal{G}(t')\mathcal{G}(-t)}{\mathcal{G}(-t')\mathcal{G}(t)} \right)^{1/\nu} \right]$$
(S22)

From the properties of the quasiparticle Green function, Eq. (S9), one readily sees that for $t \neq 0$

$$\left(\frac{\mathcal{G}(-t')\mathcal{G}(t)}{\mathcal{G}(t')\mathcal{G}(-t)}\right)^{1/\nu} = \exp\left(-i\int_{t'}^{t} d\tau \ 2\pi\delta(\tau)\right) = 1,\tag{S23}$$

so that the tunneling current vanishes at all times $t \neq 0$ and is nonzero only at the specific time that the electron reaches the QPC.

Tunneling current in the presence of a time-dependent voltage

In the presence of a voltage bias, the tunneling part of the Hamiltonian can be written as

$$H_T(t) = \Gamma \exp\left[ie^* \int_{-\infty}^t dt' V(t')\right] \psi_R^{\dagger}(0,t)\psi_L(0,t) + \text{H.c.}$$
(S24)

where it now contains the effect of the applied votlage V(t).

The tunneling current operator now reads

$$I_T(t) = ie^* \left(\Gamma \exp\left[ie^* \int_{-\infty}^t dt' V(t')\right] \psi_R^{\dagger}(0,t) \psi_L(0,t) - \text{H.c.} \right).$$
(S25)

Taking the quantum average, the mean tunneling current is given in full generality by

$$\langle I_T(t) \rangle = \frac{ie^*}{2} \sum_{\eta} \sum_{\epsilon} \epsilon \left\langle T_K \left(\Gamma \exp\left[ie^* \int_{-\infty}^t dt' V(t')\right] \psi_R^{\dagger}(0, t^{\eta}) \psi_L(0, t^{\eta}) \right)^{(\epsilon)} \times \exp\left[-i \sum_{\eta'} \eta' \int_{-\infty}^{\infty} dt' H_T(t'^{\eta'}) \right] \right\rangle$$
(S26)

where the sum on $\epsilon = \pm$ is used to represent the Hermitian conjugate, and $\eta, \eta' = \pm$ are Keldysh indices.

Performing a perturbative expansion in the tunneling amplitude Γ , this gives up to second order

$$\langle I_T(t) \rangle = \frac{e^*}{2} \Gamma^2 \sum_{\eta,\eta'} \sum_{\epsilon} \epsilon \eta' \int_{-\infty}^{\infty} dt' \exp\left[i \epsilon e^* \int_{-\infty}^{t} dt' V(t')\right] \left\langle T_K \psi_R^{\dagger}(0,t^{\eta}) \psi_R(0,t'^{\eta'}) \right\rangle \left\langle T_K \psi_L(0,t^{\eta}) \psi_L^{\dagger}(0,t'^{\eta'}) \right\rangle$$
(S27)

Using the expression for the quasiparticle Green function, and performing explicitly the sum on the Keldysh indices η and η' , one eventually gets

$$\langle I_T(t) \rangle = 2ie^* \Gamma^2 \int_{-\infty}^t dt' \, \sin\left(e^* \int_{t'}^t dt'' V(t'')\right) \left[\mathcal{G}(t-t')^2 - \mathcal{G}(t'-t)^2\right].$$
(S28)

where the Keldysh summations end up restricting the t' integral from $-\infty$ to t.

COMPUTING THE NOISE

General expression

The current noise is defined as:

$$S(t,t') = \left\langle T_K \delta I_T(t^-) \, \delta I_T(t'^+) \right\rangle \tag{S29}$$

with $\delta I_T(t) = I_T(t) - \langle I_T(t) \rangle$, and \pm are Keldysh indices.

In the presence of a voltage bias applied to both edges, the tunneling part of the Hamiltonian can be written as

$$H_T(t) = \Gamma \exp\left[ie^* \int_{-\infty}^t dt' \ (V_R(t') - V_L(t'))\right] \psi_R^{\dagger}(0, t) \psi_L(0, t) + \text{H.c.}$$
(S30)

where we applied a standard gauge transformation in order to reabsorb the effect of the voltage drives into the tunneling amplitude. In this situation, the tunneling current operator reads

$$I_T(t) = ie^* \left(\Gamma \exp\left[ie^* \int_{-\infty}^t dt' \left(V_R(t') - V_L(t') \right) \right] \psi_R^{\dagger}(0, t) \psi_L(0, t) - \text{H.c.} \right).$$
(S31)

Substituting this back into Eq. (S29), one readily obtains, up to lowest order in the tunneling amplitude Γ

$$S(t,t') = 2\left(\frac{e^*\Gamma}{2\pi a}\right)^2 \cos\left(e^* \int_{t'}^t dt'' (V_R(t'') - V_L(t''))\right) \mathcal{G}(t-t')^2.$$
(S32)

In what follows, we focus on the Hanbury-Brown Twiss (HBT) and the Hong-Ou-Mandel (HOM) setups, corresponding respectively to applying a single voltage drive, or to applying both of them.

HOM noise for two narrow pulses of average charge e^*

We consider here the case of two infinitely short pulses so that both $V_R(t)$ and $V_L(t)$ are composed of a single delta function, with a time-shift δt between them. Focusing on pulses of average charge e^* , one can thus write

$$V_R(t) = \frac{2\pi}{e} \delta\left(t + \frac{\delta t}{2}\right) \qquad V_L(t) = \frac{2\pi}{e} \delta\left(t - \frac{\delta t}{2}\right).$$
(S33)

The cosine factor entering the expression for the noise in Eq. (S32) then simply reduces to either $\cos(2\pi\nu)$ or to 1, depending on the values of t and t', so that we write it as $\cos[2\pi\nu f_{\delta t}(t,t')]$. The newly defined function $f_{\delta t}(t,t')$ is 1 if one of the times t or t' is in the interval $[-\delta t/2, \delta t/2]$ while the other one is not, and reduces to 0 otherwise.

The HOM noise is defined as the zero-frequency noise due to the collision of these two excitations, as a function of the time-interval δt . Focusing on the zero-frequency contribution, and filtering out the equilibrium thermal noise (by subtracting the value in the absence of voltage drives), one has for the un-normalized HOM noise

$$\mathcal{S}_{HOM} = S(V_R, V_L) - S(0, 0) = 2\left(\frac{e^*\Gamma}{2\pi a}\right)^2 \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dt' \left\{\cos\left[2\pi\nu f_{\delta t}(t, t')\right] - 1\right\} \mathcal{G}(t - t')^2$$
(S34)

Similarly, one can work out the expression for the corresponding noise when only one of the drives is present. The resulting HBT noise reads

$$S_{HBT} = S(V_R, 0) - S(0, 0) = 2\left(\frac{e^*\Gamma}{2\pi a}\right)^2 \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dt' \left[\cos\left(2\pi\nu\frac{1 - \operatorname{sign}(t \times t')}{2}\right) - 1\right] \mathcal{G}(t - t')^2$$
(S35)

The standard HOM noise ratio is then defined as the ratio of the un-normalized HOM noise to twice the HBT noise, so that

$$S_{HOM}(\delta t) = \frac{S_{HOM}}{2S_{HBT}} = \frac{\int dt dt' \{\cos [2\pi\nu f_{\delta t}(t,t')] - 1\} e^{2\nu G(t'-t)}}{2\int dt dt' \left[\cos \left(2\pi\nu \frac{1-\operatorname{sign}(t\times t')}{2}\right) - 1\right] e^{2\nu G(t'-t)}}$$
(S36)

Substituting the actual value of $f_{\delta t}(t, t')$, this can be further rewritten as

$$S_{HOM}(\delta t) = \frac{\int_{0}^{|\delta t|} dt \int_{0}^{\infty} dt' \left[e^{2\nu G(t+t')} + e^{2\nu G(-t-t')} \right]}{\int_{0}^{\infty} dt \int_{0}^{\infty} dt' \left[e^{2\nu G(t+t')} + e^{2\nu G(-t-t')} \right]}$$
$$= \frac{\operatorname{Re} \left[\int_{0}^{|\delta t|} dt \int_{0}^{\infty} dt' e^{2\nu G(t+t')} \right]}{\operatorname{Re} \left[\int_{0}^{\infty} dt \int_{0}^{\infty} dt' e^{2\nu G(t+t')} \right]}$$
$$= 1 - \frac{\operatorname{Re} \left[\mathcal{I} \left(\delta \right) \right]}{\operatorname{Re} \left[\mathcal{I} \left(0 \right) \right]}$$
(S37)

where we introduced

$$\mathcal{I}(\delta) = \int_0^\infty dz \ z \left(\frac{\sinh(i\alpha)}{\sinh(i\alpha - z - \delta)}\right)^{2\nu}$$
(S38)

with the reduced variable $\delta = \pi |\delta t| / \beta$, and the infinitesimal $\alpha = \pi \tau_0 / \beta$.

This integral can be worked out as

$$\mathcal{I}\left(\delta\right) = -\frac{1}{4} \left(1 - e^{2i\alpha}\right)^{2\nu} e^{-2\nu\delta} \partial_{\gamma} \left[\frac{1}{\nu + \gamma} {}_{2}F_{1}\left(2\nu, \nu + \gamma; \nu + \gamma + 1; e^{2i\alpha}e^{-2\delta}\right)\right]_{\gamma=0}$$
(S39)

where one clearly sees that for $\delta \ll 1$, the exponential prefactor dominates, so that

$$\mathcal{I}\left(\delta\right) \underset{\delta \ll 1}{\simeq} e^{-2\nu\delta} \mathcal{I}\left(0\right) \tag{S40}$$

It follows that, in the regime where $|\delta t|/\beta \to 0$, one has

$$S_{HOM}(\delta t) \xrightarrow[|\delta t|/\beta \to 0]{} 1 - e^{-2\pi\nu \frac{|\delta t|}{\beta}}$$
 (S41)

HOM noise for two narrow pulses of average charge qe

The previous results can be easily extended to the case of pulses carrying a different charge. We now define

$$V_R(t) = \frac{2\pi q}{\nu e} \delta\left(t + \frac{\delta t}{2}\right) \qquad V_L(t) = \frac{2\pi q}{\nu e} \delta\left(t - \frac{\delta t}{2}\right). \tag{S42}$$

Following the lines of the previous calculation, one can similarly obtain an expression for the HOM noise ratio as

$$S_{HOM}(\delta t) = \frac{\int dt dt' \left\{ \cos\left[2\pi q f_{\delta t}(t, t')\right] - 1 \right\} e^{2\nu G(t'-t)}}{2\int dt dt' \left[\cos\left(2\pi q \frac{1 - \operatorname{sign}(t \times t')}{2}\right) - 1 \right] e^{2\nu G(t'-t)}}$$
(S43)

Interestingly, while the resulting integrals are finite for different domains in time, they always contain a prefactor $\cos(2\pi q) - 1$. For $q \notin \mathbb{Z}$, this prefactor simplifies between numerator and denominator, leaving us with the same expression as Eq. (S37), independently of q. This, however, is specific to the very short pulse situation, as a finite extent leads to slightly different contributions for the numerator and denominator, which depend on q in a nontrivial way.

HOM noise in the Floquet formalism

The applied voltages on the right and left edges are now given by periodic Lorentzian pulses. They are identical except for a time-shift δt , so that

$$V_L(t) = V_R(t - \delta t) = \frac{V_{DC}}{\pi} \sum_k \frac{\eta}{\eta^2 + (t/T_0 - k)^2}$$
(S44)

In the Floquet formalism, the essential ingredients are the coefficients p_l , which are the Fourier components of the accumulated phase $\phi(t) = e^* \int_{-\infty}^t dt' V_{AC}(t')$ created by the AC part of the time-dependent voltage. In practice, it is convenient to introduce the time-dependent voltage $V_{\text{diff}}(t) = V_R(t) - V_L(t)$ which naturally appears in the expression of the noise.

Starting back from the general expression of Eq. (S32), and inserting the p_l coefficients associated with a generic drive V(t) (this allows us to replace V with V_R , V_L or V_{diff}), one can write

$$S(t,t') = 2\left(\frac{e^*\Gamma}{2\pi a}\right)^2 \cos\left[e^* \int_{t'}^t dt'' V(t'')\right] \mathcal{G}(t-t')^2 = \left(\frac{e^*\Gamma}{2\pi a}\right)^2 \sum_{l,m} p_l^* p_m \left(e^{ie^*V_{DC}(t-t')} e^{il\omega t} e^{-im\omega t'} + e^{-ie^*V_{DC}(t-t')} e^{-im\omega t} e^{il\omega t'}\right) \mathcal{G}(t-t')^2$$
(S45)

where $\omega = \frac{2\pi}{T_0}$ is the frequency of the drive. In this Floquet formalism, the zero-frequency noise is now defined as

$$\mathcal{S} = \int d\tau \int_0^{T_0} \frac{d\bar{t}}{T_0} S\left(\bar{t} + \frac{\tau}{2}, \bar{t} - \frac{\tau}{2}\right) \tag{S46}$$

which becomes

$$S = \int d\tau \int_{0}^{T_{0}} \frac{d\bar{t}}{T_{0}} \left(\frac{e^{*}\Gamma}{2\pi a}\right)^{2} \sum_{l,m} p_{l}^{*} p_{m} \left(e^{ie^{*}V_{DC}\tau} e^{il\omega\left(\bar{t}+\frac{\tau}{2}\right)} e^{-im\omega\left(\bar{t}-\frac{\tau}{2}\right)} + e^{-ie^{*}V_{DC}\tau} e^{-im\omega\left(\bar{t}+\frac{\tau}{2}\right)} e^{il\omega\left(\bar{t}-\frac{\tau}{2}\right)}\right) \mathcal{G}(\tau)^{2}$$

$$= 2 \left(\frac{e^{*}\Gamma}{2\pi a}\right)^{2} \sum_{l} |p_{l}|^{2} \int d\tau \cos\left[(l+q)\omega\tau\right] \mathcal{G}(\tau)^{2}$$
(S47)

where we introduced the average charge $q = \frac{e^* V_{DC}}{\omega}$ injected by the drive over one period.

Introducing the coefficients $p_{\text{diff},l}$ for the voltage difference $V_{\text{diff}}(t)$, as well as the coefficients $p_{L,l}$ and $p_{R,l}$ corresponding to $V_L(t)$ and $V_R(t)$ applied individually, and noticing that $V_{R,DC} = V_{L,DC} = \frac{q\omega}{e^*}$, while $V_{\text{diff},DC} = 0$, one finally has for the HOM noise ratio

$$S_{HOM}(\delta t) = \frac{S_{HOM}}{2S_{HBT}} = \frac{\sum_{l} F(p_{\text{diff},l}, 0) - |\Gamma(\nu)|^2}{\sum_{l} [F(p_{L,l}, q) + F(p_{R,l}, q)] - 2 |\Gamma(\nu)|^2}$$
(S48)

with

$$F(p_l,q) = |p_l|^2 \left| \Gamma\left(\nu + i\frac{l+q}{2\pi\theta}\right) \right|^2 \cosh\left(\frac{l+q}{2\theta}\right)$$
(S49)

and $\theta = k_B T / \hbar \omega$ is the reduced temperature. Note that this expression is very general and can describe any kind of periodic potentials, provided that one uses the correct corresponding expressions of the p_l coefficients.