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Abstract.
We study the photoassisted shot noise generated by a periodic voltage in the fractional

quantum Hall regime. Fluctuations of the current are due to the presence of a quantum
point contact operating in the weak backscattering regime. We show how to reconstruct the
photoassisted absorption and emission probabilities by varying independently the dc and ac
contributions to the voltage drive. This is made possible by the peculiar power-law behavior of
the tunneling rates in the chiral Luttinger liquid theory, which allow to approximate the typical
infinite sums of the photoassisted transport formalism in a simple and particularly convenient
way.

1. Introduction
With the ultimate goal of controlling coherent few-particle excitations in quantum conductors,
the condensed matter community has been paying an ever increasing attention to ac transport in
mesoscopic devices over the last twenty years. This has lead to the development of full counting
statistics [1, 2], photoassisted transport formalism [3, 4], Floquet scattering matrix approach
[5] and challenging high-frequency experimental techniques [6, 7, 8, 9], culminated in the new
paradigm of electron quantum optics (EQO) [10, 11].

However, less attention has been devoted to the role of electron-electron interactions, which
often play a crucial role in low-dimensional systems. For instance, the fractional quantum Hall
(FQH) effect emerges as a consequence of strong repulsive interactions that give rise to exotic
quasi-particles carrying fractional charge and statistics [12]. At the same time, the presence
of dissipationless topological edge modes makes the FQH phase a good candidate to study
photoassisted quantum transport in interacting systems [13, 14, 15, 16].

In this paper we investigate the photoassisted shot noise (PASN) in the FQH regime. We
consider a FQH system where periodic voltage pulses are injected from one of the terminals
in presence of a quantum point contact (QPC). In this geometry, excitations incoming from
the leads are partitioned at the QPC, in a protocol that is reminiscent of the Hanbury-Brown
and Twiss optical experiment [10]. We evaluate the shot-noise at the first relevant order in the
tunneling, considering the QPC in a weak backscattering regime. While the expression for the
shot noise generally consists of an infinite superposition of dc contributions, each one weighted
by the corresponding photoassisted probability, we show that the FQH physics allows to extract
each single contribution to the PASN in a surprisingly simple fashion. We provide a recipe
to reconstruct the typical absorption and emission probabilities of the photoassisted formalism
by independently tuning the ac and dc components of the voltage drive. We also discuss the
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experimental feasibility of this study, identifying a set of reasonable experimental parameters
under which our protocol should be applicable.

2. Model
We consider the edge states of a quantum Hall system with filling factor in the Laughlin sequence
ν = 1/(2n + 1), n ∈ N [12]. The low energy excitations of such a quantum state are described
by the chiral Luttinger liquid theory [17], with a pair of counter-propagating chiral modes (one
for each edge of the sample) represented by bosonic fields φR/L(x). For an infinite Hall bar they
satisfy [φR/L(x), φR/L(y)] = ±iπsign(x − y). They are linked to creation and annihilation of
fractional quasi-particles with charge e∗ = νe through the bosonization identity

ψR/L(x) =
UR/L√

2πa
e±ikFxe−i

√
νφR/L(x), (1)

where the parameter a is a short-distance cutoff and UR/L are the Klein factors. The

quasi-particle density operators read ρR/L(x) = ∓
√
ν

2π ∂xφR/L(x) and the effective low-energy
Hamiltonian is given by (~ = 1)

H =
πv

ν

∫ +∞

−∞
dx
[
ρ2R(x) + ρ2L(x) + Θ(−x− d)V (t)eρR(x)

]
, (2)

with v the propagation velocity of the free chiral fields. Here, we have included an additional
coupling between the right-moving density and the time dependent voltage drive V (t), which
is used to drive the system out of equilibrium. The voltage V (t) is assumed to be spatially
homogeneous in the interval (−∞,−d), with d > 0. It is easy to verify that the bosonic field
φR(x) in the presence of V (t) acquires an additional term, namely

φR(x, t) = φ
(0)
R (x− vt, 0) + e

√
ν

∫ t−x
v
− d

v

0
dt′V (t′), (3)

where φ
(0)
R (x, t) is the field at equilibrium [i.e. V (t) = 0]. To model tunneling between the

upper and the lower edge we introduce a QPC at x = 0, represented by the bosonized tunneling
Hamiltonian

Htun(t) = λ exp

[
ie∗
∫ t

0
dt′ V (t′)

]
ei
√
νφ

(0)
R (0,t)e−i

√
νφ

(0)
L (0,t) + h.c. (4)

The constant λ plays the role of the bare tunneling amplitude [in which we have also absorbed
the factor 1/(2πa)], while the time dependent phase is generated by the voltage drive as shown
in Eq. (3). It is worth noticing that we have neglected the delay d/v due to the finite distance
between the contact and the QPC, which has no effect on the time-averaged quantities we are
interested in. We have also omitted the unnecessary Klein factors [18].

We will consider two types of periodic voltage drive, with period T = 2π/ω. The first one is
the sinusoidal wave Vsin(t) = Vdc − Vac cos(ωt) while the second one is a Lorentzian drive given
by

VLor = Vdc + Vac

[
1

π

+∞∑
k=−∞

η

η2 + (t/T + k)2
− 1

]
. (5)

The parameter η gives the half-width of each pulse, W = ηT . The Lorentzian voltage represents
a particularly interesting choice since it gives rise to minimal excitation states both in the integer
and the FQH regime, called levitons [9, 15, 19]. Following a common procedure in the framework
of the photoassisted transport [4, 20], we write the exponential in Eq. (4) as a Fourier series

exp

{
−ie∗

∫ t

0
dt′ V (t′)

}
= e−iqωt

+∞∑
l=−∞

pl(α)e−ilωt, (6)
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where q = e∗Vdc/ω and α = e∗Vac/ω are linked to the dc and ac amplitudes respectively.
Focusing on the signals introduced above we get pl(α) = J−l(α) [13] for the sinusoidal voltage
[Jn(z) is the Bessel function of the first kind] and

pl(α) = αe−2πlη
∞∑
s=0

(−1)s
Γ(l + s+ α)

Γ(1− s+ α)

e−4πsη

s!(s+ l)!
(7)

for the Lorentzian drive [21, 22] .

3. Backscattering current and noise
In the weak backscattering regime, the QPC is almost fully transparent and only a small portion
of the current is reflected back. Such a backscattering current can be calculated perturbatively
at the first relevant order in the tunneling. We define the quasi-particle current operator as
IB = e∗ṄL, with the number of quasi-particle in the lower edge given by NL =

∫
dxρL(x). This

gives

IB(t) = ie∗λ exp

[
ie∗
∫ t

0
dt′ V (t′)

]
ei
√
νφ

(0)
R (0,t)e−i

√
νφ

(0)
L (0,t) + h.c. (8)

Fluctuations of the backscattering current are encoded in the zero-frequency shot noise defined
as

S = 2

∫ T

0

dt

T

∫ +∞

−∞
dt′
[〈
IB(t)IB(t′)

〉
− 〈IB(t)〉

〈
IB(t′)

〉]
. (9)

To calculate 〈IB〉 and S one is asked to evaluate quantum averages involving quasi-particle fields.
Invoking the bosonization identity Eq. (1), they can be related to the bosonic Green’s function
G(τ), which is equal for left and right moving particles and is given by (κB = 1) [23, 24]

G(τ) = 〈φ(τ)φ(0)〉 −
〈
φ2(0)

〉
= ln

[
πθτ

sinh (πθτ) (1 + iωcτ)

]
. (10)

Here we have introduced the high-frequency cutoff ωc = v/a and the temperature θ, and we
consider the limit θ/ωc � 1. Finally, we make use of the Fourier transform

P̂g(E) =

∫ +∞

−∞
dt eiEtegG(t) =

(
2πθ

ωc

)g−1 eE/(2θ)
Γ(g)ωc

∣∣∣∣Γ(g2 − i E2πθ
)∣∣∣∣2 (11)

and the series in Eq. (6) to get

S = 2(e∗)2|λ|2
+∞∑
l=−∞

|pl(α)|2
{
P̂2ν [(q + l)ω] + P̂2ν [− (q + l)ω]

}
. (12)

This is the photoassisted expression for the shot noise. It can be viewed as a superposition of
several dc contributions, whose effective bias is shifted by an amount lω with respect to the
dc value qω and weighted by a probability |pl(α)|2, which is nothing but the probability for a
quasi-particle to absorb or emit l energy quanta [21]. We note that the ac and dc amplitudes
are well separated in Eq. (12). Indeed, the former emerges as the argument α of the coefficients

pl, while the latter appears in the functions P̂2ν(E) via the parameter q.

4. Results
In what follows we study the behavior of the PASN given in Eq. (12) when q and α are varied
independently. To begin, let us first discuss a set of reasonable values for θ, ω and η. Experiments
testing levitons in two-dimensional electron gases are usually performed at θ = 10 − 100 mK
[9, 25, 26], which also happens to be a range of temperature where well defined FQH states can be
spotted [27]. The Lorentzian voltage drive usually operates at a frequency f = ω

2π = 5− 6 GHz,
with dimensionless width of each pulse η = 0.1−0.2 [9, 25, 26]. Higher frequencies are also used
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Figure 1. (a)-(d) PASN as a function of the dc amplitude q for ν = 1 and ν = 1/3 and different
values of the ac amplitude α. (e)-(f) Coefficients |p−q(α)|2 for different values of α as a function
of q. In (e) and (f) the continuous lines are guides for the eyes, with the coefficients |p−q(α)|2
only defined for integer values of q.

for the sinusoidal wave [9], and photoassisted transport in graphene nanoribbons illuminated
with THz radiation was recently reported [28]. We initially set η = 0.1 and θ = 0.1ω, but lower
values of the ratio θ/ω can be reached in principle and will be discussed later.

Figure 1 shows the behavior of S as a function of q for fixed values of α. In panels (a) and
(b) we report the case of sinusoidal and Lorentzian voltage pulses at integer filling factor ν = 1.
The blue curve represents the pure dc case where no ac component is present in the voltage drive
(α = 0). In this case S grows linearly with q as expected, since S ∝ q coth( qω2θ ) ≈ |q| in the integer
quantum Hall regime at sufficiently low temperature. Conversely, when a finite ac component
is present (α = 1, 2) the behavior at low q is clearly non-linear and some excess noise due to the
presence of the oscillating drive can be identified. Switching to the FQH regime [panels (c) and
(d)], the linear (or almost linear) profile of the integer case is replaced by a strongly non-linear
behavior, even for a dc voltage drive. This is a typical signature of the chiral Luttinger liquid
theory. In particular the α = 0 curve, which is proportional to P̂2ν(qω) + P̂2ν(−qω), shows a
sharp peak around q = 0. Such a structure is visible for α = 1 and α = 2 as well, with additional
peaks arising for integer values of q. The different peaks in Fig. 1 (c) and (d) reproduce the
features of the α = 0 curve at shifted values q + l, since the photoassisted transport can be
interpreted as an infinite superposition of shifted dc cases weighted by the probabilities |pl(α)|2,
as we mentioned before. Indeed, due to the sharply peaked structure of the tunneling rates
in the FQH regime, the dominant contribution to the noise around integer q is given by the
photoassisted amplitudes with l = −q. In such a case the PASN is well approximated by

S ≈ 4(e∗)2|λ|2P̂2ν(0) |p−q(α)|2 , (13)

allowing to reconstruct the probabilities |pl(α)|2 from the relative height of the different peaks.
Thus, by fixing the ac component of the voltage drive and tuning the dc component we can
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Figure 2. (a)-(d) PASN for q = 0, 1, 2 as a function of α at ν = 1 and ν = 1/3. (e)-(f)
Coefficients |p−q(α)|2 for q = 0, 1, 2 as a function of α.

explore all the coefficients |pl(α)|2 for l = 0,±1,±2 . . . . This is similar to the spectroscopic
protocol developed by Dubois et al. in Refs. [9, 21] for the free Fermion case, although the
fractional regime treated in the present work makes it much more effective and easy to visualize,
due to the peculiar structure of the tunneling rate P̂2ν(E) at fractional filling (see also a similar
analysis in the framework of finite frequency noise spectroscopy discussed in Refs. [29, 30]). For
instance, Fig. 1 (d) suggests that all p−q(α) with q > α vanish for a Lorentzian drive with
integer α, since we cannot see any further peak at q > α. This is the striking property that
allows the Lorentzian voltage pulse to generate a single electron above the Fermi level, with
no disturbance below it [2, 19]. Conversely, no cancellation arises in the sinusoidal case, where
Fourier coefficients manifestly satisfy |pq(α)|2 = |p−q(α)|2 [see Fig. 1 (c)]. To check the validity
of our spectroscopic protocol we also show the coefficients |p−q(α)|2 for α = 0, 1, 2 in Fig. 1 (e)
and (f). One can easily see that the relative heights of all the peaks in Fig. 1 (c) and (d) are
very well reproduced by the coefficients |p−q(α)|2. As an example, the absence (almost total) of
peaks at q = 0 for both the sinusoidal and the Lorentzian drive with α = 2 is linked to the fact
that |p0(2)|2 � 1 for both signals. Moreover, the value of |p−1(2)|2 explains the high asymmetric
peak at q = 1 for the Lorentzian drive with α = 2.

We now turn to the opposite case, in which the dc component is fixed and we allow the
parameter α to vary continuously. As shown in Fig. 2 (a) and (b), at ν = 1 we get a linear
behavior at high values of |α| both for the sinusoidal and the Lorentzian drive. In the vicinity of
α = 0, the curves deviate from the linear regime and the noise is more or less proportional to q.
We note once again the sharp asymmetry for q 6= 0 of the Lorentzian voltage drive, as opposed
to the symmetric profile of the sinusoidal wave. For fractional filling factor ν = 1/3 [panels
(c) and (d)] the curves are evidently non-linear and oscillate in a non-monotonous fashion as a
function of α. However, the behavior at ν = 1/3 is much more interesting since we can link the
value of S to the probability |p−q(α)|2, following Eq. (13). In contrast with the case of fixed ac
component, in this case we can explore the dependence of the q-th Fourier coefficients upon its
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argument α. Comparing with Fig. 2 (e) and (f), where we report the coefficients |p−q(α)|2 as a
function of α, we observe that the approximation works well from a qualitative point of view,
although an additional contribution due to finite temperature effects is present in all curves at
ν = 1/3, thus preventing us from getting a good quantitative match.

In order to improve the spectroscopic protocol from a quantitative point of view, let us remark
that the peculiar peak of the function P̂2ν(E)+ P̂2ν(−E) around E = 0 becomes more and more
pronounced as the ratio θ/ω decreases. Indeed, it is well known that the Luttinger liquid theory
can lead to a diverging power-law behavior in the limit θ → 0. Thus, the approximation Eq.
(13) becomes more efficient at lower temperatures (or higher frequencies), since the relative
weight of the term l = −q in the PASN with respect to all other terms l′ 6= −q is given by
2P̂2ν(0)/[P̂2ν(l′ω + qω) + P̂2ν(−l′ω − qω)]. The recent exploration of PASN in the THz regime
[28] suggests that our results could be tested in the near future in EQO experiments at fractional
filling factor [31].

5. Conclusions
We have considered the PASN in a FQH system generated by periodic voltage pulses impinging
on a QPC. Due to the typical non-linear behavior of the Green’s function in the FQH regime,
the photoassisted expression for the noise can be approximated in a remarkably simple way.
This allows for a full spectroscopy of the photoassisted probabilities by varying both the dc and
the ac amplitude of the voltage pulses. The spectroscopic technique presented in this work is
within reach of current experimental technologies.
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