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GREEN FUNCTIONS AND THEIR PROPERTIES

The quasiparticle Green function is defined as

GR/L
(
x, x′; tη, t′η

′
)

=
〈
TKψ

†
R/L (x, tη)ψR/L

(
x′, t′η

′
)〉

. (S1)

Using the properties of time ordering, and the linear dispersion along the edge, this can be recast under the simplified
form

GR/L
(
x, x′; tη, t′η

′
)

= GR/L
(
σηη

′

tt′

(
t− t′ ∓ x− x′

vF

))
, (S2)

where σηη
′

tt′ = sign(t− t′)(η + η′)/2 + (η′ − η)/2 and

GR/L(t) =
〈
ψ†R/L(0, t)ψR/L(0, 0)

〉
. (S3)

Invoking the bosonization identity, this is further reduced as

GR/L(t) =
1

2πa

〈
e
i
√
νφ†
R/L

(0,t)
e−i
√
νφR/L(0,0)

〉
=

1

2πa
eνGR/L(t), (S4)

where we introduced the bosonic Green function GR/L(t) =
〈
φ†R/L(0, t)φR/L(0, 0)

〉
.

From the free Hamiltonian H0, one can readily extract the corresponding Green function for the bosonic modes as

GR/L(t) = − log

 sinh
(
i πaβvF −

πt
β

)
sinh

(
i πaβvF

)
 , (S5)

so that the quasiparticle Green function ultimately reads

GR/L(t) =
1

2πa

 sinh
(
i πaβvF

)
sinh

(
i πaβvF −

πt
β

)
ν (S6)

One can easily show that this Green function is identical for right- and left-movers, so that we can safely drop the
R/L subscript from this point onward.

As anyons obey fractional statistics, they show nontrivial exchange properties which ensure that, at equal time, one
has

ψ†R(0, t)ψR(x, t) = e−iπνSign(x)ψR(x, t)ψ†R(0, t) (S7)

Making use of the linear dispersion along the edge, this is rewritten as

ψ†R(0, t)ψR

(
0, t− x

vF

)
= e−iπνSign(x)ψR

(
0, t− x

vF

)
ψ†R(0, t) (S8)

Since this is valid for any set of parameters (x, t), one can choose x = vF t, without loss of generality. Taking then the
quantum average, this yields 〈

ψ†R(0, t)ψR(0, 0)
〉

= e−iπνSign(t)
〈
ψR(0, 0)ψ†R(0, t)

〉
G(t) = e−iπνSign(t)G(−t) (S9)

It follows that the value of the ratio G(t)/G(−t) can be viewed as a direct consequence of the exchange statistics of
anyons.
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COMPUTING THE TUNNELING CURRENT

Tunneling current when injecting a single quasiparticle

The tunneling current operator reads IT (t) = ie∗(Γψ†R(0, t)ψL(0, t)−H.c.). Here, we consider the situation where a

single quasiparticle is incoming along the right edge, described by a prepared state of the form |ϕ〉 = ψ†R(−x0,−T )|0〉.
To lowest order in Γ, the mean current is thus given by

〈IT (t)〉 = − i
2

∫
dt′
∑
η,η′

η′
〈
ϕ
∣∣∣TK IT (tη)HT

(
t′η
′
)∣∣∣ϕ〉

=
e∗

2

∫
dt′
∑
ε,ε′

∑
η,η′

εη′〈0|TK ψR(−x0,−T −)
(

Γψ†R(0, tη)ψL(0, tη)
)(ε)

×
(

Γψ†R(0, t′η
′
)ψL(0, t′η

′
)
)(ε′)

ψ†R(−x0,−T +)|0〉 (S10)

where ε = ± is used to include the Hermitian conjugated terms, such that for ε = +, one has for any operator O,
O(+) = O while for ε = −, one has O(−) = O†.

Here, TK ensures the time-ordering along the Keldysh contour, and η, η′ = ± are Keldysh indices. Note that we
consider the injection of QP to have happened in the distant past. The Kelsdysh indices added to the times −T have
been chosen to ensure that the ψR(−x0,−T −) and ψ†R(−x0,−T +) operators remain in the same position after time
ordering, independently of the values of t and t′, for T large enough. In particular, keeping in mind that x0 = vFT
(corresponding to a quasiparticle reaching the QPC at t = 0), this allows us to simplify some of the resulting Green
functions as

G(−x0, 0;−T −, tη) = G(−t) (S11)

G(0,−x0; tη,−T +) = G(t), (S12)

independently of η and t, provided that t� T .
Using the bosonized form of the quasiparticle operators, we have

〈IT (t)〉 = Γ2 e
∗

2

∫
dt′
∑
ε

∑
η,η′

εη′
[
G
(
σηη

′

tt′ (t− t′)
)]2(G(−t′)G(t)

G(t′)G(−t)

)ε
(S13)

Using the properties of the Green function derived in Eq. (S9), this then becomes

〈IT (t)〉 = 2ie∗Γ2

∫ t

−∞
dt′ sin

(
2πν

∫ t

t′
dτ δ(τ)

)
×
[
G(t− t′)2 − G(t′ − t)2

]
(S14)

Changing the integration variable to τ = −t′, and using the expression of the Green function, we get:

〈IT (t)〉 = θ(t)2ie∗
Γ2

(2πa)2
sin(2πν)

∫ ∞
0

dτ

[(
sinh(iπTτ0)

sinh(πT (iτ0 − t− τ)

)2ν

−
(

sinh(iπTτ0)

sinh(πT (iτ0 + t+ τ)

)2ν
]

(S15)

where τ0 = a/vF , T = 1/(kBβ) is the temperature, and we use kB = ~ = 1. Defining the reduced variables α = πTτ0,
u = πTτ and z = πTt, the first term in the integral can be written as∫ ∞

0

du

(
sinh(iα)

sinh(iα− z − u)

)2ν

=

∫ ∞
0

du

(
eiα − e−iα

−e−iαez
1

1− e2iαe−2ze−2u

)2ν

e−2ν u (S16)

=
(
e−z

(
1− e2iα

))2ν ∫ ∞
0

du
(
1− e2iαe−2ze−2u

)−2ν
e−2ν u (S17)

=
1

2

(
e−z

(
1− e2iα

))2ν (1

ν

)
2F1

(
2ν, ν, ν + 1, e2iα−2z

)
(S18)

where 2F1 is the hypergeometric function. Using this result, the current can eventually be recast as

〈IT (t)〉 = θ(t) 2e∗
(

Γ

2πvF τ0

)2
sin(2πν)

2πνT
e−2νπTt (2 sin(πTτ0))

2ν

× 2Im
[

2F1

(
2ν, ν, ν + 1, e−2νπTte−2iπTτ0

)
eiπν(1−2Tτ0)

]
(S19)
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Taking then the leading order in the cutoff parameter τ0 leads to

〈IT (t)〉 = θ(t) 2e∗
(

Γ

2πvF

)2

τ2ν−2
0

2 sin(πν) sin(2πν)

ν
e−2νπTt(2πT )2ν−1

2F1

(
2ν, ν, ν + 1, e−2νπTt

)
(S20)

We see that this is a function of 2νπT t = 2νπt/β, which implies that the typical length scale for this function is ∼ β.
The behavior of the current in the two limits t � β and t � β is obtained by using the asymptotic behavior of the
hypergeometric function:

2F1

(
2ν, ν, ν + 1, e−2νπTt

)
=

{
ν Γ(ν)2

Γ(2ν)
sin(πν)
sin(2πν) −

ν
1−2ν

(
1− e−2νπTt

)
t� β

1 + 2ν2

ν+1e
−2νπTt t� β

. (S21)

Tunneling current when injecting a single electron

It is instructive to repeat the same kind of derivation, only this time considering the situation where a single electron
is incoming along the right edge. The prepared state now takes the form |ϕ〉 = Ψ†R(−x0,−T )|0〉, where the electron

operator ΨR satisfies the bosonization identity ΨR(x) = UR
2πae

ikF xe
−i 1√

ν
φR(x)

.
Following a similar derivation to the one above, one obtains instead of Eq. (S13), the following expression for the

tunneling current

〈IT (t)〉 = Γ2 e
∗

2

∫
dt′
∑
η,η′

εη′
[
G
(
σηη

′

tt′ (t− t′)
)]2 [(G(−t′)G(t)

G(t′)G(−t)

)1/ν

−
(
G(t′)G(−t)
G(−t′)G(t)

)1/ν
]

(S22)

From the properties of the quasiparticle Green function, Eq. (S9), one readily sees that for t 6= 0(
G(−t′)G(t)

G(t′)G(−t)

)1/ν

= exp

(
−i
∫ t

t′
dτ 2πδ(τ)

)
= 1, (S23)

so that the tunneling current vanishes at all times t 6= 0 and is nonzero only at the specific time that the electron
reaches the QPC.

Tunneling current in the presence of a time-dependent voltage

In the presence of a voltage bias, the tunneling part of the Hamiltonian can be written as

HT (t) = Γ exp

[
ie∗
∫ t

−∞
dt′ V (t′)

]
ψ†R(0, t)ψL(0, t) + H.c. (S24)

where it now contains the effect of the applied votlage V (t).
The tunneling current operator now reads

IT (t) = ie∗
(

Γ exp

[
ie∗
∫ t

−∞
dt′ V (t′)

]
ψ†R(0, t)ψL(0, t)−H.c.

)
. (S25)

Taking the quantum average, the mean tunneling current is given in full generality by

〈IT (t)〉 =
ie∗

2

∑
η

∑
ε

ε

〈
TK

(
Γ exp

[
ie∗
∫ t

−∞
dt′ V (t′)

]
ψ†R(0, tη)ψL(0, tη)

)(ε)

× exp

−i∑
η′

η′
∫ ∞
−∞
dt′ HT (t′η

′
)

〉 (S26)

where the sum on ε = ± is used to represent the Hermitian conjugate, and η, η′ = ± are Keldysh indices.
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Performing a perturbative expansion in the tunneling amplitude Γ, this gives up to second order

〈IT (t)〉 =
e∗

2
Γ2
∑
η,η′

∑
ε

εη′
∫ ∞
−∞
dt′ exp

[
i ε e∗

∫ t

−∞
dt′ V (t′)

]〈
TKψ

†
R(0, tη)ψR(0, t′η

′
)
〉〈

TKψL(0, tη)ψ†L(0, t′η
′
)
〉

(S27)

Using the expression for the quasiparticle Green function, and performing explicitly the sum on the Keldysh indices
η and η′, one eventually gets

〈IT (t)〉 = 2ie∗Γ2

∫ t

−∞
dt′ sin

(
e∗
∫ t

t′
dt′′V (t′′)

)[
G(t− t′)2 − G(t′ − t)2

]
. (S28)

where the Keldysh summations end up restricting the t′ integral from −∞ to t.

COMPUTING THE NOISE

General expression

The current noise is defined as:

S(t, t′) =
〈
TKδIT (t−) δIT (t′+)

〉
(S29)

with δIT (t) = IT (t)− 〈IT (t)〉, and ± are Keldysh indices.
In the presence of a voltage bias applied to both edges, the tunneling part of the Hamiltonian can be written as

HT (t) = Γ exp

[
ie∗
∫ t

−∞
dt′ (VR(t′)− VL(t′))

]
ψ†R(0, t)ψL(0, t) + H.c. (S30)

where we applied a standard gauge transformation in order to reabsorb the effect of the voltage drives into the
tunneling amplitude. In this situation, the tunneling current operator reads

IT (t) = ie∗
(

Γ exp

[
ie∗
∫ t

−∞
dt′ (VR(t′)− VL(t′))

]
ψ†R(0, t)ψL(0, t)−H.c.

)
. (S31)

Substituting this back into Eq. (S29), one readily obtains, up to lowest order in the tunneling amplitude Γ

S(t, t′) = 2

(
e∗Γ

2πa

)2

cos

(
e∗
∫ t

t′
dt′′(VR(t′′)− VL(t′′))

)
G(t− t′)2. (S32)

In what follows, we focus on the Hanbury-Brown Twiss (HBT) and the Hong-Ou-Mandel (HOM) setups, corresponding
respectively to applying a single voltage drive, or to applying both of them.

HOM noise for two narrow pulses of average charge e∗

We consider here the case of two infinitely short pulses so that both VR(t) and VL(t) are composed of a single delta
function, with a time-shift δt between them. Focusing on pulses of average charge e∗, one can thus write

VR(t) =
2π

e
δ

(
t+

δt

2

)
VL(t) =

2π

e
δ

(
t− δt

2

)
. (S33)

The cosine factor entering the expression for the noise in Eq. (S32) then simply reduces to either cos(2πν) or to 1,
depending on the values of t and t′, so that we write it as cos [2πνfδt(t, t

′)]. The newly defined function fδt(t, t
′) is 1

if one of the times t or t′ is in the interval [−δt/2, δt/2] while the other one is not, and reduces to 0 otherwise.
The HOM noise is defined as the zero-frequency noise due to the collision of these two excitations, as a function of

the time-interval δt. Focusing on the zero-frequency contribution, and filtering out the equilibrium thermal noise (by
subtracting the value in the absence of voltage drives), one has for the un-normalized HOM noise

SHOM = S(VR, VL)− S(0, 0) = 2

(
e∗Γ

2πa

)2 ∫ ∞
−∞
dt

∫ ∞
−∞
dt′ {cos [2πνfδt(t, t

′)]− 1} G(t− t′)2 (S34)
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Similarly, one can work out the expression for the corresponding noise when only one of the drives is present. The
resulting HBT noise reads

SHBT = S(VR, 0)− S(0, 0) = 2

(
e∗Γ

2πa

)2 ∫ ∞
−∞
dt

∫ ∞
−∞
dt′
[
cos

(
2πν

1− sign(t× t′)
2

)
− 1

]
G(t− t′)2 (S35)

The standard HOM noise ratio is then defined as the ratio of the un-normalized HOM noise to twice the HBT
noise, so that

SHOM (δt) =
SHOM
2SHBT

=

∫
dtdt′ {cos [2πνfδt(t, t

′)]− 1} e2νG(t′−t)

2
∫
dtdt′

[
cos
(

2πν 1−sign(t×t′)
2

)
− 1
]
e2νG(t′−t)

(S36)

Substituting the actual value of fδt(t, t
′), this can be further rewritten as

SHOM (δt) =

∫ |δt|
0

dt
∫∞

0
dt′
[
e2νG(t+t′) + e2νG(−t−t′)

]
∫∞

0
dt
∫∞

0
dt′
[
e2νG(t+t′) + e2νG(−t−t′)

]
=

Re
[∫ |δt|

0
dt
∫∞

0
dt′e2νG(t+t′)

]
Re
[∫∞

0
dt
∫∞

0
dt′e2νG(t+t′)

]
= 1− Re [I (δ)]

Re [I (0)]
(S37)

where we introduced

I (δ) =

∫ ∞
0

dz z

(
sinh(iα)

sinh(iα− z − δ)

)2ν

(S38)

with the reduced variable δ = π |δt| /β, and the infinitesimal α = πτ0/β.
This integral can be worked out as

I (δ) = −1

4

(
1− e2iα

)2ν
e−2νδ∂γ

[
1

ν + γ
2F1

(
2ν, ν + γ; ν + γ + 1; e2iαe−2δ

)]
γ=0

(S39)

where one clearly sees that for δ � 1, the exponential prefactor dominates, so that

I (δ) '
δ�1

e−2νδI (0) (S40)

It follows that, in the regime where |δt|/β → 0, one has

SHOM (δt) −→
|δt|/β→0

1− e−2πν
|δt|
β (S41)

HOM noise for two narrow pulses of average charge qe

The previous results can be easily extended to the case of pulses carrying a different charge. We now define

VR(t) =
2πq

νe
δ

(
t+

δt

2

)
VL(t) =

2πq

νe
δ

(
t− δt

2

)
. (S42)

Following the lines of the previous calculation, one can similarly obtain an expression for the HOM noise ratio as

SHOM (δt) =

∫
dtdt′ {cos [2πqfδt(t, t

′)]− 1} e2νG(t′−t)

2
∫
dtdt′

[
cos
(

2πq 1−sign(t×t′)
2

)
− 1
]
e2νG(t′−t)

(S43)

Interestingly, while the resulting integrals are finite for different domains in time, they always contain a prefactor
cos(2πq) − 1. For q /∈ Z, this prefactor simplifies between numerator and denominator, leaving us with the same
expression as Eq. (S37), independently of q. This, however, is specific to the very short pulse situation, as a finite
extent leads to slightly different contributions for the numerator and denominator, which depend on q in a nontrivial
way.
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HOM noise in the Floquet formalism

The applied voltages on the right and left edges are now given by periodic Lorentzian pulses. They are identical
except for a time-shift δt, so that

VL(t) = VR(t− δt) =
VDC
π

∑
k

η

η2 + (t/T0 − k)2
(S44)

In the Floquet formalism, the essential ingredients are the coefficients pl, which are the Fourier components of the
accumulated phase φ(t) = e∗

∫ t
−∞ dt′VAC(t′) created by the AC part of the time-dependent voltage. In practice, it is

convenient to introduce the time-dependent voltage Vdiff(t) = VR(t)−VL(t) which naturally appears in the expression
of the noise.

Starting back from the general expression of Eq. (S32), and inserting the pl coefficients associated with a generic
drive V (t) (this allows us to replace V with VR, VL or Vdiff), one can write

S(t, t′) = 2

(
e∗Γ

2πa

)2

cos

[
e∗
∫ t

t′
dt′′V (t′′)

]
G(t− t′)2

=

(
e∗Γ

2πa

)2∑
l,m

p∗l pm

(
eie
∗VDC(t−t′)eilωte−imωt

′
+ e−ie

∗VDC(t−t′)e−imωteilωt
′
)
G(t− t′)2 (S45)

where ω = 2π
T0

is the frequency of the drive.
In this Floquet formalism, the zero-frequency noise is now defined as

S =

∫
dτ

∫ T0

0

dt̄

T0
S
(
t̄+

τ

2
, t̄− τ

2

)
(S46)

which becomes

S =

∫
dτ

∫ T0

0

dt̄

T0

(
e∗Γ

2πa

)2∑
l,m

p∗l pm

(
eie
∗VDCτeilω(t̄+ τ

2 )e−imω(t̄− τ2 ) + e−ie
∗VDCτe−imω(t̄+ τ

2 )eilω(t̄− τ2 )
)
G(τ)2

= 2

(
e∗Γ

2πa

)2∑
l

|pl|2
∫
dτ cos [(l + q)ωτ ]G(τ)2 (S47)

where we introduced the average charge q = e∗VDC
ω injected by the drive over one period.

Introducing the coefficients pdiff,l for the voltage difference Vdiff(t), as well as the coefficients pL,l and pR,l corre-
sponding to VL(t) and VR(t) applied individually, and noticing that VR,DC = VL,DC = qω

e∗ , while Vdiff,DC = 0, one
finally has for the HOM noise ratio

SHOM (δt) =
SHOM
2SHBT

=

∑
l F (pdiff,l, 0)− |Γ(ν)|2∑

l [F (pL,l, q) + F (pR,l, q)]− 2 |Γ(ν)|2
(S48)

with

F (pl, q) = |pl|2
∣∣∣∣Γ(ν + i

l + q

2πθ

)∣∣∣∣2 cosh

(
l + q

2θ

)
(S49)

and θ = kBT/~ω is the reduced temperature. Note that this expression is very general and can describe any kind of
periodic potentials, provided that one uses the correct corresponding expressions of the pl coefficients.
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